We apply a second-order semi-Lagrangian spectral method for the Vlasov–Poisson system, by implementing Hermite functions in the approximation of the distribution function with respect to the velocity variable. Numerical tests are performed on a standard benchmark problem, namely the two-stream instability test case. The approach uses two independent sets of Hermite functions, based on Gaussian weights symmetrically placed with respect to the zero velocity level. An experimental analysis is conducted to detect a reasonable location of the two weights in order to improve the approximation properties.

On the use of Hermite functions for the Vlasov–Poisson system

Fatone L.;
2020-01-01

Abstract

We apply a second-order semi-Lagrangian spectral method for the Vlasov–Poisson system, by implementing Hermite functions in the approximation of the distribution function with respect to the velocity variable. Numerical tests are performed on a standard benchmark problem, namely the two-stream instability test case. The approach uses two independent sets of Hermite functions, based on Gaussian weights symmetrically placed with respect to the zero velocity level. An experimental analysis is conducted to detect a reasonable location of the two weights in order to improve the approximation properties.
2020
978-3-030-39646-6
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/445294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact