In the industry 4.0 era, pursuing social sustainability also means implementing a synergic collaboration between workers and robots. Indeed, robot behavior does not affect only worker safety, but it also influences his health and comfort. In this context, an important topic to be enhanced is the operator's physical monitoring aimed at reducing the risk of musculoskeletal disorders. Some research studies deal with the improvement of the worker's posture during human-robot collaboration; however, non-intrusive methods applicable in real industrial scenarios are lacking. To this ending, this paper proposes a system to avoid uncomfortable and unsafe postures based on workers' anthropometric characteristics, posture monitoring by inertial and visual systems, task requirements, and a real-time risk assessment by standard methodology. The system allows the optimization of the robot behavior in order to improve worker's well-being. Finally, the virtual simulation of a real case study is presented.

A system to improve the physical ergonomics in Human-Robot Collaboration

Mostarda L.;
2022-01-01

Abstract

In the industry 4.0 era, pursuing social sustainability also means implementing a synergic collaboration between workers and robots. Indeed, robot behavior does not affect only worker safety, but it also influences his health and comfort. In this context, an important topic to be enhanced is the operator's physical monitoring aimed at reducing the risk of musculoskeletal disorders. Some research studies deal with the improvement of the worker's posture during human-robot collaboration; however, non-intrusive methods applicable in real industrial scenarios are lacking. To this ending, this paper proposes a system to avoid uncomfortable and unsafe postures based on workers' anthropometric characteristics, posture monitoring by inertial and visual systems, task requirements, and a real-time risk assessment by standard methodology. The system allows the optimization of the robot behavior in order to improve worker's well-being. Finally, the virtual simulation of a real case study is presented.
2022
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/467120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact