High Damping Rubber (HDR), commonly used for seismic isolation devices, may also be used to produce passive dissipation devices. HDR-based devices have a number of advantages: they are recentering, they can withstanding a large number of cycle and moreover they can dissipate energy even under low excitations, such in the case of frequent earthquakes or wind actions. This paper presents a validation of a nonlinear viscoelastic model for HDR-based dampers already proposed by the same authors, by means of comparisons with experimental tests carried out on a full scale steel-concrete composite mock-up. The paper firstly describes the real scale mock-up and its characterization, in the elastic displacement range, carried out by means of free vibration tests. HDR devices were introduced in the frame by means of chevron-type braces and dynamic free vibration tests, force-controlled tests and displacement-controlled tests were performed. The coupled system is modelled as a nonlinear SDOF system consisting of an linear elastic element placed in parallel with HDR dampers. All experimental tests were numerically simulated with satisfactory results.

Validation of a rheological model for HDR based devices by tests on a full scale steel-concrete composite frame

DALL'ASTA, Andrea;LEONI, Graziano;
2008-01-01

Abstract

High Damping Rubber (HDR), commonly used for seismic isolation devices, may also be used to produce passive dissipation devices. HDR-based devices have a number of advantages: they are recentering, they can withstanding a large number of cycle and moreover they can dissipate energy even under low excitations, such in the case of frequent earthquakes or wind actions. This paper presents a validation of a nonlinear viscoelastic model for HDR-based dampers already proposed by the same authors, by means of comparisons with experimental tests carried out on a full scale steel-concrete composite mock-up. The paper firstly describes the real scale mock-up and its characterization, in the elastic displacement range, carried out by means of free vibration tests. HDR devices were introduced in the frame by means of chevron-type braces and dynamic free vibration tests, force-controlled tests and displacement-controlled tests were performed. The coupled system is modelled as a nonlinear SDOF system consisting of an linear elastic element placed in parallel with HDR dampers. All experimental tests were numerically simulated with satisfactory results.
2008
0000000000
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/113382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact