The species-specific monitoring protocols for plant species of Community interest in Italy

S. Ercole1, G. Fenu2, V. Giacanelli1, M.S. Pinna2, T. Abeli1, M. Aleffi1, F. Bartolucci2, D. Cogni2, F. Conti2, A. Croce2, G. Domina2, B. Foggi2, T. Forte2, D. Gargano2, M. Gennai2, C. Montagnani1, G. Oriolo2, S. Orsenigo13, S. Ravera14, G. Rossi3, A. Santangelo15, C. Siniscalco2, A. Stinca16, E. Sulis2, A. Troia17, M. Vena18, P. Genovesi1, G. Bacchetta1

1Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian National Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 60, I-00144 Roma, Italy.
2Centre for the Conservation of Biodiversity (CCB), Department of Environment and Life Science (DISVA), University of Cagliari, v.le Sant'Ignazio da Laconi 11-13, I-09123 Cagliari, Italy.
3Department of Earth and Environmental Sciences, University of Pavia, via S. Epifanio 14, I-27100 Pavia, Italy.
4School of Biosciences and Veterinary Medicine, Plant Diversity & Ecosystems Management Unit, Bryology Laboratory & Herbarium, Camerino University, via Pontoni 5, I-62032 Camerino (MC), Italy.
5Floristic Research Center of the Apennines, University of Camerino - Gran Sasso-Laga National Park, San Colombano, I-67021 Barisciano (AQ), Italy.
6via Chiesa, 44, frazione Tuoro, I-81057 Teano (CE), Italy.
7Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, viale delle Scienze, bldg. 5, I-90128 Palermo, Italy.
8Department of Biology, University of Firenze, via La Pira 4, I-50121 Firenze, Italy.
9Department of Life Sciences and Systems Biology, University of Torino, viale P.A. Mattioli 25, I-10125 Torino, Italy.
10Department of Biology, Ecology and Earth Sciences, University of Calabria, via P. Bucci, I-87030 Arcavacata di Rende (CS), Italy.
11Department of Earth and Environmental Sciences, University of Milano-Bicocca Piazza della Scienza 1, I-20126 Milano, Italy.
12via Cecconi 26, I-33100 Udine, Italy.
13Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milano, via Celoria 2, I-20122 Milano, Italy.
14Italian Lichen Society (SLI) c/o Regional Museum of Natural Sciences, via G. Giolitti 36, I-00123, Torino, Italy.
15Department of Biology, University of Naples Federico II, via Foria 223, I-80139 Napoli, Italy.
16Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy.
17Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), section of Botany and Plant Ecology, University of Palermo, via Archirafi 38, I-90123 Palermo, Italy.

Abstract

The results of a project for the identification of species-specific monitoring protocols for the Italian plant species protected under the Habitats Directive (Annexes II/IV/V) are presented. The project led to the development of 118 monitoring factsheets, providing an operational guidance for 107 vascular taxa, 10 bryophytes and 1 lichen taxon. Each factsheet includes information on the species (distribution, biology, ecology, conservation status, threats, etc.) and the description of field methodologies for the detection of the two main reporting parameters, i.e. population size and habitat quality. Practical information to plan field activities are also given. Protocols were designed to address the requirements of the European reporting system with the aim to standardize future monitoring activities, optimize efforts at national scale and overcome some current problems related to data heterogeneity and discrepancies from the EC standards. More than 60 botanists collaborated to identify the best practices and to design an operational field survey format through several stages of discussion and sharing. The protocols, developed by ISPRA and Scientific Societies and shared with the Italian institutions responsible for the Directive application, were published in a dedicated National handbook. The work provides a first uniform technical basis for future national monitoring plans.

Key words: conservation, EC-Habitats Directive, field methodologies, plant species monitoring, population size.

Corresponding author: Stefania Ercole. Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian National Institute for Environmental Protection and Research (ISPRA), via V. Brancati 60, I-00144, Roma, Italy; e-mail: stefania.ercole@isprambiente.it
Introduction

The reference framework of the project presented in this paper is the Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora, known as the Habitats Directive (HD hereafter), and its implementation in Italy. The HD and the Natura 2000 network with more than 27,000 sites, covering about 18% of the terrestrial surface of the EU (EC, 2015a; EEA, 2015), represent the core strategy of nature conservation and the most important tools aiming at protecting biodiversity in Europe (e.g. Balmford et al., 2003; Maiorano et al., 2007). In order to evaluate the effects of the conservation policies and the effectiveness of HD, the European Commission (EC) requires the assessment of the conservation status of species and habitats at national and biogeographical level. Monitoring habitats and species listed in the Annexes of the HD is a key step in the HD implementation, but also a mandatory action for Member States, arising from Article 11. Moreover, according to Article 17, Member States are required to report every 6 years on the main results of this survey. HD monitoring and reporting are not restricted to Natura 2000 sites, therefore data need to be collected both in and outside the network (Evans & Arvela, 2011).

Reporting under Article 17 follows a standard methodology and uses a format proposed by the EC and approved by Member States after discussion and consultation. The use of common standards and formats is necessary to harmonize the content of the National reports developed by Member States, and to allow the aggregation of data at European level (DG Environment, 2017). On the basis of the National reports indeed, the EC in collaboration with EEA (European Environment Agency) produces composite reports and makes them accessible to other EU institutions and to the public (EC, 2015b). These composite reports provide an overview of the status of the European biodiversity and represent a component for evaluating EU policy, in particular for measuring progress towards the 2020 targets set under the Biodiversity Strategy (EEA, 2015; EC, 2015b).

In the third Italian National Report, covering the period 2007-2012, the status of the species and habitats of Community interest was assessed using available knowledge and expert judgment (Genovesi et al., 2014). The Italian Report reveals an increase in the quality of data and assessments compared to the past, but despite these significant advances, there are still some data gaps due to heterogeneity, inconsistency in collection methods, discrepancies from the HD reporting requests, lack of data for some parameters and a low percentage of information derived from ad hoc field surveys and long-term monitoring (Ercole & Giacanelli, 2014). A major cause of these problems is the absence of a standardized monitoring and data collection program at a national level, both for vascular and non vascular flora (Ravera et al., 2016; Fenu et al., 2017).

To overcome several of these deficiencies and to improve monitoring systems for HD in Italy, an ad hoc project was set up in 2015, aimed to standardize future monitoring activities and to optimize efforts at national scale. A network of institutions (Italian Ministry for the Environment, Regions and Autonomous Provinces) and scientific societies with the coordination of the Italian National Institute for Environmental Protection and Research (ISPRA) has been organized with the main goal to identify nationwide shared monitoring protocols for habitats and species listed in the annexes of the HD.

In particular, for plant species of Community interest all activities were carried out through a scientific collaboration between ISPRA and SBI (Italian Botanical Society) with a further contribution of SLI (Italian Lichen Society), and led to the identification of species-specific monitoring protocols for all plant species listed in the HD. Protocols were designed to address the requirements of the European reporting system. Standardized data collection methods should lead to achieve comparable results and to overcome some current problems related to data heterogeneity and discrepancies from the EC standards and should allow greater repeatability and comparability over time. At the end of the project (October 2016) all protocols have been collected in a dedicated National handbook (Ercole et al., 2016).

Main goals and organization of the project for plant species

The main aim of the project was to define nationwide shared monitoring protocols for Italian plant species of Community interest, consistent to the HD reporting requests and based on the best current scientific knowledge. The protocols were strongly focused on species-specific methodologies to measure/estimate the species population size and status.

Species monitoring is the regular observation and recording of changes in status and trend of a taxon in a certain territory and time interval. Beyond a purely scientific interest, the primary purpose of monitoring is to collect information useful in developing conservation policy, to examine the outcomes of management actions and guide management decisions (e.g. Fenu et al., 2015). Moreover, monitoring should have further goals, such as detection of significant changes in resource abundance, assessment of the effects of management on population/community dynamics, and providing suggestions for applied research questions. Finally, monitoring data can be used to assess the conservation
status or to predict the effects of various management practices on population size, condition, stage distribution (including seed production and/or seedlings development) and demographic processes (e.g. survivorship, growth, seedling recruitment; Menges & Gordon, 1996; Barni et al., 2013; Fenu et al., 2015). The parameters selected and the frequency of measurement will depend on specific management or conservation objectives, on initial assessment of threat or need, on the biology of the species and on available resources (Menges & Gordon, 1996; Fenu et al., 2015; Giovino et al., 2015). However, because time and resources for monitoring activities are generally limited also for HD plants, only few plant populations are involved with an adequate monitoring program and generally hasty estimation of abundance or extent of populations prevails. As a consequence, few experiences, always at the regional level and often focused on narrow endemic plant species (e.g., Fenu et al., 2011, 2015; Campisi et al., 2014; Plume et al., 2015; Troia & Lansdown, 2016), were carried out so far.

The project activities began in April 2015; more than 60 botanists pertaining to different universities and research institutes were involved. The network was headed by an ISPRA-SBI coordination group and organized into 12 units: 10 units for vascular plants and two for non-vascular plants (Fig. 1). The project was carried out through several stages of discussion and sharing, making progressive improvement steps to the identification of the best practice and to provide complete “monitoring factsheets”, concise and operational.

Firstly, the checklist of the Italian HD plant taxa has been defined and updated following the current knowledge and the latest taxonomic and systematic studies (Rossi et al., 2016). Then, monitoring factsheet format and contents have been carefully chosen in order to have a first draft common framework for the involved researchers. In addition, a “survey format” to test in the field the monitoring techniques was elaborated and each working group began to work on the assigned taxa.

The monitoring protocols were identified for all the taxa and tested in the field for a set of target species, selected on the basis of their representativeness of different reproductive/propagative strategies and distribution patterns.

The protocols were submitted to the Italian institutions responsible for the HD implementation and application to be reviewed: in early 2016 all draft factsheets were shared for comments and suggestions, first with the Italian Ministry for the Environment and then with Regions and Autonomous Provinces, as responsible institutions for monitoring under HD. After an extensive review and implementation work, the retail version of the factsheets was completed.

Project findings

Update of the list of taxa

Plant species to be monitored under the HD are all those listed in Annexes II, IV and V distributed on the Italian territory. For the purpose of the project the list of Italian plant taxa to be monitored under HD has been revised and updated on the basis of recent studies, also by a taxonomic point of view.

In addition to the 109 taxa considered in the third Italian Report (Ercole & Giacanelli, 2014; Fenu et al., 2017), five other vascular species, listed in Annexes II/IV, were also included in the project: *Botrychium simplex* E.Hitchc., *Centranthus amazonum* Fridl. & A.Raynal, *Elatine gussonei* (Sommier) Brullo, Lanfr., Pavone & Ronisiv., *Klasea lycopifolia* (Vill.) Á.Löve & D.Löve [HD name: *Serratula lycopifolia* (Vill.) A.Kern], *Jacobaea vulgaris* Gaertn. subsp. *gotlandica* (Neuman) B.Nord [HD name: *Senecio jacobea* L.
subsp. _gotlandicus_ (Neuman) Sterner. Although their presence in Italy is certain, they had not been previously included in the checklist ex Art.17.

Four HD plants previously reported for Italy but currently considered probably extinct (Rossi et al., 2016) have also been included in the project. This choice was made according to a precautionary principle and in view of a possible future rediscovery of these plants (_Bromus grossus_ Desf. ex DC., _Coleanthus subtilis_ (Tratt.) Seidl, _Mandragara officinarum_ L., _Thesium ebracteatum_ Hayne).

The updated list includes a total of 118 taxa: 107 vascular plants, 10 bryophytes and one lichen taxon; 115 of these taxa are protected by the HD at the species level and 3 at the genus or subgenus level (i.e. _Cladonia_ L. subgenus _Cladina_ (Nyl.) Vain., _Sphagnum_ L. sp. pl., _Lycopodium_ L. sp. pl.).

According to the latest updates of the Italian endemic flora (Peruzzi et al., 2014, 2015), about half of the Italian HD taxa are endemic. Among the vascular plants, 54 species are endemic to Italy, two are endemic to Sardinia and Corsica, one to Sicily and Malta and three taxa have subspecies endemic to Italy. Among bryophytes _Riccia breidleri_ Jur. ex Steph. is an alpine endemism, the only one among non-vascular plants (Aleffi et al., 2008).

Field survey format and species-specific monitoring protocols

The published handbook (Ercole et al., 2016) contains the species-specific protocols and specific field survey formats (for vascular plants, bryophytes and lichens) developed in the project. The use of standardized protocols and survey formats is essential in order to ensure uniformity in spatial terms (data recorded in the same way in different areas of the territory, such as Regions), and in temporal terms (data recorded with the same methods in different years and from different detectors). The survey formats have been designed to be in compliance with the requirements of HD reporting, scientifically rigorous, applicable both at local and national level, suitable to ensure collection of homogeneous data and repeatable over time.

The monitoring protocols developed for each of the 118 taxa were tested in the field on a set of 12 target species, identified according to representativeness criteria for life forms, phenology, ecology and biogeography (Tab. 1). Among them, taxa with very limited/narrow distribution and taxa with wide distribution were included. Field surveys allowed to adjust the methodology across the different groups of botanists involved in the project, to verify applicability of the protocols and to improve the survey formats.

For each _taxon_ a specific monitoring factsheet has been filled. A single factsheet has been realized even for _taxa_ protected at the _genus_ level, and in the cases of species represented in Italy by two or more subspecies (_Anchusa crista_ Viv., _Asplenium aduleterinum_ Milde, _Dianthus rapicola_ Biv., _Gentiana lutea_ L. and _Stipa austroitalica_ Martinovsky), since in both cases a comprehensive HD reporting is required.

The factsheet format includes two sections, a first one with information on the species (descriptive section) and a second one dedicated to the monitoring. The former contains relevant information such as: conservation status and trend _sensu_ HD derived from the third Italian Report (Genovesi et al., 2014), European (Bilz et al., 2011) and National (Rossi et al., 2016) IUCN assessments, chorotype, distribution in Italy, major biological characteristics, ecological requirements, plant communities and threats. In particular, plant communities where each plant species grows and their syntaxonomical attribution (for vascular plants mainly according to Biondi et al., 2014) have been briefly described, as relevant information for plant species, although HD reporting does not require it. Since many of the species are threatened by specific and relevant pressures, even the description of the identified threats for each _taxon_ has been reported.

Each factsheet also contains the distribution map of the _taxon_; 98 maps are the ones already produced in the third Report (standard European grid 10×10 km), 5 maps are derived from the third Report with meaningful updates, 7 maps are brand-new elaborated on the same standard grid, and 8 are regionally based maps (Administrative Region of presence/extinction). Moreover, original photos contribute to illustrate morphology and habitat of the _taxon_.

The monitoring section includes the description of field methodologies for the detection of the two main HD parameters, _i.e._ population size and habitat for the species. Concerning population size, for each species the methodologies and the following information are provided: minimum percentage of populations to be monitored; number, size, and criteria for _plot_ placement; specific parameters to be detected (counts or estimates) including number of individuals, _i.e._ _genet_ and/or _ramet_, which is not always easy to determine. There are several plants that use vegetative reproduction and therefore generate clonal populations, in which only the number of _ramet_ can be estimated (e.g. _Lamyropsis microcephala_ (Moris) Dittrich & Greuter, _Arnica montana_ L., _Gentiana lutea_ L., _Ribes sardoum_ Martelli). In these cases it is extremely difficult, or impossible, to establish the exact number of individuals or _genet_.

Other parameters detected are the number of colonies/clumps (e.g. for ferns as _Asplenium aduleterinum_ Milde and _Vandenboschia speciosa_ (Willd.) G.Kunkel (HD name: _Trichomanes speciosum_ Willd.)) and the extent of covered area (for bryophytes, lichens, hydrophytes and plants with high clonal propagation, _e.g._
Tab. 1 - Target plant species selected for the field test.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Distribution</th>
<th>Life form</th>
<th>Habitat</th>
<th>No. populations monitored</th>
<th>Regions involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androsace matthioli L.</td>
<td>Endemic to Central Apennines</td>
<td>Chamaephyte</td>
<td>Montane limestone cliffs</td>
<td>1 (representative population)</td>
<td>Abruzzo</td>
</tr>
<tr>
<td>Armeria helodes F.Martini & Polidini</td>
<td>Narrow endemic to Friuli Venezia Giulia</td>
<td>Hemicryptophyte</td>
<td>Alkali fans of peaty soil that are saturated in water and rich in calcium and magnesium</td>
<td>7 (all populations)</td>
<td>Friuli Venezia Giulia</td>
</tr>
<tr>
<td>Equisetum saxeolus (Guss.) Freitag & G.Kadereit</td>
<td>Endemic to South Italy (Tyrrhenian coast)</td>
<td>Chamaephyte</td>
<td>Maritime rocks and calcareous or volcanic cliffs</td>
<td>5 (all populations)</td>
<td>Campania, Sicilia</td>
</tr>
<tr>
<td>Cypripedium calceolus L.</td>
<td>Eurasian</td>
<td>Geophyte</td>
<td>Open woodland, scrub under conifers, forest margins, grasslands</td>
<td>3 (representative populations)</td>
<td>Valle d’Aosta, Piemonte, Lombardia, Trentino-Alto Adige, Veneto, Friuli Venezia Giulia, Abruzzo</td>
</tr>
<tr>
<td>Gentiana lutea L.</td>
<td>South Europe</td>
<td>Geophyte</td>
<td>Mountain grasslands and meadows</td>
<td>11 (representative populations covering the entire distribution in Italy)</td>
<td>Peninsular Italy, Sardegna</td>
</tr>
<tr>
<td>Isotes malvinerviana Ces. & De Not.</td>
<td>Endemic to North Italy (Po plain)</td>
<td>Hydrophyte</td>
<td>Freshwater: clear, fresh and running spring water</td>
<td>14 (all actual populations) + 5 (extinct)</td>
<td>Piemonte, Lombardia</td>
</tr>
<tr>
<td>Lamprospermum microcephala (Moris) Dittrich & Greuter</td>
<td>Narrow endemic to Sardegna</td>
<td>Geophyte</td>
<td>Montane dwarf shrub and steppe vegetation</td>
<td>4 (only known populations)</td>
<td>Sardegna</td>
</tr>
<tr>
<td>Acis nicaeensis (Ardoino) Lledó, A.P.Davis & M.B. Crespo</td>
<td>Endemic to Maritime Alps (France and in the northwest of Italy’s border)</td>
<td>Geophyte</td>
<td>Rocky areas and barren slopes on stony soils</td>
<td>1 (only known population)</td>
<td>Liguria</td>
</tr>
<tr>
<td>Marsilea quadrifolia L.</td>
<td>Eurasian</td>
<td>Hydrophyte</td>
<td>Freshwater: ponds, rice fields and ditches</td>
<td>6 (representative populations)</td>
<td>Piemonte, Lombardia, Veneto, Trentino-Alto Adige, Emilia-Romagna, Toscana</td>
</tr>
<tr>
<td>Primula palinuri Petagna</td>
<td>Endemic to South Italy (Tyrrhenian coast)</td>
<td>Geophyte</td>
<td>Northern, northwestern or northeastern slopes on calcareous substrate with neutral pH</td>
<td>2 (all populations)</td>
<td>Campania, Basilicata, Calabria</td>
</tr>
<tr>
<td>Ribes sardoum Martelli</td>
<td>Narrow endemic to Sardegna</td>
<td>Nano-Phanerophyte</td>
<td>Mountain areas on calcareous substrates</td>
<td>1 (only known population)</td>
<td>Sardegna</td>
</tr>
<tr>
<td>Silene hicesiae Brullo & Signor.</td>
<td>Endemic to the Aeolian Islands</td>
<td>Chamaephyte</td>
<td>Rocky slopes of small volcanic islets</td>
<td>1 (main population)</td>
<td>Sicilia</td>
</tr>
</tbody>
</table>

Marsilea quadrifolia L.). In some cases, the number of flowering/fruited individuals or other specific data can also be required.

The protocols may differ greatly depending on both the extent of the populations of each species and their biological and ecological characteristics. In Italy, many HD plant species have a restricted distribution area and small populations. In these cases (which are usually the better known and investigated) it is recommended to count all the individuals. For populations with a high number of individuals the methodologies usually involve counts on a representative number of plots, in order to sample a significant portion of the population (at least 10%) and to obtain subsequently the total estimate. In the case of more widespread species (*e.g.* *Ruscus aculeatus* L.), the population size can be estimated calculating the number of 1×1 km grid cells, in conformity to what has been recently specified by the European Commission for Annex V species (DG Environment, 2017).

The factsheet also includes some practical information to plan field activities, specifically: monitoring frequency requested in a year and in the six years between two reporting cycles, best period for sampling (months of flowering, fruiting, etc.), number of requested working days per year, minimum number of people to be employed in field surveys.

Concluding remarks

Despite monitoring activities are the basis for many national and international conventions and directives and represent a fundamental tool for natural resource management and conservation, currently an Italian national monitoring system does not exist yet. Recommendations on how to monitor biodiversity are numerous (*e.g.* Nimis *et al.*, 2002; Balmford *et al.*, 2003; Mace, 2005; Baimonte *et al.*, 2015; Fenu *et al.*, 2015; Evangelista *et al.*, 2016), but are still insufficiently taken into account at a National scale. Although several experiences have been realized at the local level, long-term monitoring data on individual taxa are available.
only in few cases (Fenu et al., 2017).

Italy hosts a high number of plant taxa of Community interest (exceeded only by Spain and Portugal among the Member States), therefore monitoring efforts are particularly demanding. Additionally, the high endemism rate of the Italian plant species of Community interest, about 50% of the total, determines an extraordinary national responsibility in conservation.

The last Italian Report ex Art.17 showed a negative situation for our HD plant species with nearly half of them declared in an unfavourable conservation status (Ercole & Giacanelli, 2014; Fenu et al., 2017), confirming the results of the Italian IUCN assessments of policy species (Rossi et al., 2014, 2016). Moreover the trend of several taxa suggests that many of these species might move to categories of higher extinction risk in the coming years (Fenu et al., 2017). Such evidences demonstrate that the efforts undertaken in the last 20 years are still insufficient to maintain many taxa at a favourable conservation status. Significant work still remains to achieve the HD conservation targets and monitoring activities are crucial to reach the goal.

In conclusion, this project provides for the first time uniform technical bases for future national HD monitoring plans. The species-specific protocols identified for Italian plant species of Community interest can help to overcome the lack of shared standards and some current problems related to data heterogeneity, allowing greater replicability and comparability of data collection over time. It is also interesting to note that the requirements of the HD monitoring (e.g. for demographic data) may partly overlap and coincide with the needs related to research projects and specific studies. At the same time further scientific research will contribute to the improvement of species-specific monitoring protocols that will gradually become more accurate and useful for HD monitoring purposes.

Acknowledgements

The authors would like to thank all the Italian botanists who provided their support to the project and allowed the achievement of the National handbook, with their knowledge and expertise.

References

Evangelista A., Frate L., Sticina A., Carranza M.L. & Stanisci A., 2016. VIOLA - the vegetation databa-
Amaryllidaceae

Nimis P.L., Scheidegger C. & Wolseley P.A. (Eds.),

Menges E.S. & Gordon D.R., 1996. Three Levels of

Maiorano L., Falcucci A., Garton E.O. & Boitani L.,

Giovino A., Domina G., Bazan G., Campisi P. & Sci

Peruzzi L., Conti F. & Bartolucci F., 2014. An invento-