We present a differential geometric viewpoint of the quantum MaxEnt estimate of a density operator when only incomplete knowledge encoded in the expectation values of a set of quantum observables is available. Finally, the additional possibility of considering some prior bias towards a certain density operator (the prior) is taken into account and the unsolved issues with its quantum relative entropic inference criterion are pointed out.

On a differential geometric viewpoint of Jaynes' MaxEnt method and its quantum extension

LUPO, Cosmo;MANCINI, Stefano
2012-01-01

Abstract

We present a differential geometric viewpoint of the quantum MaxEnt estimate of a density operator when only incomplete knowledge encoded in the expectation values of a set of quantum observables is available. Finally, the additional possibility of considering some prior bias towards a certain density operator (the prior) is taken into account and the unsolved issues with its quantum relative entropic inference criterion are pointed out.
2012
9780735410398
273
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/241363
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact