To study the effect of slow heat conduction during phase separation, we discuss the relaxation properties of an O(N) symmetric model with phase field type dynamics, where a nonconserved order parameter field couples bilinearly to a diffusive field. In the limit N --> infinity we obtain an exact solution. The analysis reveals three different types of growth regimes and a very rich dynamical behavior. Finally the connection with the Mullins-Sekerka instability is expounded.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Diffusion limited growth in systems with continuous symmetry |
Autori: | |
Data di pubblicazione: | 1995 |
Rivista: | |
Abstract: | To study the effect of slow heat conduction during phase separation, we discuss the relaxation properties of an O(N) symmetric model with phase field type dynamics, where a nonconserved order parameter field couples bilinearly to a diffusive field. In the limit N --> infinity we obtain an exact solution. The analysis reveals three different types of growth regimes and a very rich dynamical behavior. Finally the connection with the Mullins-Sekerka instability is expounded. |
Handle: | http://hdl.handle.net/11581/102466 |
Appare nelle tipologie: | Articolo |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.