We analyze the information geometry and the entropic dynamics of a 3D Gaussian statistical model and compare our analysis to that of a 2D Gaussian statistical model obtained from the higher-dimensional model via introduction of an additional information constraint that resembles the quantum mechanical canonical minimum uncertainty relation. We uncover that the chaoticity of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE), is softened with respect to the chaoticity of the 3D Gaussian statistical model.
Insights into the softening of chaotic statistical models by quantum considerations
LUPO, Cosmo;MANCINI, Stefano
2012-01-01
Abstract
We analyze the information geometry and the entropic dynamics of a 3D Gaussian statistical model and compare our analysis to that of a 2D Gaussian statistical model obtained from the higher-dimensional model via introduction of an additional information constraint that resembles the quantum mechanical canonical minimum uncertainty relation. We uncover that the chaoticity of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE), is softened with respect to the chaoticity of the 3D Gaussian statistical model.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.