We have investigated coupled layers of electron and hole liquids in semiconductor heterostructures in zero magnetic field for densities rs<~20 using the Singwi-Tosi-Land-Sjölander self-consistent formalism generalized for layers of unequal density. We calculate susceptibilities, local fields, pair correlation functions, and the dispersion of the collective modes for a range of layer spacings. We include cases where the densities in the two layers are not equal. We find generally that static correlations acting between layers do not have a large effect on the correlations within the layers. For coupled electron-hole layers we find that as the spacing between the layers decreases there is a divergence in the static susceptibility of the liquid that signals an instability towards a charge-density-wave ground state. When the layer spacing approaches the effective Bohr radius the electron-hole correlation function starts to diverge at small interparticle separations. This effect is a precursor to the onset of excitonic bound states but this is preempted by the charge-density-wave instability. The acoustic plasmon exhibits a crossover in behavior from a coupled mode to a mode that is confined to a single layer. Correlations sometimes push the acoustic plasmon dispersion curve completely into the single-particle excitation spectrum. For layers with different densities the Landau damping within the single-particle excitation region is sometimes so weak that the acoustic plasmon can exist inside the region as a sharp resonance. We find for the electron-hole case that proximity to the charge-density-wave instability has an unusual effect on the dispersion of the optical plasmon mode.

Static and dynamic properties of coupled electron-electron and electron-hole layers

NEILSON, DAVID;
1996-01-01

Abstract

We have investigated coupled layers of electron and hole liquids in semiconductor heterostructures in zero magnetic field for densities rs<~20 using the Singwi-Tosi-Land-Sjölander self-consistent formalism generalized for layers of unequal density. We calculate susceptibilities, local fields, pair correlation functions, and the dispersion of the collective modes for a range of layer spacings. We include cases where the densities in the two layers are not equal. We find generally that static correlations acting between layers do not have a large effect on the correlations within the layers. For coupled electron-hole layers we find that as the spacing between the layers decreases there is a divergence in the static susceptibility of the liquid that signals an instability towards a charge-density-wave ground state. When the layer spacing approaches the effective Bohr radius the electron-hole correlation function starts to diverge at small interparticle separations. This effect is a precursor to the onset of excitonic bound states but this is preempted by the charge-density-wave instability. The acoustic plasmon exhibits a crossover in behavior from a coupled mode to a mode that is confined to a single layer. Correlations sometimes push the acoustic plasmon dispersion curve completely into the single-particle excitation spectrum. For layers with different densities the Landau damping within the single-particle excitation region is sometimes so weak that the acoustic plasmon can exist inside the region as a sharp resonance. We find for the electron-hole case that proximity to the charge-density-wave instability has an unusual effect on the dispersion of the optical plasmon mode.
1996
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/100137
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact