Cyber-Physical Systems (CPS) consist of collaborative, networked and tightly intertwined computational (logical) and physical components, each operating at different spatial and temporal scales. Hence, the spatial and temporal requirements play an essential role for their correct and safe execution. Furthermore, the local interactions among the system components result in global spatio-temporal emergent behaviors often impossible to predict at the design time. In this work, we pursue a complementary approach by introducing STREL a novel spatio-temporal logic that enables the specification of spatio-temporal requirements and their monitoring over the execution of mobile and spatially distributed CPS. Our logic extends the Signal Temporal Logic [15]with two novel spatial operators reach and escape from which is possible to derive other spatial modalities such as everywhere, somewhere and surround. These operators enable a monitoring procedure where the satisfaction of the property at each location depends only on the satisfaction of its neighbours, opening the way to future distributed online monitoring algorithms. We propose both a qualitative and quantitative semantics based on constraint semirings, an algebraic structure suitable for constraint satisfaction and optimisation. We prove that, for a subclass of models, all the spatial properties expressed with reach and escape, using euclidean distance, satisfy all the model transformations using rotation, reflection and translation. Finally, we provide an offline monitoring algorithm for STREL and, to demonstrate the feasibility of our approach, we show its application using the monitoring of a simulated mobile ad-hoc sensor network as running example.

Monitoring mobile and spatially distributed cyber-physical systems

Michele Loreti;
2017-01-01

Abstract

Cyber-Physical Systems (CPS) consist of collaborative, networked and tightly intertwined computational (logical) and physical components, each operating at different spatial and temporal scales. Hence, the spatial and temporal requirements play an essential role for their correct and safe execution. Furthermore, the local interactions among the system components result in global spatio-temporal emergent behaviors often impossible to predict at the design time. In this work, we pursue a complementary approach by introducing STREL a novel spatio-temporal logic that enables the specification of spatio-temporal requirements and their monitoring over the execution of mobile and spatially distributed CPS. Our logic extends the Signal Temporal Logic [15]with two novel spatial operators reach and escape from which is possible to derive other spatial modalities such as everywhere, somewhere and surround. These operators enable a monitoring procedure where the satisfaction of the property at each location depends only on the satisfaction of its neighbours, opening the way to future distributed online monitoring algorithms. We propose both a qualitative and quantitative semantics based on constraint semirings, an algebraic structure suitable for constraint satisfaction and optimisation. We prove that, for a subclass of models, all the spatial properties expressed with reach and escape, using euclidean distance, satisfy all the model transformations using rotation, reflection and translation. Finally, we provide an offline monitoring algorithm for STREL and, to demonstrate the feasibility of our approach, we show its application using the monitoring of a simulated mobile ad-hoc sensor network as running example.
2017
978-1-4503-5093-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/405861
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact