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Abstract

Helical molecules change their twist number under the effect of a mechanical load. We study

the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian.

Finite temperature path integral techniques are applied to generate a large ensemble of possible

configurations for the base pairs of the sequence. The model also accounts for the bending and

twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad

range of twisting conformation, we compute the helix structural parameters by averaging over the

ensemble of base pairs configurations. The method selects, for any applied force, the average twist

angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist

under an applied stretching and the over-twisting is physically associated to the contraction of the

average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that

the maximum amplitude of the bending fluctuations may decrease against the external load, the

DNA molecule first over-twists for weak applied forces and then untwists above a characteristic

force value. Our results are discussed in relation to available experimental information albeit for

kilo-base long molecules.

PACS numbers: 87.14.gk, 87.15.A-, 87.15.Zg, 05.10.-a
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1. Introduction

While DNA packaging in bacteria and eukaryotic chromosomes rely on the mechanical

properties of the double helix, the sequence specific chain deformability is essential as much

to the formation of transient fluctuational bubbles involved in cell division and transcription

as to DNA recognition by proteins which twist, bend and stretch the helix upon binding

[1–3]. Proteins, typically interacting with short base pair sequences, say 10 - 20 bps, confer

a manifold of functions to the bare DNA chains [4]. A remarkable example is provided by

recombinases, such as RecA in E. coli, which promote homologous pairing between e.g., a

partially single stranded DNA and a target double stranded molecule [5] thus producing

displacement and exchange of strands, a vital process in the recombinational DNA repair

[6]. The mechanisms by which the RecA nucleoprotein filament efficiently samples the target

dsDNA and pairs homologous sequences are largely unknown: some studies [7] suggest

that the RecA - dsDNA binding is favored by a double helix unwinding with opening of

thermal bubbles whereas others [8] point out that the rate of homologous pairing is higher

when dsDNA maintains a random coil conformation with short end-to-end distance as this

enhances the local DNA concentration and allows a rapid homologous search. It is however

likely that the specific twist configuration of the helix affects both the size and the binding

properties of the recombinase - dsDNA complexes [9] while, in turn, the latter restructure

and deform the double helix in several ways [10, 11].

Considerable knowledge of the DNA properties has been gained over the last twenty five

years as a wide number of methods to micro-manipulate single molecules and sample their

mechanical response to external forces has become available [12–16]. First measurements

on λ-phage molecules in solution [13] have shown that, for low and intermediate forces,

DNA displays entropic elastic behavior dominated by thermal bending fluctuations which

constantly deform base pairs and molecule backbone so that the helix assumes different ran-

dom walk configurations. Accordingly, inextensible worm-like-chain models with persistence

length of ∼ 50 nm fit well the force-extension data up to applied forces of ∼ 10 pN [17, 18].

Above this typical force, the polymer end-to-end distance stretches linearly and takes values

even larger than the B-form contour length. At ∼ 65 pN, the force-extension plot shows

a peculiar plateau signaling that the molecule undergoes a structural transition and over-

stretches to ∼ 1.7 times its B-form contour length [19–22], the precise values depending on

2



the solution condition [23]. Note that the RecA - dsDNA complex is stretched by a factor 1.5

with respect to the naked DNA length [24]. Importantly, assuming an experimental setup

which anchors both ends of the molecule thus preventing it to twist, the over-stretching

transition shifts at ∼ 100 pN [25]. Moreover, regardless of the attachment geometry, optical

tweezers methods combined with single molecule fluorescence imaging have visualized that

over-stretched dsDNA gradually converts into single stranded DNA [26] thus suggesting a

force induced melting transition.

Ten years ago Gore et al. [27] showed that DNAmolecules in the kilo-base range over-twist

under small to moderate applied tensions (up to of ∼ 30 pN) and eventually untwist once

larger applied forces begin to deform the molecule backbone. These apparently surprising

findings have been interpreted in terms of a negative twist-stretch coupling which, in an

elastic rod model, causes the helix both to over-twist and to extend upon constant moderate

stretching. Crucial to the authors’ model is that, while the rod is stretched, the helix radius

can vary and, precisely, it shrinks. Similar results have been obtained by magnetic tweezers

experiments [28] which find a linear extension versus twist behavior, independent of sequence

specificities and buffer conditions, in the low force domain.

More generally, it has also been pointed out [29] that the theory of helical rods predicts

different equilibrium twist conformations for a spring, subjected to a wrench. In particular,

in the absence of an axial torque, the helical spring may first over-twist, then return to the

initial state and eventually untwist as a function of the applied force.

However, while evidence has emerged concerning the interplay between twist and stretch

[30] in the shaping of the DNA mechanics, a theoretical description of these phenomena at

the molecular basis is still needed, mostly at forces for which DNA retains its double helical

structure. Here, we address these issues by developing a mesoscopic Hamiltonian model for

helicoidal molecules subject to external forces and compute their mechanical response to

the stretching deformation. The focus is on very short DNA helices which have recently

attracted much interest in view of their remarkable flexibility [31–33] despite the intrinsic

inaccuracies encountered in the experimental characterization of the molecule structure at

short length scales [34–36]. At such scales, the DNA contour length may become even shorter

than the persistence length therefore challenging the application of usual elastic rod models

which treat the molecule as a continuum [37].

Our computational method for the double helix Hamiltonian is based on a path integral
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formalism [38–40] that incorporates in the base pair displacements those thermal fluctua-

tions which are all the more relevant in short chains with large finite size effects. The same

formalism has been used in some recent works [41, 42], to study persistence length and

cyclization probabilities of short DNA sequences with ∼ 100 base pairs. Our analysis has

shown that DNA chains maintain a large bendability also at short scales and may thus have

persistence lengths smaller than those predicted by the worm-like-chain-model for kilo-base

long molecules. While these results point to the connection between global chain flexibility

and inter-molecular interactions at the base pair level, it is true that the previously devel-

oped method assumed that the DNA sequences are torsionally constrained and therefore it

cannot be applied to investigate the molecule twisting under a mechanical load. Accord-

ingly, to pursue this task, we need to remove that constraint and formulate a more general

computational program in order to evaluate the essential parameters which characterize the

helix response to the external force, i.e. its diameter and the number of base pairs per helix

turn.

The geometrical model for the helix is outlined in Section 2 while the Hamiltonian is

presented in Section 3. The computational method is described in Section 4 and the results

are shown in Section 5. Some conclusions are drawn in Section 6.

2. Model for the Helix

We depict the backbone of a DNA molecule with N base pairs, see Fig. 1(a), as a chain

of N − 1 segments connecting the points Oi (i = 1, ..., N) which are equally spaced along

the helix mid-axis.

For short chains, the Oi’s can be considered as pinned to the sheet plane as the energetic

cost to bend the backbone out of the plane is high. Accordingly, once the short chain

closes into a loop, the supercoiling is mostly partitioned into twisting while the writhing

contribution is essentially zero [43–45]. Thus, in the absence of fluctuations, the planar

molecule backbone is a freely jointed polygonal chain with the line segment d being the

rise distance between adjacent base pairs. For the i-th base pair, we define x
(1)
i , x

(2)
i as

the fluctuations of the two complementary mates measured from their respective strands.

With respect to Oi, the positions of the two pair mates are expressed respectively by, r
(1)
i =

−R0/2+x
(1)
i and r

(2)
i = R0/2+x

(2)
i , where R0 is the separation between the complementary
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strands i.e., the equilibrium helix diameter. It follows that the relative distance between the

complementary bases, with respect to the helix mid-axis, is ri = r
(2)
i − r

(1)
i .

Thus, the variable ri accounts for the radial base pair fluctuations around R0. Note that ri

may even become smaller than R0 but the two bases cannot get too close to each other due to

the electrostatic repulsion between negatively charged phosphate groups on complementary

strands [40]. The Oi’s also provide flexible hinges allowing adjacent displacements along

the molecule stack, e.g. ri and ri−1, to twist ( by the angle θi) and to bend (by the angle

φi) as shown in Fig. 1(b). Importantly, φi is also the angle between the helix diameters

at adjacent sites Oi and Oi−1 as, at any site, ri and R0 are parallel. While φi and θi

are integration variables in the computation of the partition function (as discussed below),

both bending and twisting fluctuations are incorporated in our three dimensional helicoidal

model. Thus, both angular and radial fluctuations contribute to determine the separation

between adjacent base pairs, di,i−1, measured by the distance AB in Fig. 1(b) and given by:

AB
2
= BB′

2
+ AB′

2
,

|BB′| = d+ ri sinφi ,

AB′
2
= r2i−1 + (ri cosφi)

2 − 2ri−1 · ri cosφi cos θi , (1)

In the following, we set the values R0 ∼ 20Å for the equilibrium helix diameter and

d ∼ 3Å for the bare rise distance. Small variations with respect to these values do not affect

our results. Further features of the double stranded helix such as the presence of major and

minor grooves and possible local distortions in helical parameters are not considered here

[46, 47].

Moreover, it is important to realize that our model essentially treats the unit consisting

of a phosphate, a sugar and a base, i.e., the nucleotide, as a point-like object ignoring

its internal degrees of freedom. While such coarse-grained level of description seems at this

stage sufficient to capture the pattern of the twist-stretch dependence in short chains, we also

mention that a finer level of resolution (looking at the internal structure of the nucleotide)

has been achieved in computational studies of the elastic and melting properties of nucleic

acids [48].

The helicoidal chain is subject to an external force which is set along the direction of the

rise distance OiOi−1, as shown in Fig. 1(a), and assumed to act with the same modulus on
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FIG. 1: (Color online) (a) Model for a chain of N base pairs with external stretching force Fex

applied along the z− axis. ri is the relative distance between the two mates of the i− th base pair.

The ri’s have variable amplitude and are measured with respect to the Oi’s which are arranged

along the mid-axis of the helix (lying on the sheet plane). R0 is the equilibrium helix diameter

and d is the rise distance between adjacent nucleotides along the molecule stack. In the absence

of fluctuations, ri ≡ R0. Neighbor base pairs displacements, ri and ri−1, are bent by the angle

φi. This is also the angle between the bond Oi+1Oi and Fex as the latter acts along the direction

of the OiOi−1 segment. (b) Geometrical representation for the distance AB between base pairs

displacements. Both bending and twisting fluctuations are incorporated in the stacking potential.

θi is the torsional angle formed by adjacent ri and ri−1. As defined in in Eq. (5), θi is measured

with respect to the average angle < θi−1 > of the preceding base pair along the stack. In the

absence of bending, the model would reduce to a fixed-plane representation as depicted by the

ovals.

any molecule segment. Note that the force direction is taken constant to comply with the

experimental setup while the molecule backbone remains anchored to the sheet plane also

after applying the external load. In the presence of such tunable force field, we compute i)

the average twisting fluctuations which allow to determine the number of base pairs per helix

turn, i.e. the average helical repeat < hr >, ii) the average radial fluctuations < ri > which

measure the molecule diameter and iii) the average extensions < di,i−1 >. All averages are
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taken over an ensemble of molecule configurations according to the method explained in

Section 4.

3. Mesoscopic Model

DNA in solution is stable at physiological temperatures despite the energetic molecular

bumping due to the environment. In fact, as the room temperature thermal energy (kBT ∼

25meV ) is comparable to the hydrogen bond base pair energy [49], fluctuational bubbles

can form spontaneously and transiently along the helix [50–56] whereas the molecule strands

remain intact due to the overall strong covalent bonds acting between adjacent nucleotides

[57]. Random coil molecule conformations are favored by entropic forces which bend the

intra-strand stacking bonds although DNA becomes stiff at scales of order of the typical

persistence length, i.e. ∼ 50nm. Such length may be significantly smaller for short DNA

[58–60] and sequences with ∼ 100 base pairs or less could maintain an intrinsic flexibility

which favors the molecule looping and the loop stability against fluctuational forces [61, 62].

To account for the main interactions that stabilize the helix we use a mesoscopic Hamil-

tonian containing a one-particle base pair potential V1[ri] and a two-particle stacking term

V2[ri, ri−1, φi, θi] also dependent on the angular degrees of freedom. Their analytic form

reads:

V1[ri] = VM [ri] + VSol[ri] ,

VM [ri] = Di

[

exp(−bi(|ri| −R0))− 1
]2
,

VSol[ri] = −Difs
(

tanh((|ri| −R0)/ls)− 1
)

,

V2[ri, ri−1, φi, θi] = KS ·
(

1 +Gi,i−1

)

· di,i−1
2
,

Gi,i−1 = ρi,i−1 exp
[

−αi,i−1(|ri|+ |ri−1| − 2R0)
]

.

(2)

V1[ri] is the sum of two terms: 1) a hydrogen bond Morse potential (VM [ri]) for the

i− th base pair with dissociation energy Di and spatial range measured by bi. 2) A solvent

term (VSol[ri]) which modifies the Morse plateau through the parameters fs and ls. The

one-particle potential has been used in the past [63–65] to simulate the denaturation of the

double stranded DNA occurring for base pair separation large enough to sample the Morse
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plateau. The same analytic form of V1[ri] is suitable to model thermally stable hydrogen

bonds [66] as in the current analysis provided that the base pair fluctuations remain smaller

than the helix radius.

As mentioned above, the base pair separation may become shorter than R0 but too large

helix contraction are discouraged by the large energetic cost. This physical requirement is

implemented in the code by discarding those paths for which the repulsive energy becomes

too large, i.e. larger than the dissociation energy: VM [ri] ≥ Di. This implies that the base

pair amplitudes must fulfill the condition, |ri| −R0 < − ln(2/bi).

The stacking potential V2[ri, ri−1, φi, θi] contains an elastic force constant KS and non-

linear contributions weighed by the parameters ρi,i−1, αi,i−1 as originally proposed in the

context of a simple ladder model for DNA [67]. V2 depends on the angular degrees of freedom

through the fluctuating distance di,i−1 in Eq. (1). The physical motivations underlying the

choice of these potentials have been widely discussed in previous works [40, 68] to which we

refer for details. The model parameters, taken hereafter as in [41, 42], are appropriate to

homogeneous sequences of GC- base pairs which have sizeable dissociation energies and are

stable against thermal fluctuations. Certainly quantitative predictions of the twist-stretch

relations may be derived for specific heterogeneous sequences since, in general, the helical

properties are dependent on the base sequences, as also recently pointed out in the different

context of charge transfer in B-DNA segments [69, 70].

With this caveat, our helicoidal molecule with N base pairs of reduced mass µ, stretched

by a force Fex as in Fig. 1(a), is described by the Hamiltonian:

H = Ha[r1] +
N
∑

i=2

Hb[ri, ri−1, φi, θi] ,

Ha[r1] =
µ

2
ṙ21 + V1[r1] ,

Hb[ri, ri−1, φi, θi] =
µ

2
ṙ2i + V1[ri] + V2[ri, ri−1, φi, θi]− Fexd cos

(

i−1
∑

k=1

φk

)

.

(3)

Ha[r1] is taken out of the sum as the first base pair has no preceding neighbor along

the molecule backbone. Path integral techniques can be applied to Eq. (3) to derive the

partition function ZN following a well-tried method [71]. The latter assumes that the base

pair distance ri in Eq. (3) is a trajectory ri(τ) depending on the imaginary time (τ) defined
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as the analytic continuation of the real time to the imaginary axis [72]. Accordingly ri(τ)

is expanded in Fourier series whose coefficients generate an ensemble of possible base pair

trajectories. As this is done for any base pair in the chain, the technique permits building an

ensemble of molecule configurations which statistically contribute to the path integral with

a Boltzmann weight. Technically, the size of the ensemble, i.e., the number of trajectories,

is increased until numerical convergence in ZN is achieved. This condition corresponds to

the state of thermodynamic equilibrium for the system. Including also fluctuations over the

bending and twisting degrees of freedom, with their respective cutoffs, the general expression

for ZN reads:

ZN =

∮

Dr1 exp
[

−Aa[r1]
]

N
∏

i=2

∫ φM

−φM

dφi

∫ θM

−θM

dθi

∮

Dri exp
[

−Ab[ri, ri−1, φi, θi]
]

,

Aa[r1] =

∫ β

0

dτHa[r1(τ)] ,

Ab[ri, ri−1, φi, θi] =

∫ β

0

dτHb[ri(τ), ri−1(τ), φi, θi] , (4)

where β is the inverse temperature.
∮

Dri is the measure of integration over the space of

the Fourier coefficients whose temperature dependent cutoffs are consistently defined in the

path integral method [73, 74]. While this peculiar feature makes the method also suitable

to study thermally driven effects such as bubble formation and DNA denaturation [40, 75],

the calculations hereafter presented are carried out at room temperature. From Eq. (4), the

free energy of the system is computed as: F = −β−1 lnZN .

4. Computational Method

The maximum amplitude of the bending fluctuations in Eq. (4) is set by φM which at a

first stage is taken constant, i.e., φM = π/2. The latter choice allows for kinks formation

as a possible mechanism, first put forward long time ago [76], to reduce the bending energy

between adjacent base pairs [77]. This has also been suggested more recently by molecular

dynamics simulations [78] and analysis of (un)looping probabilities in short chains based on

single molecule fluorescence resonance energy transfer [79]. While the polymer flexibility

can be directly related to the average bending angles between any two distant monomers
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[80, 81], computation of persistence length has shown that linear short sequences have an

intrinsic flexibility mainly ascribed to their terminal base pairs [42, 82].

The novelty brought about here lies in the way twisting fluctuations are treated for the

model drawn in Fig. 1(b). Our idea is that the twist variable θi in Eq. (4) should be measured

with respect to the ensemble averaged < θi−1 > value obtained for the preceding base pair

along the stack. Such value is incremented by 2π/hr, where the number of base pairs per

helix turn is taken as an input parameter to be chosen within an appropriate range. For

any assumed hr, we further admit there may be a fluctuational range around the value

< θi−1 > +2π/hr , with θfli being the twist fluctuation integration variable. Formally our

Ansatz is expressed by:

θi =< θi−1 > +2π/hr + θfli ,

hr ∈ [hmin
r , hmax

r ],

hmax
r − hmin

r = n ·∆hr n ∈ Z , (5)

where ∆hr is the increment in the helical repeat range. The accuracy of the method

grows with the number n of values sampled in such interval. For kilo-base B-DNA in

solution the experimental helical repeat under physiological condition is, hexp
r = 10.4 [83],

whereas a smaller value hr ∼ 10 has been estimated for DNA wrapped around histone

proteins [84, 85]. In general, thermal fluctuations tend to untwist the helix [86]. In short

chains the helical repeat may differ from hexp
r and certainly it changes under the action of

applied forces. Accordingly, our strategy consists of assuming a broad range around hexp
r ,

e.g., hmin
r = 6, hmax

r = 14, with a coarse partition (∆hr = 0.125) and searching for the

energetically most convenient helical conformations as a function of the external force. Next

we take a finer partition of the range (enhancing both n and the CPU time) and repeat the

search until the selected helical conformations are stable against ∆hr.

Central to this work is the calculation of the average twist angles formally given by:

< θi >(i≥2)=< θi−1 > +
2π

hr

+

∫ θM

−θM
dθfli · (θfli )

∫ φM

−φM

dφi

∮

Dri exp
[

−Ab[ri, ri−1, φi, θi]
]

∫ θM

−θM
dθfli

∫ φM

−φM

dφi

∮

Dri exp
[

−Ab[ri, ri−1, φi, θi]
]

.

(6)
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Numerical convergence on the average twist angles is achieved by setting the cutoff on

the twist fluctuations, θM = π/4. For the first base pair in the chain, θ1 ≡ θfl1 hence,

< θ1 >= 0.

Then, from Eq. (6), we derive the average helical repeat:

< hr >=
2πN

< θN >
. (7)

Computing Eqs. (6), (7) for any hr in Eq. (5), the program generates a set of values

{< hr >j , (j = 1, ..., n)} which, in general, deviate from the initially chosen hr-values of our

simulation. After obtaining such set, we select by free energy minimization the equilibrium

value < hr >j∗ . As this procedure is iterated for any applied force, the twist-stretch profile

for a specific molecule is eventually derived.

Next, integrations over the ensemble of base pair configurations are performed to get:

1) the average base pair radial fluctuations which determine the average helix diameter,

R0+ < R > [87] ,

< ri >=

∮

Dri · ri
∫ θM

−θM
dθfli

∫ φM

−φM

dφi exp
[

−Ab[ri, ri−1, φi, θi]
]

∫ θM

−θM
dθfli

∫ φM

−φM

dφi

∮

Dri exp
[

−Ab[ri, ri−1, φi, θi]
]

,

< R >=
1

N

N
∑

i=1

< ri > (8)

and 2) the average distances between base pairs along the stack,

< di,i−1 >=

∮

Dri
∫ θM

−θM
dθfli

∫ φM

−φM

dφi · di,i−1 exp
[

−Ab[ri, ri−1, φi, θi]
]

∫ θM

−θM
dθfli

∫ φM

−φM

dφi

∮

Dri exp
[

−Ab[ri, ri−1, φi, θi]
]

,

< d >=
1

N − 1

N
∑

i=2

< di,i−1 > . (9)

From Eq. (9), one finally estimates the force induced extension per base pair with respect

to the un-stretched base pair separation:

∆z =
< d(Fex) >

< d(0) >
− 1 . (10)
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FIG. 2: (Color online) Free energies per base pair, calculated for three homogeneous sequences, as

a function of the average helical repeat given by Eq. (7). The room temperature free energies are

computed over a range of helical repeat values with incremental step ∆hr = 0.125 (see text). The

four panels refer to the zero force case and three values of applied force. The arrows mark, for each

sequence, the free energy minimum.

The < R >’s and ∆z’s have been calculated for any helical repeat in Eq. (5) but the values

reported hereafter are those which correspond to the equilibrium conformation < hr >j∗

selected by the free energy minimum.

5. Results

Our method is illustrated in Fig. 2 where the free energy per base pair (F/N) is plotted

versus < hr > for three short homogeneous sequences, both in the absence of force and

for three increasing Fex strengths. An increment ∆hr = 0.125 has been assumed in these

calculations.
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Given our choice of model parameters, the free energy scale for Fex = 0 (panel (a)

) shows that F/N is in the range of the experimental values, i.e., 1 − 1.5 kcal/mol [57].

This holds for all sequences. Applied forces have the general effect to straighten the coiled

molecules thus reducing the entropy. It follows that F/N should become larger by enhancing

Fex. Consistently the free energy scales display growing (less negative) values in the three

successive panels. Also note that F/N increases more rapidly for shorter molecules and, for

sizeable Fex, it gets distinctly higher for the N = 10 molecule as shown in panels (c), (d).

This indicates that external forces more effectively straighten the bonds in shorter molecules.

The arrows mark, for each sequence, the free energy minima occurring at the above defined

< hr >j∗ . Such values shift downwards (towards smaller helical repeats) by increasing Fex

from (a) to (d), pointing to a general helix over-twisting as a consequence of the mechanical

stretching.

These findings are made more evident in Figs. 3 where the < hr >j∗ are directly reported

as a function of the mechanical force. For the three sequences, N = 10 , 20 , 30, in Fig. 3(a),

the computation is first carried out with the same coarse partition of the helical repeat range

as in Fig. 2.

It turns out that the < hr >j∗ ’s generally decrease versus Fex but, in the low forces

regime, the plots display a non-monotonic behavior (empty symbols). However, reducing

∆hr, a monotonic dependence on Fex is recovered for all sequences as visualized by the filled

symbols. Only the < hr >j∗ ’s calculated for Fex ∼ 4, 8 pN are reported in the figure as, at

higher forces, the < hr >j∗ ’s do not substantially change by taking a finer mesh. In general,

a finer partition of the range in Eq. (5) should be used to achieve numerical convergence

in the low force regime in which the helical repeat has a larger gradient. Instead, applying

larger forces which significantly stretch the molecule, the < hr >j∗ ’s become more stable

and the transitions among twist conformations with different energy are reduced. Hence,

convergence is already achieved using a coarser ∆hr mesh.

Increasing Fex has the effect to dampen the thermal fluctuations and set the molecules

in a more ordered conformation. This explains why the search for the equilibrium value

< hr >j∗ can be made with a coarser resolution at larger applied loads. It is also found

that, for longer sequences, smaller ∆hr’s are necessary in order to determine with accuracy

the < hr >j∗ ’s at low external forces.

The interplay between sequence length and ∆hr is further pointed out in Fig. 3(b) for a
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FIG. 3: (Color online) (a) Ensemble averaged helical repeats as a function of the external force,

calculated via Eqs. (6), (7) for three sequences. The empty symbols refer to a coarse partition in

Eq. (5). In the low forces regime, finer partitions (smaller ∆hr) are required to obtain numerical

convergence. (b) As in (a) but for a longer sequence. The average helical repeats are computed

by tuning ∆hr.

N = 40 sequence. In this case, also at large applied forces, the computation converges only

with a fine partition, ∆hr = 0.03125, while a finer step, ∆hr = 0.015625, is required to

get convergent and monotonic behavior at small Fex. Summing up, the relevant feature put

forward by our plots is that short DNA sequences over-twist under mechanical stretching

and these structural deformations appear as a response dictated by energetic convenience.

While this result confirms the trend suggested by the measurements of ref.[27] albeit on

kilo-base long molecules, it would be interesting to test whether chains of a few tens of

base pairs behave in a similar way. Besides the length, also sequence specificities may affect

mechanical properties and twisting flexibility in heterogeneous chains [88].

Interestingly however, from Figs. 3, one can also estimate the force induced change in

superhelical density σ. For sequences with planar molecular axis, σ ≡ (Tw − Tw0)/Tw0,

where Tw0 is the twist number in the absence of forces. Looking for instance at the plot for

N = 30 and taking the computed < hr >j∗ at Fex ∼ 20 pN, we obtain σ ∼ 0.0076 which

is in fair agreement with the experimental σ ∼ 0.01 at Fex ∼ 18 pN [27] measured in long

sequences.
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Physically, the shrinking of the helix diameter could be associated to the shortening of

the radial base pair fluctuations induced by the external force. All-atom simulations of

stretched and compressed DNA structures have previously suggested that helix diameter

reduction and over-twisting are concomitant effects [89]. We address this point in Figs. 4

which display for the four short chains: (a) the free energy per base pair calculated, via

Eq. (4), at the helical equilibrium values < hr >j∗ and (b) the average radial fluctuations,

superimposed to the diameter R0, obtained from Eq. (8). As noticed above, the free energies

rapidly increase under the ordering effect of the applied load and, on this scale, the plots

for the four chains essentially overlap. However, the growth rate of F/N decreases versus

Fex and, markedly, above ∼ 20 pN. Likewise, once Fex is applied, < R > quickly drops from

its value at zero force and, for all chains, tends to saturate above ∼ 20 pN. Nevertheless,

intrinsic base pair fluctuations persist also in the presence of large external loads. Then,

we find that the DNA over-twisting and the reduction of the helix diameter are indeed

correlated structural properties also at the very short length scales considered in this work.

Molecular models based on energy minimization have suggested that the shrinking of the

DNA diameter could be associated to a negative inclination of the base pairs towards the

minor groove [28, 90].

As mentioned in the Introduction, experiments indicate that stretched kilo-base long DNA

first over-twists and eventually untwists if the applied loads exceeds ∼ 30 pN. Instead, the

results presented so far do not account for the helix untwisting at large Fex as the < hr >j∗ ’s

decrease monotonically versus Fex in Figs. 3. The source of this discrepancy lies however in

the way we have treated the bending fluctuations and precisely their maximum amplitude

φM at the beginning of Section 4. Once the molecule is stretched, the intra-strand bonds

straighten and therefore it is likely that the amplitude of the bending fluctuations between

adjacent nucleotides is reduced whereas there is no physical reason to impose a similar

constraint on the twisting fluctuations which may remain large also for sizeable external

loads. Accordingly, a consistent model should contemplate a force dependent integration

cutoff φM(Fex). Although we are not aware of experiments providing data to which we may

fit such function, some plausible functional forms have been guessed to test their effects on

the output of our numerical code. Taking for instance,

φM(Fex) = π[1−(c·Fex)
2]/2 with c−1 = 24 pN, we obtain the results displayed in Fig. 5

for aN = 10 sequence. Similar plots are obtained for longer chains. The computation follows
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FIG. 4: (Color online) (a) Room temperature free energies per base pair, calculated for four

sequences, as a function of the external force. The free energy per base pair values correspond to

the minima indicated by arrows in Fig. 2. Note that such values essentially overlap for various N

due to the enlarged energy scale taken here respect to Fig. 2. (b) Ensemble averaged base pair

fluctuations, calculated via Eq. (8), as a function of the external force for four sequences.

the same pathway described above. The transition between over-twisting and untwisting

regime is now found and it occurs at ∼ 4 pN. Consistently, the average radial fluctuations

(panel (a)) decrease up to ∼ 4 pN and expand once the helix untwists under larger loads.

While the latter force value is only indicative and clearly depends on the specific φM(Fex),

there is no cogent reason why the transition at ∼ 30 pN, observed for kilo-base sequences

[27], should take place also for short sequences in the same force regime. In this regard,

experimental research may clarify the behavior of short DNA under stretching and foster

further theoretical investigation. However, the fact that the helix diameter and twisting

conformations display a non-monotonic behavior versus the applied force corroborates our

choice to impose a force dependent cutoff only on the bending fluctuations.

Likewise the intra-strand base pair separation (panel (c)), calculated via Eqs. (9), (10),

slightly contracts with respect to the zero force conformation in the over-twisting regime

and then stretches above ∼ 4 pN. Thus we find that, under the action of a variable force,

the end-to-end distance grows when the helix untwists and, vice-versa, it shortens when

the helix over-twists. While this pattern seems physically intuitive, it is only apparently at
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FIG. 5: (Color online) (a) Average radial fluctuations calculated from Eq. (8) versus the external

force Fex; (b) Average helical repeat obtained from Eqs. (6), (7) after minimizing the free energy

for any Fex; (c) Average intra-strand extension per base pair from Eqs. (9), (10). Both (a) and

(c) are calculated for the equilibrium helical conformations < hr >j∗ in (b). The amplitude of the

bending fluctuations is assumed to be dependent on Fex as described in the text.

variance with ref.[27] as in the latter the experimental setup was such that the changes in

DNA extension due to an imposed over-twist had been measured at constant force.

To test whether our program reproduces the experimental trend also on this specific point,

we should assume a constant force, say F
′

ex, and study the average base pair distance < d >

as a function of < hr >. The experimentally imposed over-twist is simulated by considering

the < hr >’s which are smaller than the value < hr >j∗ for the equilibrium conformation

in the presence of F
′

ex. Note that such set of < hr >’s has been computed before selecting

< hr >j∗ by free energy minimization. Clearly, any assumed < hr > differing from < hr >j∗

corresponds to a condition in which the system is away from its free energy minimum. In
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this case we find (not shown here) that < d > grows by reducing < hr > hence, the helical

extension increases upon over-twisting consistently with the measurements. At the same

time < R > decreases by reducing < hr >. Thus, short dsDNA is predicted to shrink and

extend when over-twisted under a constant load. Further quantitative analysis of the twist-

extension relation may be performed on the base of models which account for the sequence

specificities of the double helical structure.

6. Conclusions

We have developed a method to evaluate the deformations of the DNA helical structure

induced by an external load whose strength is such to compete on the energy scale with the

base pair thermal fluctuations. Applied forces in the range of a few pico-Newton may in

fact straighten the intra-strand molecule bonds and dampen the amplitudes of the base pair

radial distances. Motivated by ongoing research on the properties of short DNA helices,

we have analyzed the interplay between helix stretching and twisting using a mesoscopic

Hamiltonian model which sees the double stranded molecule as a sequence of interacting

base pairs. This discrete approach seems particularly suitable to DNA molecules whose

contour length may be shorter that their persistence length. In fact, at such short scales,

the applicability of continuum elastic rod models has been questioned over the last years.

The statistical mechanics of the mesoscopic Hamiltonian has been formulated by a well-

established finite temperature path integration method which treats the inter-strand and

intra-strand interactions in terms of the ensemble of trajectories for the base pair radial

configurations. Also bending and twisting fluctuations between neighboring base pairs along

the molecule backbone are included in the partition function.

Introducing a computational scheme which allows the molecule to assume in principle a

broad range of helical conformations, we have shown that the DNA chain generally reduces

the number of base pairs per helix turn under the effect of a mechanical stretching. While

the molecule over-twists in order to minimize its free energy, this behavior appears physically

correlated to the shrinking of the helix diameter which is in fact consistently obtained by

our method.

These results agree with the experimental behavior, observed for kilo-base long chains, in

the low to intermediate force regime. Instead, for applied forces larger than 30 pN, exper-
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iments show that long chains eventually untwist. To check whether the transition between

over-twisting and untwisting regimes could be predicted by our model, we have considered

that the amplitude of the intra-strand bending fluctuations may depend on the external

force. Assuming a physically plausible force dependent cutoff on the bending fluctuation

integral, we have indeed found that also short sequences may first over-twist and then un-

twist by enhancing the external load. Accordingly, when the molecule untwists, its average

diameter expands and the average intra-strand base pair distance grows. Although, in such

short chains, the transition may occur at weaker forces than those measured in kilo-base

DNA molecules, these findings suggest an intrinsic correlation between bending and twist-

ing degrees of freedom at any length scale. However, at this stage, we do not have specific

experimental information to establish the possible, quantitative dependence of the bending

amplitude on the applied forces.

We have here chosen a set of model parameters appropriate to homogeneous chains of

GC-base pairs as discussed in previous studies. While the values presented in this paper for

the average helical repeat and helix diameter versus applied force have some dependence on

the specific input parameters, nevertheless the overall trend of our conclusions, summarized

in Fig. 5 for a very short sequence, is not affected by the specific parameter choice. On

the base of the presented results we thus believe that our computational method may offer

a robust tool to investigate a large variety of molecule conformations subject to external

perturbations and also model the DNA response upon protein binding.
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