In the present work we intend to investigate how to detect the behaviour of the immune system reaction to an external stimulus in terms of phase transitions. The immune model considered follows Jerne’s idiotypic network theory. We considered two graph complexity measures—the connectivity entropy and the approximate von Neumann entropy—and one entropy for topological spaces, the so-called persistent entropy. The simplicial complex is obtained enriching the graph structure of the weighted idiotypic network, and it is formally analyzed by persistent homology and persistent entropy. We obtained numerical evidences that approximate von Neumann entropy and persistent entropy detect the activation of the immune system. In addition, persistent entropy allows also to identify the antibodies involved in the immune memory.

Characterisation of the Idiotypic Immune Network Through Persistent Entropy

RUCCO, MATTEO;MERELLI, Emanuela;
2016-01-01

Abstract

In the present work we intend to investigate how to detect the behaviour of the immune system reaction to an external stimulus in terms of phase transitions. The immune model considered follows Jerne’s idiotypic network theory. We considered two graph complexity measures—the connectivity entropy and the approximate von Neumann entropy—and one entropy for topological spaces, the so-called persistent entropy. The simplicial complex is obtained enriching the graph structure of the weighted idiotypic network, and it is formally analyzed by persistent homology and persistent entropy. We obtained numerical evidences that approximate von Neumann entropy and persistent entropy detect the activation of the immune system. In addition, persistent entropy allows also to identify the antibodies involved in the immune memory.
2016
978-3-319-29226-7
978-3-319-29228-1
File in questo prodotto:
File Dimensione Formato  
ECCSProceedings2014_submission_21.pdf

solo gestori di archivio

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/392063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact