Process mining algorithms infer business models by analyzing Log files derived from the execution of business activities in organizations. In this paper, a label-independent clustering methodology is proposed. It allows an analysis completely agnostic with respect the nature and domain knowledge of the process Logs. The methodology is totally data-driven and it is based on features that do not depend on activity labels and do not need model extraction at all, thus not requiring the four quality dimensions of a mining discovery algorithm to be satisfied. Due to its independence from asset labels, the methodology is very flexible and applicable in different scenarios. The methodology was tested on the process logs of a municipality of twenty thousand inhabitants showing good performances when evaluated using a mining discovering algorithm.

Label-independent feature engineering-based clustering in Public Administration Event Logs

Corradini F.;Luciani C.;Morichetta A.;Piangerelli M.;Polini A.
2022-01-01

Abstract

Process mining algorithms infer business models by analyzing Log files derived from the execution of business activities in organizations. In this paper, a label-independent clustering methodology is proposed. It allows an analysis completely agnostic with respect the nature and domain knowledge of the process Logs. The methodology is totally data-driven and it is based on features that do not depend on activity labels and do not need model extraction at all, thus not requiring the four quality dimensions of a mining discovery algorithm to be satisfied. Due to its independence from asset labels, the methodology is very flexible and applicable in different scenarios. The methodology was tested on the process logs of a municipality of twenty thousand inhabitants showing good performances when evaluated using a mining discovering algorithm.
2022
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/481867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact