Let P(r,theta) be the two dimensional Poisson kernel in the unit disk D. In this paper it is proved that there exists a special sequence a_k of points of D which is non tangentially dense for the boundary bD and such that any function f (theta) on bD can be expanded in series of P(|a_k|, (theta)- arg(a_k)) with coefficients depending continuously on f in various classes of functions. The result is used to solve a Cauchy type problem for Delta u=m, where m is a measure supported on the set {a_k}.

Expansions with Poisson kernels and related topics

GIANNOTTI, Cristina;
2010-01-01

Abstract

Let P(r,theta) be the two dimensional Poisson kernel in the unit disk D. In this paper it is proved that there exists a special sequence a_k of points of D which is non tangentially dense for the boundary bD and such that any function f (theta) on bD can be expanded in series of P(|a_k|, (theta)- arg(a_k)) with coefficients depending continuously on f in various classes of functions. The result is used to solve a Cauchy type problem for Delta u=m, where m is a measure supported on the set {a_k}.
2010
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/101522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact