SOCIETÀ ITALIANA DELLE SCIENZE VETERINARIE

ATTI
LXX Convegno SISVET

REEEV-Med
XVI Convegno S.I.C.V.
XIV Convegno S.I.R.A.
XIII Convegno AIPVet
XIII Giornata Studio So.Fi.Vet.
III Convegno RNIV

13 -16 Giugno 2016
Viale delle Scienze
edificio 19
Palermo
MAIN FECAL BACTERIAL GROUPS IN DOGS POSITIVE FOR LEISHMANIA

Matteo Cerquetella¹, Giacomo Rossi², Andrea Spaterna¹, Alessandro Fruganti¹, Fulvio Laus¹, Beniamino Tesei¹, Serena Alessandrini¹, Maria Magdalena Coman³, Alessandra Gavazza¹, Maria Cristina Verdenelli¹, Cinzia Cecchini⁴ and Stefania Silvi³

¹University of Camerino, School of Biosciences and Veterinary Medicine – Veterinary Internal Medicine
²University of Camerino, School of Biosciences and Veterinary Medicine – General and Special Veterinary Pathology
³University of Camerino, School of Biosciences and Veterinary Medicine – General Microbiology
⁴Synbiotec Srl, spin off – UNICAM

Lamour et al. (2014) recently suggested a link between gut microbiome and Leishmania infection in mice. They showed that in two different mouse models of cutaneous leishmaniasis, susceptible or self-healing models, with the progression of the infection also the fecal microbiome changed, with Clostridia class higher in the first group and Gammaproteobacteria classes higher in the second one, suggesting that the intestinal microbial composition could be linked to a different response to the disease.

Aim of the work: In this study we investigated the main fecal bacterial groups in dogs positive for Leishmania spp., with the aim of evaluating possible differences between enrolled dogs. Materials and methods: Naturally voided fecal samples were collected from 8 dogs resulted positive (exposed, infected or sick) for leishmaniasis by IFAT or ELISA (dog no. 4). In most cases dogs differed for IFAT titers and for time elapsed between positivity detection and samples collection. Five dogs (2-4, 6, 8) were not presenting any concomitant disease and were not undergoing any treatment. Four dogs (2, 3, 6, 7) were not symptomatic at the time of fecal sampling; only one dog (4) was undergoing therapy for leishmaniosis at the time of fecal sampling, and 4 dogs (2, 6-8) had been previously treated for the disease, while for the remaining three it was a first diagnosis. The samples were frozen briefly after collection. All dogs were fed on commerce diet, with the addiction in dog n.1 of cooked “pasta” and meat. A Real-Time quantitative PCR (qPCR) procedure was used for the quantification of the main bacterial groups of intestinal microbiota by using specific primers as reported by Nasuti et al. (2016). DNA was extracted from dogs’ fecal samples using Stool DNA isolation kit (Norgen, Thorold, Canada). Bifidobacterium
spp., *Bacteroides-Prevotella-Porphyromonas* spp., *Clostridium coccoides-Eubacterium rectale* group, *Enterobacteriaceae*, *Lactobacillus* spp. and *Staphylococcus* spp. were quantified using a Mx3000P Real Time PCR based on SYBR Green detection. The more represented group in all dogs was *Clostridium coccoides-Eubacterium rectale* group with a mean value of 3.4×10^9 CFU/g of feces, while *Lactobacillus* spp. was the less present with a mean value of 3.6×10^3 CFU/g of feces. The ongoing therapy at the sampling time seemed to affect (not significantly) the log values of *Clostridium coccoides-Eubacterium rectale* group and *Lactobacillus* spp. that both were higher in the treated dog (4) compared to the mean log values of those untreated. To the authors’ knowledge this is the first study on patients positive for leishmaniasis with these selected fecal bacterial groups. Even if it presents some limitations (small number of dogs, great variability within the variables), it would be interesting to deepen the possible correlation between leishmaniasis and the intestinal microbiota in the dogs suffered from this disease.