Discovery of Juniperus sabina var. balkanensis R.P.Adams and A.N.Tashev in Macedonia, Bosnia-Herzegovina, Croatia and Central and Southern Italy and relictual polymorphisms found i...
Discovery of *Juniperus sabina* var. *balkanensis* R. P. Adams and A. N. Tashev in Macedonia, Bosnia-Herzegovina, Croatia and Central and Southern Italy and relictual polymorphisms found in nrDNA

Robert P. Adams
Biology Department, Baylor University, Utah Lab, 201 N 5500 W, Hurricane, UT, USA
robert_adams@baylor.edu

Adam Boratynski
Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 52-035, Kornik, Poland

Katarzyna Marcysiak,
Institute of Environmental Biology, Kazimierz Wielki University, Bydgoszcz, Poland

Francesco Roma-Marzio and Lorenzo Peruzzi
Università di Pisa, Department of Biology, Pisa, Italy

Fabrizio Bartolucci and Fabio Conti
Centro Ricerche Floristiche dell’Appennino (Università di Camerino – Parco Nazionale del Gran Sasso e Monti della Laga), Barisciano, Italy

Tuğrul Mataraci
Tarabya Bayiri Cad. Tarabya, Istanbul, Turkey

Andrea E. Schwarzbach
Department of Health and Biomedical Sciences, University of Texas - Rio Grande Valley, Brownsville, TX 78520, USA.

Alexander N. Tashev
University of Forestry, Dept. of Dendrology, 10, Kliment Ochridsky Blvd., 1756 Sofia, Bulgaria

and

Sonja Siljak-Yakovlev
Ecologie, Systématique, Evolution, CNRS UMR 8079, Univ. Paris-Sud, Université Paris-Saclay, Bâtiment 360, 91405 Orsay Cedex France.

ABSTRACT

Additional analyses of trnS-trnG and nrDNA from specimens from Bosnia-Herzegovina, southern and central, Italy, Croatia and Macedonia revealed the presence of *J. sabina* var. *balkanensis* in these areas west of the previously known populations in Greece, Bulgaria and western Turkey. Careful chromatogram analysis of eight (8) polymorphic sites in nrDNA revealed that nearly all of the populations of both var. *balkanensis* and var. *sabina* contained from 2 to 8 polymorphic sites. For these 8 heterozygous sites, two exclusive patterns were found in *J. sabina*. One type (GGACCCAG) was found in 16/62 plants and type 2 (ACGACAGT) was found in 4/62 plants. The majority of the plants examined (42/62) were heterozygous for 1 to 8 sites. These two nrDNA types appear to have arisen via hybridization with a *J. thurifera* ancestor. The two types appear in both v. *sabina* and v. *balkanensis* populations. Extant putative hybrids appear to have formed by crosses between present day type 1 and type 2 nrDNA. Published on-line www.phytologia.org Phytologia 100(2): 117-127 (Jun 22, 2018). ISSN 030319430.
KEY WORDS: Juniperus sabina var. balkanensis, J. sabina, distribution, nrDNA, trnS-trnG, chloroplast capture, ancient nrDNA heterozygotes.

Juniperus sabina var. *balkanensis* R. P. Adams & A. N. Tashev appears to be a product of hybrid origin between *J. sabina* L. and an ancestor of *J. thurifera* (Adams et al. 2016). Subsequent backcrossing to *J. sabina* (var. *sabina*) is hypothesized to have resulted in the capture of ancestral ' *J. thurifera* like' chloroplast by *J. sabina* var. *balkanensis*. In *Juniperus*, Terry et al. (2000) suggested that chloroplast capture was involved in the distribution of cp haplotypes in *J. osteosperma* in western North America. More recently, Adams (2015a, b) found widespread hybridization and introgression between *J. maritima* and *J. scopulorum* in the Pacific northwest, with introgression from *J. maritima* into *J. scopulorum* eastward into Montana. The disparity between cpDNA and nuclear markers (nrDNA and maldehyde) suggested that cp capture had occurred. In *Pinus* and other conifers, Hipkins et al. (1994) concluded that "past hybridization and associated 'chloroplast capture' can confuse the phylogenies of conifers." Bouille et al. (2011) found significant topological differences in phylogenetic trees based on cpDNA (vs. mtDNA sequences) in *Picea* that suggested organelle capture. *Juniperus sabina* L. is a smooth leaf-marginated, multi-seeded juniper of the eastern hemisphere. It is very widely distributed from Spain through Europe to Kazakhstan, western China, Mongolia and Siberia (Fig. 1, Adams 2014). *Juniperus sabina* has a range that is discontinuous between Europe and central Asia; the species is generally a shrub less than 1 m tall and ranges up to 1-2 m wide. However, in the Sierra Nevada of Spain, *J. sabina* is a horizontal shrub.

![Fig. 1. Distribution (shaded areas) of *J. sabina*. x = outlying populations of *J. sabina*.](image_url)

Adams et al. (2016) showed that nrDNA (ITS) did not resolve *J. sabina* populations due to the lack of sequence variation. However, their analyses (Adams et al., 2016) of cp DNA (petN-psbM, trnSG, trnDT, trnLF) revealed that *J. sabina* contained two kinds of cpDNA: typical *J. sabina* and that of *J. sabina* var. *balkanensis* cpDNA in a clade with *J. thurifera*. They recognized the taxon with the *J. thurifera* type cpDNA as a new variety: *J. s. var. balkanensis* R. P. Adams & A. N. Tashev. *Juniperus sabina* var. *balkanensis* was known only from sloping rocky limestone, at 1240 - 1630 m, in the mountains of Bulgaria and northern Greece. Subsequently, Adams et al. (2017), using samples from herbarium specimens, discovered two samples from far western Turkey that were *J. s. var. balkanensis*. However, numerous samples from
throughout Europe were confirmed to be *J. s.* var. *sabina* (Fig. 2). Due to the proximity of the Macedonia - Bosnia-Herzegovina - Croatia region to the populations of *J. s.* var. *balkanensis* in Greece, it seemed prudent to make additional collections and analyses of *J. sabina* plants from these areas to more precisely determine the distribution of *J. sabina* var. *balkanensis*.

![Distribution map of Juniperus sabina var. balkanensis and typical J. sabina chloroplast. The present day distributions of J. thurifera and var. africana (in north Africa) are shown in the insert on the lower left. (modified from Adams et al, 2017).](image)

Figure 2. Distribution of *J. sabina* var. *balkanensis* and typical *J. sabina* chloroplast. The present day distributions of *J. thurifera* and var. *africana* (in north Africa) are shown in the insert on the lower left. (modified from Adams et al, 2017).

MATERIAL AND METHODS

Collections of taxon with non-*J. sabina* cpDNA in *Adams, Schwarzbach and Tashev* (2016): (acronyms used in Fig. 7)
Bulgaria and Greece

B1-B5 Eastern Rhodopes. In protected site “Gumurdjinsky Snežnik”, locality “Madzharsky Kidik”. On limestone rocks above the upper border of a forest of *Fagus sylvatica* ssp. *moesiaca* with *Juniperus communis*. 41° 14' 44.7" N; 25° 15' 31.9" E. elev. 1270 m, 13 Aug. 2012, Adams 13725-13729 (A. Tashev 2012-1-5);

B6 Central Stara Planina (the Balkan). National Park “Central Balkan”. Reserve “Sokolna”. On a steep, rocky limestone slope, with *Sorbus aucuparia, S. aria, S. borbasii, Amelanchier ovalis, Carpinus orientalis, Sesleria latifolia, Pastinaca hirsute, Cephalanthera rubra, Laserpitium siler, Hieracium alpicola* etc. near a forest of *Fagus sylvatica*. 42°42'13.3" N, 25°08'10.4" E, 1501 m, 22.08.2015. Bulgaria, Adams 14721 (A. Tashev 2015 Balkan 1);

B7-B9, Ba, Bb Rila Mountain, National Park “Rila”. On the eco-path, “Beli Iskar”, near river Beli Iskar, in a forest with *Pinus sylvestris, P. peuce, Picea abies, Abies alba, Juniperus communis, J. sibirica, Vaccinium myrtillus, Rosa canina, Sorbus aucuparia, Acer hyrcanum, Chamaespartium sagittale, Hypericum perforatum, Thymus sp.* etc. 42º14'26.5" N, 23º32'33.8" E, 1242 m, 24.06.2015. Bulgaria, Adams 14722-14726 (A. Tashev 2015 Rila 1.1-1.3, 2.1-2.2);

G1-G5 Mt. Tsena, Greece, Adams 14727-14731 (A. Tashev 2015 So. 1-5 Tsena);

Turkey

14861 Turkey, Manisa. Spil Dağı Milli Parki (National Park) (Tas Suret), N38.55°, E 27.42°, ca 1250 m alt., leg. A. Boratyński, K. Boratyńska, 2005, TU_05/55, KOR 44573, female

14934 Turkey, Manisa, Spil Dağı Milli Parki (National Park), N38°, 57', E 27° 41', 1024 m., Tuğrul Mataraci 2016-1

14938 Turkey, Gümüşhane, Kürtün, Aktas village, Karakaya (Northeast Anatolia), 40° 36' 03" N, 38° 53' 21" E., 2376 m. Coll. A. Kandemir 10745.

Samples new for this study: (with Lab Acc. ID = Adams xxxxx)

Bosnia-Herzegovian

Croatia

Juniperus sabina var. *balkanensis*, Mt. Biokovo, Vosac, Strbina, 1200 m, NB! 4n. 43° 18' 34.9" N, 17° 02' 36.3" E., 1300m, 15 June 2017, Croatia, Coll. Sonja Siljak-Yakovlev, Lab Acc. Robert P. Adams 15282-15286.

Macedonia

Italy

Juniperus sabina var. *balkanensis*. Valle di Selva Romana (Pennapiedimonte, Chieti), pendii rupestri, 1600-1900 m, 42° 07' 41" N, 14° 07' 18" W., 5411 ft, 01 Aug 2002, Abruzzo, Italy, Coll. F. Conti (APP No. 1701), ex Fabrizio Bartolucci, received 14 Apr 2018, Lab Acc. Robert P. Adams 15413

Juniperus sabina var. *balkanensis*. Vallone di Pennapiedimonte (Pennapiedimonte, Chieti), pascoli, 800-900 m, 42° 09' 01" N, 14° 11' 02" W., 2017 ft, 05 May 1999, Abruzzo, Italy, Coll. F. Conti (APP No. 13142), ex Fabrizio Bartolucci, received 14 Apr 2018, Lab Acc. Robert P. Adams 15414
Juniperus sabina var. balkanensis. Gran Sasso - M.te Camicia, loc. il Gravone (Castelli, Teramo), pendii rupestri, 1700 m, 42° 26' 45" N, 13° 44' 06" W., 5484 ft, 02 Nov 1996, Abruzzo, Italy, Coll. F. Conti (APP No. 17471), ex Fabrizio Bartolucci, received 14 Apr 2018, Lab Acc. Robert P. Adams 15415

Voucher specimens for all collections are deposited at Baylor University Herbarium (BAYLU), Herbarium (University of Forestry, Sofia, Bulgaria) and Herbarium Apenninicum (APP).

One gram (fresh weight) of the foliage was placed in 20 g of activated silica gel and transported to the lab, thence stored at -20° C until the DNA was extracted. DNA was extracted from juniper leaves by use of a Qiagen mini-plant kit (Qiagen, Valencia, CA) as per manufacturer's instructions. Amplifications were performed in 30 µl reactions using 6 ng of genomic DNA, 1.5 units Epi-Centre FailSafe Taq polymerase, 15 µl 2x buffer E (petN, trnD-T, trnL-F, trnS-G) or K (nrDNA) (final concentration: 50 mM KCl, 50 mM Tris-HCl (pH 8.3), 200 µM each dNTP, plus Epi-Centre proprietary enhancers with 1.5 - 3.5 mM MgCl₂ according to the buffer used) 1.8 µM each primer. See Adams, Bartel and Price (2009) for the ITS and petN-psbM primers utilized. The primers for trnD-trnT, trnL-trnF and trnS-trnG regions have been previously reported (Adams and Kauffmann, 2010). The PCR reaction was subjected to purification by agarose gel electrophoresis. In each case, the band was excised and purified using a Qiagen QIAquick gel extraction kit (Qiagen, Valencia, CA). The gel purified DNA band with the appropriate sequencing primer was sent to McLab Inc. (San Francisco) for sequencing. 2.31 (Technelysium Pty Ltd.).

