To generate safe and trustworthy Reinforcement Learning agents, it is fundamental to recognize meaningful states where a particular action should be performed. Thus, it is possible to produce more accurate explanations of the behaviour of the trained agent and simultaneously reduce the risk of committing a fatal error. In this study, we improve existing metrics using Q-values to detect essential states in Reinforcement Learning by introducing a scaled iterated algorithm called IQVA. The key observation of our approach is that a state is important not only if the action has a high impact but also if it often appears in different episodes. We compared our approach with the two baseline measures and a newly introduced value in grid-world environments to demonstrate its efficacy. In this way, we show how the proposed methodology can highlight only the meaningful states for that particular agent instead of emphasizing the importance of states that are rarely visited.

Detection of Important States through an Iterative Q-value Algorithm for Explainable Reinforcement Learning

Milani R.;De Leone R.
2024-01-01

Abstract

To generate safe and trustworthy Reinforcement Learning agents, it is fundamental to recognize meaningful states where a particular action should be performed. Thus, it is possible to produce more accurate explanations of the behaviour of the trained agent and simultaneously reduce the risk of committing a fatal error. In this study, we improve existing metrics using Q-values to detect essential states in Reinforcement Learning by introducing a scaled iterated algorithm called IQVA. The key observation of our approach is that a state is important not only if the action has a high impact but also if it often appears in different episodes. We compared our approach with the two baseline measures and a newly introduced value in grid-world environments to demonstrate its efficacy. In this way, we show how the proposed methodology can highlight only the meaningful states for that particular agent instead of emphasizing the importance of states that are rarely visited.
2024
Explainable Reinforcement Learning
Importance Analysis
Important States
Safe Reinforcement Learning
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/487744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact