Our work is focussed on the computational study of the molecular interactions in biological systems. We hypothesise the use of process algebras to highlight the relation between the complexity of the functions carried out by a biological entity and the type of interactions tying the elementary units that compose its structure. This approach is intended to define predictive models able to generate new knowledge, on the system itself, complementary to the one obtained via empirical methods. We investigated the way in which the interactions between nucleotides determine the three-dimensional conformation of RNAs and hence their functions. With the aid of formal models based on process algebras, we compared the folding process of proteins with the one performed by RNAs. We formally proved the existence of an abstraction level in which these two kinds of processes show a congruence in their behaviour. Such result allows us to identify and model the distinguishing features of the studied biological processes only on the basis of the known properties of the interactions that bind the nucleotides (in RNAs) and the amino acids (in proteins). This was possible thanks to the expressiveness of a specific process algebra, the Milner’s CCS (Calculus of Communicating Systems)1. We are also working on an application of the proposed modelling approach to the studies carried out at the CPT (Centre de Physique Théorique, Aix-Marseille University), on the long-distance electrodynamic interactions of biomolecules2. The main idea is to develop a simulator able to solve the problem of the possible interpenetrations of the represented molecules. It would be also intended to yield information on the temporal evolution of the molecular interactions. Applications of our approach in modelling the processes involved in the gene expression would allow the identification of mutations in human gene pathologies; on the other hand, simulations of protein interactions would be the basis of in-silico studies of the formation of protein aggregates, like amyloid plaques in neurodegenerative diseases. References: 1) Milner, R. Communication and Concurrency; Upper Saddle River, 1989, NJ, USA: Prentice-Hall, Inc. 2) Gori, M. et al. Investigation of Brownian diffusion and long-distance electrodynamic interactions of biomolecules. Noise and Fluctuations (ICNF), 2015, International Conference on. IEEE, pp. 1 – 4.
Process-based modelling towards the simulation of long-distance electrodynamic interactions of biomolecules
Maestri S.;Merelli E.;
2018-01-01
Abstract
Our work is focussed on the computational study of the molecular interactions in biological systems. We hypothesise the use of process algebras to highlight the relation between the complexity of the functions carried out by a biological entity and the type of interactions tying the elementary units that compose its structure. This approach is intended to define predictive models able to generate new knowledge, on the system itself, complementary to the one obtained via empirical methods. We investigated the way in which the interactions between nucleotides determine the three-dimensional conformation of RNAs and hence their functions. With the aid of formal models based on process algebras, we compared the folding process of proteins with the one performed by RNAs. We formally proved the existence of an abstraction level in which these two kinds of processes show a congruence in their behaviour. Such result allows us to identify and model the distinguishing features of the studied biological processes only on the basis of the known properties of the interactions that bind the nucleotides (in RNAs) and the amino acids (in proteins). This was possible thanks to the expressiveness of a specific process algebra, the Milner’s CCS (Calculus of Communicating Systems)1. We are also working on an application of the proposed modelling approach to the studies carried out at the CPT (Centre de Physique Théorique, Aix-Marseille University), on the long-distance electrodynamic interactions of biomolecules2. The main idea is to develop a simulator able to solve the problem of the possible interpenetrations of the represented molecules. It would be also intended to yield information on the temporal evolution of the molecular interactions. Applications of our approach in modelling the processes involved in the gene expression would allow the identification of mutations in human gene pathologies; on the other hand, simulations of protein interactions would be the basis of in-silico studies of the formation of protein aggregates, like amyloid plaques in neurodegenerative diseases. References: 1) Milner, R. Communication and Concurrency; Upper Saddle River, 1989, NJ, USA: Prentice-Hall, Inc. 2) Gori, M. et al. Investigation of Brownian diffusion and long-distance electrodynamic interactions of biomolecules. Noise and Fluctuations (ICNF), 2015, International Conference on. IEEE, pp. 1 – 4.File | Dimensione | Formato | |
---|---|---|---|
Scientific Day Abstract.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
84.22 kB
Formato
Adobe PDF
|
84.22 kB | Adobe PDF | Visualizza/Apri |
2018_booklet.pdf
accesso aperto
Descrizione: Book of Abstracts 6th Scientific Day (vedi a pag. 28)
Tipologia:
Versione Editoriale
Licenza:
DRM non definito
Dimensione
3.19 MB
Formato
Adobe PDF
|
3.19 MB | Adobe PDF | Visualizza/Apri |
6-scientificDay_28 settembre_3.pdf
accesso aperto
Descrizione: Locandina e programma
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
342.24 kB
Formato
Adobe PDF
|
342.24 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.