RESULTS

All the plants sampled in Macedonia, Bosnia-Herzegovina, Croatia and Calabria and Abruzzo areas of Italy were J. s var. balkanensis based on cp DNA (Table 1). The revised distribution of v. balkanensis is shown in Figure 3. All known locations of v. balkanensis are in a relatively small geographical area.

Before discussing the nrDNA patterns, it should be noted that there are recent papers analyzing the inheritance of nrDNA in the Cupressaceae. Adams and Matsumoto (2016) analyzed 3 variable sites of nrDNA from synthetic crosses between Cryptomeria japonica cv. Haara and cv. Kumotooshi (= cv. Haara x Kumutooshi, ie., a backcross). They found that 3 of the 7 progeny had nrDNA very similar to that of the Haara x Kumo parent. In contrast, 4 of the 7 progeny had nrDNA exactly like the Haara parent. This appears to suggest that nrDNA polymorphisms can revert to that of a recurrent parent in the case of backcrossing. Adams, Miller and Low (2016) examined 8 variable nrDNA sites in the parents (Hesperocyparis arizonica, H. macrocarpa), and their 18 artificial hybrid progeny. Each of the 18 hybrids were heterozygous for all 8 nrDNA sites. This study is very relevant to the present study, because Hesperocyparis (= Cupressus in the western hemisphere) is very closely related to Juniperus (Little et al. 2004, Terry, et al. 2012, Terry and Adams, 2015, Terry et al. 2016) and because there are no verified artificial hybrids of Juniperus available to the authors for the examination of the inheritance of
Figure 3. Revised distribution of *J. sabina* var. *sabina* (dark circles) and *J. s.* var. *balkanensis* (open circles) based on cp DNA (present study and from Adams et al. 2017)

nrDNA in *Juniperus*, the Adams, Miller and Low (2016) research on *Hesperocyparis* stands as a proxy for the inheritance of nrDNA in *Juniperus* and thus, their study in *Hesperocyparis* is surely applicable to *Juniperus*. So, we can confidently assume that nrDNA is inherited by complementation as found in *Hesperocyparis*, *Cryptomeria* and all other conifers. It should be noted that Adams, Miller and Low (2016) sequenced cp markers and confirmed that the cp genome is inherited via pollen (paternally inherited) in *Hesperocyparis* (and presumably *Juniperus*).

Aligning *J. sabina* and *J. thurifera* nrDNA sequences revealed that the taxa differ by SNPs at 22 sites, all in ITS1 or ITS2. However, a close examination of the nrDNA sequencing chromatograms revealed that only 8 of the 22 sites contained heterozygous peaks. The 8 sites were (with position): 352(R), 391(S), 432(R), 606(M), 785(Y), 999(M), 1046(R), 1047(K). Two nrDNA types were found considering these 8 sites. One nrDNA type (GGACCCAG) was found in 16/62 plants and type 2 (ACGACAGT) was found in 4/62 plants. The majority of the plants examined (42/62) were heterozygous for 1 to 8 sites (Table 1). Note that 33/42 heterozygous individuals were heterozygous for all 8 sites. The frequency of heterozygous sites was: 1,1,1,3,2,1,0,33 (for plants containing from 1 to 8 polymorphic sites, respectively). Heterozygous plants are somewhat randomly distributed (Fig. 4). It is interesting that 4/4 Spain and 2/3 Switzerland plants were homozygous for the 8 sites. Only 2/7 plants from the far east were homozygous. Plants of var. *balkanensis* seem to be a bit more heterozygous (only 12/48 were homozygous, Fig. 4).
A more detailed examination of nrDNA type 1 (16/20) and type 2 (4/20) homozygous plants (Table 2) shows that both type 1 and type 2 plants were present in the Switzerland samples. One type 2 plant was found in Rila Mtn., Bulgaria and 2 were from Azerbaijan. All 16 type 2 nrDNAs share 4 bp sites with *J. thurifera*, and the four type 2 plants share 3 bp sites with *J. thurifera* (Table 2). It is strange that type 1 nrDNA contains 4 bp, typical of *J. thurifera* (in the 8 sites), and type 2 contain 3 different bp typical of *J. thurifera* (below and Table 2), but these are mutually exclusive in types 1 and 2.

Crossing type 1 (GGACCAG) x type 2 (ACGACGT) gives RSRMCMRK (see below), which differs at only site 5, from the putative hybrids (below and Table 1) of RSRMCMRK. Our data indicates that crossing between types 1 and 2 nrDNA types seem common, 42/62 plants were RSRMCMRK, however, none were RSRMCMRK! (the product of type 1 x type 2). These two nrDNA types may have arisen via hybridization with a *J. thurifera* ancestor and subsequent backcrossing to *J. sabina*.
most common sabina pattern (type 1)
G G A C C C A G

2nd common sabina pattern (type 2)
A C G A C A G T

cross between J. sabina type1 x type2
R S R M C M R K

Putative 'hybrid' pattern (table 1)
R S R M Y M R K

At our present level of understanding, the distributions of J. s. var. balkanensis and J. thurifera do not appear to overlap, negating modern hybridization. However, there were large changes in plant distributions in the Pleistocene and earlier, it seem probable that J. thurifera-like ancestors were sympatric with J. sabina, and presenting opportunities for chloroplast capture from J. thurifera.

ACKNOWLEDGEMENTS

Thanks of A. Kandemir and F. Bogunic for the specimens of J. sabina respectively from Aktas village, northern Turkey and Mt Cvrsnica, Bosnia and Herzegovina. This research was supported with funds provided by Baylor University.

LITERATURE CITED

Bouille, M., S. Senneville and J. Bousquet. 2011. Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics & Genomes 7: 469-484.

Table 1. Survey of *J. sabina* and classification based on ITS and trnS-trnG sequences. Putative hybrids and backcrosses [*J. sabina* x ancestor of *J. thurifera*] based on ITS polymorphisms are in **bold**.

<table>
<thead>
<tr>
<th>coll. #, location</th>
<th>tmS-trnG classification (ie. cp genome)</th>
<th>ITS classif.</th>
<th>polymorphic sites</th>
<th>ITS #poly/8 sites</th>
</tr>
</thead>
</table>
| 14861 Spil Daği, Turk., Boratynski | v. *balcanensis* | *sabina* | R G R C Y C R G | 4
| 14934 Spil Daği, Turkey, Mataraci | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 13725 eastern Rhodopes, Bulgaria | v. *balcanensis* | *sabina* | G G A M Y M R K | 5
| 13726 eastern Rhodopes, Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 13727 eastern Rhodopes, Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 13728 eastern Rhodopes, Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 13729 eastern Rhodopes, Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14721 Sokolina reserve, Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14722 Rila Mtn., Bulgaria | v. *balcanensis* | *sabina* | G G A C Y C A G | 1
| 14723 Rila Mtn., Bulgaria | v. *balcanensis* | *sabina* | A C G A T A G T | 0
| 14724 Rila Mtn., Bulgaria | v. *balcanensis* | *sabina* | R G A C Y M A G | 3
| 14725 Rila Mtn., Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14726 Rila Mtn., Bulgaria | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14727 Tsena Mtn., Greece | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14728 Tsena Mtn., Greece | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 14729 Tsena Mtn., Greece | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14730 Tsena Mtn., Greece | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 14731 Tsena Mtn., Greece | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15311 Mavrovo, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15312 Mavrovo, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15313 Mavrovo, Macedonia | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15314 Mavrovo, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15315 Mavrovo, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15316 Gaichnik, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15317 Gaichnik, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15318 Gaichnik, Macedonia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15319 Gaichnik, Macedonia | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15320 Gaichnik, Macedonia | v. *balcanensis* | *sabina* | R C R A T M R K | 5
| 15277 Mt. Čabulja, Bosnia-Herze. | v. *balcanensis* | *sabina* | R S R A Y M R K | 6
| 15278 Mt. Čvsnica, Bosnia-Herze. | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15279 Mt. Čabulja, Bosnia-Herze. | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15280 Mt. Čabulja, Bosnia-Herze. | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15281 Mt. Čabulja, Bosnia-Herze. | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15282 Mt. Biokovo, Croatia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15283 Mt. Biokovo, Croatia | v. *balcanensis* | *sabina* | G G A C Y M R K | 4
| 15284 Mt. Biokovo, Croatia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15285 Mt. Biokovo, Croatia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15286 Mt. Biokovo, Croatia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15343 Velebit, Croatia | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15344 Velebit, Croatia | v. *balcanensis* | *sabina* | G G A C C C A G | 0
| 15345 Velebit, Croatia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8
| 15346 Velebit, Croatia | v. *balcanensis* | *sabina* | R S R M Y M R K | 8

125

[12] polymorphism formula:

\[\text{polymorphic sites} = \sum_{i=1}^{n} \frac{\text{sites}_i}{\text{length}_i} \]

[13] polymorphism model:

\[\text{polymorphic sites} = \sum_{i=1}^{n} \frac{\text{sites}_i}{\text{length}_i} \]

[14] sites:

\[\text{sites} = \sum_{i=1}^{n} \text{sites}_i \]

[15] length:

\[\text{length} = \sum_{i=1}^{n} \text{length}_i \]

[16] Table 1. Survey of *J. sabina* and classification based on ITS and trnS-trnG sequences. Putative hybrids and backcrosses [*J. sabina* x ancestor of *J. thurifera*] based on ITS polymorphisms are in **bold**.
<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
<th>Taxon</th>
<th>Pattern</th>
<th>Base Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>15365</td>
<td>Calabria area, southern Italy</td>
<td>v. balkanensis</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>15413</td>
<td>Abruzzo area, central Italy</td>
<td>v. balkanensis</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>15414</td>
<td>Abruzzo area, central Italy</td>
<td>v. balkanensis</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>15415</td>
<td>Abruzzo area, central Italy</td>
<td>v. balkanensis</td>
<td>sabina G ACA C C AG</td>
<td>0</td>
</tr>
<tr>
<td>15416</td>
<td>Abruzzo area, central Italy</td>
<td>v. balkanensis</td>
<td>sabina G ACA C C AG</td>
<td>0</td>
</tr>
<tr>
<td>15417</td>
<td>Abruzzo area, central Italy</td>
<td>v. balkanensis</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>7197</td>
<td>Sierra Nevada, Granada, Spain</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7199</td>
<td>Sierra Nevada, Granada, Spain</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7573</td>
<td>Sallent deGallo, Spain</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7574</td>
<td>Sallent deGallo, Spain</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7611</td>
<td>Switzerland</td>
<td>v. sabina</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>7612</td>
<td>Switzerland</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7614</td>
<td>Switzerland</td>
<td>v. sabina</td>
<td>sabina A G G A T AG T</td>
<td>0</td>
</tr>
<tr>
<td>14938</td>
<td>northeast Turkey Kandemir</td>
<td>v. sabina</td>
<td>sabina RG R CT AG T</td>
<td>2</td>
</tr>
<tr>
<td>14316</td>
<td>Azerbaijan</td>
<td>v. sabina</td>
<td>sabina A C G A C AG T</td>
<td>0</td>
</tr>
<tr>
<td>14317</td>
<td>Azerbaijan</td>
<td>v. sabina</td>
<td>sabina A C G A C AG T</td>
<td>0</td>
</tr>
<tr>
<td>7811</td>
<td>Kazakhstan, Paniflor</td>
<td>v. sabina</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>7812</td>
<td>Kazakhstan, Paniflor</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7585</td>
<td>Mongolia, Altair Mtns.</td>
<td>v. sabina</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>7586</td>
<td>Mongolia, Altair Mtns.</td>
<td>v. sabina</td>
<td>sabina A CG A Y MR K</td>
<td>4</td>
</tr>
<tr>
<td>7587</td>
<td>Mongolia, Altair Mtns.</td>
<td>v. sabina</td>
<td>sabina G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>7836</td>
<td>China, Heaven Lake, Xinjiang</td>
<td>v. sabina</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
<tr>
<td>7837</td>
<td>China, Heaven Lake, Xinjiang</td>
<td>v. sabina</td>
<td>sabina RS RM Y MR K</td>
<td>8</td>
</tr>
</tbody>
</table>

most common sabina pattern

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Base Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>G GA CC C AG</td>
<td>0</td>
</tr>
<tr>
<td>A G G C T C G G</td>
<td>0</td>
</tr>
<tr>
<td>A G G C T C G G</td>
<td>0</td>
</tr>
<tr>
<td>A C G A C AG T</td>
<td>0</td>
</tr>
</tbody>
</table>

1Eight polymorphic sites (1-8): R352, S391, R432, M606, Y785, M999, R1046, K1047.

2This pattern, A G G C T C G G, was also found in all J. thurifera samples examined, to date (14 J. thurifera samples from Corse, Morocco, France and Spain, Adams, unpublished)
Table 2. *Juniperus sabina* classified based on ITS homozygous for all 8 polymorphic sites. Putative hybrids (heterozygous for the 8 polymorphic sites) were excluded.

<table>
<thead>
<tr>
<th>coll. #</th>
<th>location</th>
<th>trnS-trnG classification</th>
<th>ITS classification</th>
<th>nrDNA type</th>
<th>polymorphic sites</th>
<th># sites in common with J. thurifera</th>
</tr>
</thead>
<tbody>
<tr>
<td>14934 Spil Dagi, Turkey, Mataraci</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14728 Tsena Mtn., Greece</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15313 Mavrovo, Macedonia</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15319 Gajchnik, Macedonia</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15279 Mt. Cabulja, Bosnia-Herce.</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15281 Mt. Cabulja, Bosnia-Herce.</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15343 Velebit, Croatia</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15344 Velebit, Croatia</td>
<td>v. balkanensis</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7197 Sierra Nevada, Granada, Spain</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7199 Sierra Nevada, Granada, Spain</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7573 Sallent deGallego, Spain</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7574 Sallent deGallego, Spain</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7812 Kazakhstan, Paniflor</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7587 Mongolia, Altair Mins</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7612 Switzerland</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4, Note Type 1!</td>
<td></td>
</tr>
<tr>
<td>7614 Switzerland</td>
<td>v. sabina</td>
<td>sabina</td>
<td>2</td>
<td>A G G A T A G T</td>
<td>3, Note Type 2!</td>
<td></td>
</tr>
<tr>
<td>14316 Azerbaijan</td>
<td>v. sabina</td>
<td>sabina</td>
<td>2</td>
<td>A C G A C A G T</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14317 Azerbaijan</td>
<td>v. sabina</td>
<td>sabina</td>
<td>2</td>
<td>A C G A C A G T</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Cross between J. *sabina* type1 x type2

<table>
<thead>
<tr>
<th>coll. #</th>
<th>location</th>
<th>trnS-trnG classification</th>
<th>ITS classification</th>
<th>nrDNA type</th>
<th>polymorphic sites</th>
<th># sites in common with J. thurifera</th>
</tr>
</thead>
<tbody>
<tr>
<td>14938 northeast Turkey Kandemir</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15386 Mongolia, Altair Mins</td>
<td>v. sabina</td>
<td>sabina</td>
<td>1</td>
<td>G G A C C C A G</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2. This pattern, AGGCTCGG, was found in all *J. thurifera* samples examined, to date (14 *J. thurifera* samples from Corse, Morocco, France and Spain, Adams, unpublished)