Structural design in seismic areas could be based on either dissipative or non-dissipative concepts, as for example allowed in European and Italian codes. In the first case, capacity design is the basis of structural dimensioning; both strength and ductility verifications are required. In the second case, structural elements are designed to remain in the elastic field under the assigned design seismic input; ductility verifications are not enforced. In steel structures, these two design approaches might lead to very different seismic structural performances, depending on the role that the non-ductile elements and connections have in the non-dissipative design. This situation might represent a source of weakness and lead to premature failures. In the present work, with reference to a single- storey steel industrial building with moment-resisting frames in the transverse direction and con- centric braces in the longitudinal direction, the critical issues encountered when modelling the post- elastic behaviour of a non-dissipative steel structure are discussed. Subsequently, a comparison is made with a structure with the same geometry, designed with dissipative structural behaviour.
Influence of design criteria on the seismic response of single-storey steel buildings
Ceccolini, Nicola
;Zona, Alessandro;Dall’Asta, Andrea;
2022-01-01
Abstract
Structural design in seismic areas could be based on either dissipative or non-dissipative concepts, as for example allowed in European and Italian codes. In the first case, capacity design is the basis of structural dimensioning; both strength and ductility verifications are required. In the second case, structural elements are designed to remain in the elastic field under the assigned design seismic input; ductility verifications are not enforced. In steel structures, these two design approaches might lead to very different seismic structural performances, depending on the role that the non-ductile elements and connections have in the non-dissipative design. This situation might represent a source of weakness and lead to premature failures. In the present work, with reference to a single- storey steel industrial building with moment-resisting frames in the transverse direction and con- centric braces in the longitudinal direction, the critical issues encountered when modelling the post- elastic behaviour of a non-dissipative steel structure are discussed. Subsequently, a comparison is made with a structure with the same geometry, designed with dissipative structural behaviour.File | Dimensione | Formato | |
---|---|---|---|
IABSE_2022_Ceccolini.pdf
solo gestori di archivio
Descrizione: C64 IABSE 2022
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.35 MB
Formato
Adobe PDF
|
2.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.