The paper presents a methodology for the identification of the physical parameters of a model describing the transverse dynamics of soil-foundation-pier systems founded on piles, starting from results of dynamic experimental tests. In detail, the procedure exploits the identified state-space models of the systems obtained from results of dynamic tests through consolidated identification techniques available in the literature. The procedure permits to compute the physical parameters of the real system (e.g. masses, pier stiffness matrix, and soil-foundation impedance) by directly comparing the components of the analytical and identified stiffness, mass and damping matrices; the latter extracted from the identified state-space models. The proposed approach allows the direct definition of the numerical model that best fits the experimental data, and permits the identification of the soil-foundation compliance. Firstly, the dynamics of the analytical model, which includes the frequency-dependent behaviour of the soil-foundation system through the introduction of a lumped parameter model, is formulated adopting the continuous-time first-order state-space form. Then, an identification strategy of the physical parameters of a soil-foundation-pier system is proposed, starting from the discrete-time state-space model identified from dynamic tests. The procedure allows the identification of the soil-foundation system compliance through experimental tests.

A Methodology for Extracting the Physical Parameters of Soil-Foundation-Pier Systems from Dynamic Tests

Dezi, Francesca;
2022-01-01

Abstract

The paper presents a methodology for the identification of the physical parameters of a model describing the transverse dynamics of soil-foundation-pier systems founded on piles, starting from results of dynamic experimental tests. In detail, the procedure exploits the identified state-space models of the systems obtained from results of dynamic tests through consolidated identification techniques available in the literature. The procedure permits to compute the physical parameters of the real system (e.g. masses, pier stiffness matrix, and soil-foundation impedance) by directly comparing the components of the analytical and identified stiffness, mass and damping matrices; the latter extracted from the identified state-space models. The proposed approach allows the direct definition of the numerical model that best fits the experimental data, and permits the identification of the soil-foundation compliance. Firstly, the dynamics of the analytical model, which includes the frequency-dependent behaviour of the soil-foundation system through the introduction of a lumped parameter model, is formulated adopting the continuous-time first-order state-space form. Then, an identification strategy of the physical parameters of a soil-foundation-pier system is proposed, starting from the discrete-time state-space model identified from dynamic tests. The procedure allows the identification of the soil-foundation system compliance through experimental tests.
2022
ambient vibration tests
forced vibration tests
state-space models
system identification
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/495986
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact