We consider an iterative computation of negative curvature directions, in large scale optimization frameworks. We show that to the latter purpose, borrowing the ideas in [1, 3] and [4], we can fruitfully pair the Conjugate Gradient (CG) method with a recently introduced numerical approach involving the use of grossone [5]. In particular, though in principle the CG method is well-posed only on positive definite linear systems, the use of grossone can enhance the performance of the CG, allowing the computation of negative curvature directions, too. The overall method in our proposal significantly generalizes the theory proposed for [1] and [3], and straightforwardly allows the use of a CG-based method on indefinite Newton’s equations.
How Grossone Can Be Helpful to Iteratively Compute Negative Curvature Directions
De Leone, Renato;
2019-01-01
Abstract
We consider an iterative computation of negative curvature directions, in large scale optimization frameworks. We show that to the latter purpose, borrowing the ideas in [1, 3] and [4], we can fruitfully pair the Conjugate Gradient (CG) method with a recently introduced numerical approach involving the use of grossone [5]. In particular, though in principle the CG method is well-posed only on positive definite linear systems, the use of grossone can enhance the performance of the CG, allowing the computation of negative curvature directions, too. The overall method in our proposal significantly generalizes the theory proposed for [1] and [3], and straightforwardly allows the use of a CG-based method on indefinite Newton’s equations.File | Dimensione | Formato | |
---|---|---|---|
De Leone 12th International Conference, LION 12.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
172.78 kB
Formato
Adobe PDF
|
172.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.