Abstract. A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition.

Rate-Based Transition Systems for Stochastic Process Calculi

Michele LORETI;
2009-01-01

Abstract

Abstract. A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition.
2009
9783642029295
268
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/405027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 21
social impact