Dear Colleagues, The plant secondary metabolism relies on thousands of volatile organic compounds (VOCs) which play important roles in plant physiology and defense systems. They are synthesized in the cell plastid and cytosol by specific enzymes and chemically characterized as terpenoids and aromatic and aliphatic compounds. VOCs are obtainable under a liquid, hydrophobic form named ‘essential oil’, through the classical techniques of steam- and hydrodistillation and cold pressing, although unconventional extraction techniques have also recently been used. In addition to affecting the sensory qualities of foods, cosmetics, and perfumes, VOCs are currently considered important mediators of biological activities. The fragrance industry produces hundred thousand tons of essential oils every year, which are designed for perfume manufacturing. However, they have shown an interesting potential of use in other sectors such as food, agriculture, and pharmaceutics. Nevertheless, only a little part of them is devoted to replacing the use of currently marketed pesticides and to supporting agriculture in facing environmental challenges. As a result of the worldwide population’s growth (which is expected to rise from 7.5 to 10 billion by 2050), FAO recently released a document where they forewarn that a significant increase in agriculture production would be recommended to meet the future demand for food. The yield of grain crops has already reached a “plateau”, and the indiscriminate use of synthetic pesticides has caused serious problems with environmental pollution and food safety. In addition, global warming will be responsible for progressive exposure of soils to degradation and loss of fertility and will play an important role in the spreading of plant pathogens responsible for frequent epidemics. In this scenario, VOCs represent a natural, eco-sustainable, and ecofriendly strategy to enhance future smart agriculture while preserving the environment, natural resources, and human health. However, the high costs associated with scalability, formulation, and marketing may represent their limit, which may affect the initial investments. On the other hand, restrictive legislation on the use of chemical pesticides and the current increasing attention of the food and agrochemical industries on sustainable and ecofriendly solutions could attract significant investments, thus making VOCs more appealing. On this basis, this Special Issue is designed to gather review papers dealing with the potential of VOCs in agriculture, food, and pharmaceutical applications through the study of their extraction and characterization, evaluation of their biological properties, and development of targeted delivery systems (e.g., micro and nanoemulsions).

Featured Reviews on Bioactive Flavour and Fragrance Compounds

Riccardo Petrelli
;
2020-01-01

Abstract

Dear Colleagues, The plant secondary metabolism relies on thousands of volatile organic compounds (VOCs) which play important roles in plant physiology and defense systems. They are synthesized in the cell plastid and cytosol by specific enzymes and chemically characterized as terpenoids and aromatic and aliphatic compounds. VOCs are obtainable under a liquid, hydrophobic form named ‘essential oil’, through the classical techniques of steam- and hydrodistillation and cold pressing, although unconventional extraction techniques have also recently been used. In addition to affecting the sensory qualities of foods, cosmetics, and perfumes, VOCs are currently considered important mediators of biological activities. The fragrance industry produces hundred thousand tons of essential oils every year, which are designed for perfume manufacturing. However, they have shown an interesting potential of use in other sectors such as food, agriculture, and pharmaceutics. Nevertheless, only a little part of them is devoted to replacing the use of currently marketed pesticides and to supporting agriculture in facing environmental challenges. As a result of the worldwide population’s growth (which is expected to rise from 7.5 to 10 billion by 2050), FAO recently released a document where they forewarn that a significant increase in agriculture production would be recommended to meet the future demand for food. The yield of grain crops has already reached a “plateau”, and the indiscriminate use of synthetic pesticides has caused serious problems with environmental pollution and food safety. In addition, global warming will be responsible for progressive exposure of soils to degradation and loss of fertility and will play an important role in the spreading of plant pathogens responsible for frequent epidemics. In this scenario, VOCs represent a natural, eco-sustainable, and ecofriendly strategy to enhance future smart agriculture while preserving the environment, natural resources, and human health. However, the high costs associated with scalability, formulation, and marketing may represent their limit, which may affect the initial investments. On the other hand, restrictive legislation on the use of chemical pesticides and the current increasing attention of the food and agrochemical industries on sustainable and ecofriendly solutions could attract significant investments, thus making VOCs more appealing. On this basis, this Special Issue is designed to gather review papers dealing with the potential of VOCs in agriculture, food, and pharmaceutical applications through the study of their extraction and characterization, evaluation of their biological properties, and development of targeted delivery systems (e.g., micro and nanoemulsions).
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/449236
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact