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Abstract 

A methodology for the identification of the physical parameters of a model describing the transverse 

dynamics of soil-foundation-pier systems founded on piles is presented in this paper, starting from 

identified state-space models of the systems obtained from results of dynamic experimental tests and 

identification techniques available in the literature. By assuming the order of the model to be compliant 

with that of a numerical one suitably developed to capture the dynamics of the bridge pier, the procedure 

allows the identification of the stiffness, mass and damping matrices of the analytical model from which 

the physical parameters of the real system (e.g. masses, pier stiffness matrix and soil-foundation 

impedance) can be extracted by directly comparing the components of the identified and analytical 

matrices. The procedure allows the direct definition of the numerical model that best fits the 

experimental data without the need of any model calibration, and permits the identification of the soil-

foundation compliance taking into account its intrinsic frequency-dependent behaviour. Firstly, the 

dynamics of the analytical model is formulated adopting the continuous-time first-order state-space 

form. The model includes the frequency-dependent behaviour of the soil-foundation system through the 
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introduction of a lumped parameter model able to reproduce the typical soil-foundation impedances of 

pile foundations. Then, an identification strategy of the physical parameters of a generic realistic soil-

foundation-pier system is proposed starting from the discrete-time state-space model identified from 

dynamic tests. The procedure is illustrated with some applications, simulating results of forced vibration 

and ambient vibration tests executed on a known system whose parameters are then identified according 

to the proposed approach. The procedure revealed to be effective to identify the stiffness, mass and 

damping matrixes of the known system, and consequently its physical parameters. 

Keywords: system identification; state-space models; forced vibration tests; ambient vibration tests.  

1. Introduction 

Dynamic tests are nowadays widely employed in civil engineering for the dynamic characterization 

of existing constructions with the aim of calibrating numerical models for retrofitting strategies [e.g. 1-

6] or of monitoring the structural health by tracking possible changes in time of the dynamic properties, 

especially after earthquakes [e.g. 7-12]. In this framework, the identification of the physical parameters 

of a system, i.e. of the components of the stiffness, mass and damping matrices, is of great interest since 

it allows a direct comparison with the relevant values of a numerical model simulating the real structure. 

In this way, procedures aimed to the damage detection are simplified because it is possible the 

observation of the reduced terms of the identified stiffness matrix and consequently the identification of 

the structural members contributing to the degraded stiffness terms. Forced Vibration Tests (FVTs) or 

Ambient Vibration Tests (AVTs) are generally performed to characterise a dynamical system; the former 

requires the use of actuators or shakers (usually vibrodynes) while the latter exploits the ambient 

excitation coming from the wind, human activities and tremors due to micro seismic activity. In forced 

vibration tests, the structure is excited by a known input force at particular frequencies of interest through 

shakers [e.g. 13-14]; concerning bridges, it was found that excitation by shakers generally produce the 

best results for short- to medium-span bridges (spans shorter than 100 m) [e.g. 15-16]. In these tests, 

both the loading on the structure and the resulting responses are known, so that the structural 



characteristics can be unambiguously determined due to the reduction of uncertainties related to data 

processing and collection [15]. These tests also allow achieving high signal-to-noise ratios in the 

response measurements. Ambient vibration tests are a useful alternative, successfully applied to a large 

variety of civil engineering structures ranging from short- to long-span bridges [e.g. 15, 17-18], to high-

rise buildings, and dams. 

As for the identification of the system physical parameters, the problem is quite simple from the second-

order form of the equations of motion if input and output, including displacements, velocities, and 

accelerations are measured in all the degrees of freedom of the system [19]. However, for both tests, 

usually only acceleration measurements are performed due to the availability of accurate, low-noise and 

lightweight accelerometers. Consequently, velocities and displacements must be computed by 

integrating noisy signals, leading to a poor model identification [20]. In addition, the approach is almost 

unfeasible for AVTs, for which the input vibration is unknown, unless the input is estimated through a 

suitable strategy. Indeed, particular tests configuration can be included in the experimental campaign 

repeating AVTs with added masses in different positions of the structure in order to be able to estimate 

the scaling factors that normalise the identified mode shapes with respect to the mass [21], so that they 

can be adopted to reconstruct the receptance matrix and finally the input noise [22]. 

A more efficient approach for the identification of the system physical parameters exploits the first-order 

state-space form of the equation of motion, which can be identified without the need to integrate or 

differentiate noisy data [23]. State-space models can be identified through well-established procedures 

available in the literature, starting from input-output data obtained through dynamic experimental tests; 

in this framework, subspace identification methods demonstrated to be robust and reliable 

methodologies for the dynamic characterization of input-output dynamic systems [24]. An identified 

state-space model is usually in a transformed coordinate system and a transformation is generally needed 

to express it in the physical coordinates so that the state vector contains displacements and velocities, 

and the elements of the model are directly related to the stiffness, mass and damping matrices of the 

system [23]. Procedures for recovering stiffness, mass and damping matrices have been proposed in the 



literature, differing each other for the grade of complexity, which in turn depends on the special 

coordinate systems in which the system has to be expressed [23, 25-28]. 

In this paper a methodology for the identification of the physical parameters of a model describing the 

transverse dynamics of Soil-Foundation-Pier (SFP) systems is presented, starting from identified state-

space models obtained by processing the results of dynamic experimental tests. The order of the model 

is assumed to be compliant with that of a numerical model suitably developed to capture the dynamics 

of the bridge pier in the transverse direction and the identification of the system stiffness, mass and 

damping parameters of the analytical model is obtained by directly comparing components of the 

identified and analytical matrices. Consequently, the procedure allows the direct definition of the 

parameters of the numerical model that best fits the experimental data avoiding the use of any model 

calibration strategy. Firstly, the analytical model that has to be identified is presented and the continuous-

time first-order state-space form of the equation of motion is formulated. The model accounts for the 

frequency-dependent soil-foundation system compliance, which may play an important role in the 

interpretation of dynamic tests on structures [29-30], through the introduction of Lumped Parameter 

Models (LPMs) [31-34] that are able to reproduce the typical soil-foundation impedances of pile 

foundations [33]. Then, an identification strategy of the physical parameters of a generic real soil-

foundation-pier system is proposed generalising procedures available in the literature and referred to 

mechanical systems [23, 25-26] usually excited by actuators. The procedure applies to structural systems 

such as the SFP system investigated in this work, where not only FVTs but also (and more often) AVTs 

are performed. Starting from the discrete-time state-space model identified from dynamic tests through 

suitable strategies available in the literature [24], the stiffness, mass, and damping parameters of the 

analytical model are finally identified by directly comparing components of the identified and analytical 

matrices. Therefore, the methodology can be exploited for the structural health monitoring of the system 

and for the damage detection, by simply repeating tests during time and by identifying changes in the 

physical parameters of the structural system (e.g. the position of the observed degraded terms of the 

stiffness matrix may contribute to the identification of the damaged members), including the soil-



foundation system, where a direct damage observation is impossible. In addition, the approach allows 

the experimental identification of the soil-foundation compliance, expressed through a LPM able to 

reproduce the frequency-dependent behaviour of the soil-foundation system in time domain-analysis. 

Some numerical illustrations are finally presented, starting from results of two dynamic tests simulated 

on a known system. In detail, the response of the system subjected to a Gaussian white noise and to 

sinusoidal sweep signals is simulated and the system parameters, which are assumed to be a-priori 

known, are identified through the proposed approach in order to evaluate discrepancies between the 

known and identified quantities. 

 

2 The proposed methodology 

A methodology for the identification of the physical parameters of a model describing the transverse 

dynamics of real soil-foundation-pier systems is proposed in this section. The methodology is based on 

experimental data obtained from dynamic tests such as FVTs and AVTs, from which a first-order state-

space model having order equal to that of the analytical predictive one is identified. The components of 

the stiffness, mass, and damping matrices of the analytical model is finally obtained, from which the 

physical parameters of the model are extracted. Stating the reliability of the interpreting model, the latter 

are representative of the real investigated system. 

2.1 The soil-foundation-pier model 

In this section, an analytical model for the interpretation of the measured dynamics of single bridge piers 

in the transverse direction is presented. With reference to pile foundations, the proposed model accounts 

for the soil-foundation system compliance assuming that its frequency-dependent stiffness can be well 

captured using a LPM. The latter is constituted by sets of springs, dashpot and masses with frequency-

independent parameters suitably arranged and calibrated so that the impedance matrix of the LPM suits 

well that of the soil-foundation system in the frequency range of interest for practical applications (i.e. 

the range within which the resonance frequencies of the structures fall). In this paper, the model proposed 



by Carbonari et al. [33] is used in view of its effectiveness in capturing the coupled roto-translational 

behaviour of pile foundations, which are typical for bridges, with a limited set of parameters.  

The soil-foundation-pier system is depicted in Figure 1a while in Figure 1b the model proposed for the 

interpretation of its dynamics is shown. The soil-foundation compliance is taken into account through 

the above mentioned LPM, which is reported for clearness in Figure 1c with the relevant notation. The 

system is characterised by 5 degrees of freedom (dof), namely the translation 𝑢𝑓 and rotation 𝜑𝑓 at the 

foundation level (node f), the translation 𝑢𝑝 and 𝜑𝑝 of the top of the pier (node p), and the translation of 

the deck 𝑢𝑑 (node d), which is connected to the pier cap through a spring of stiffness k in order to make 

the system also suitable for isolated bridges. 

Masses of the deck 𝑚𝑑, of the pier cap 𝑚𝑐 and of the foundation 𝑚𝑓 are lumped at the centroids of the 

relevant members, while the pier mass 𝑚𝑝 is assumed to be lumped at the pier ends. Furthermore, the 

foundation cap and the pier cap are assumed to be rigid while the pier is modelled as a Timoshenko 

beam. The geometric parameters of the system are reported in Figure 1a. The dynamic equilibrium 

equations of the system subjected to ambient accelerations or forced vibrations assumes the general form 

 (a) 

z 

x 0 

md 

mf 

z 

rigid link 

x 

mx  

Iy 

mhx 

h 
kry 

cry 

kx 

cx 

khx 

chx hidden node 

external node 

 f 

H 

(c) 

mp/2 

mp/2 

mc 
k 

 f 

(b) 

 p 

d 

hp 

hf 

hc 

hd 

up 

uf 

ud 

p 

f 

 

Figure 1. (a) Soil-foundation-pier system; (b) numerical model and (c) LPM with parameters speification. 

 

 



(𝐌𝑠 + 𝐌𝐿𝑃𝑀)𝐮̈(𝑡) + (𝐂𝑠 + 𝐂𝐿𝑃𝑀)𝐮̇(𝑡) + (𝐊𝑠 + 𝐊𝐿𝑃𝑀)𝐮(𝑡) = 𝐛𝑓(𝑡) (1) 

where 

𝐮 = [𝑢𝑑 𝑢𝑝 𝜑𝑝 𝑢𝑓 𝜑𝑓]𝑇 (2) 

is the vector collecting displacements of the dof of the system, 𝐌𝑠, 𝐂𝑠 and 𝐊𝑠 are the mass, damping and 

stiffness matrices of the superstructure, respectively, while 𝐌𝐿𝑃𝑀, 𝐂𝐿𝑃𝑀  and 𝐊𝐿𝑃𝑀 are the mass, damping 

and stiffness matrices of the lumped system that accounts for the soil-foundation system compliance. 

The superstructure mass and stiffness matrices assume the form 

𝐌𝑠 =
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 (4) 

where 𝐸 and 𝐽 are the Young’s modulus and the moment of inertia of the pier, respectively, and 

𝜇 = 1 + 12
𝐸𝐽

𝐺𝐴ℎ𝑝
2
 (5) 

in which , 𝐺 and 𝐴 are the shear correction factor, the shear modulus of the pier material, and the area 

of the pier cross-section, respectively. The damping matrix of the superstructure is assumed to be 

proportional to both stiffness and mass, according to the Rayleigh approach, which provides 



𝐂𝑠 = α𝐌𝑠 + β𝐊𝑠 (6) 

where coefficients 𝛼 and 𝛽 can be calibrated to get defined damping ratios in correspondence of two 

resonance frequencies of the structure. In addition, the mass, stiffness, and damping matrices of the 

LPM, which simulate the soil-foundation compliance, are 

𝐌𝐿𝑃𝑀 =

[
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Finally, in equations (1), 𝐛 is the load influence vector. In case of forced vibration tests, 𝐛 determines 

where the known force 𝑓 is applied, while in case of ambient vibration tests, by assuming that the 

excitation only comes from the soil accelerations (i.e. neglecting the contribution of wind and vehicles 

on the bridge) 𝑢̈𝑔 (i.e. 𝑓 = 𝑢̈𝑔),  

𝐛 = −𝐌𝑠𝐛̅ =
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               𝐛̅ = [1 1 0 1 0] 𝑇    (10a,b) 



where 𝐜 = [𝟏 𝟏 𝟎 𝟏 𝟎]𝑻 is an influence vector determining the dofs where the ground 

acceleration acts. It is worth observing that the mass matrix in the previous equation only includes the 

superstructure masses [35].  

2.2 The continuous-time state-space model 

The first-order continuous-time state-space model is obtained by introducing the state vector 

𝐯 = [
𝐮
𝐮̇
] (11) 

that allows expressing the second-order equation (1) as 

𝐏𝐯̇ + 𝐐𝐯 = 𝚪𝑓 (12) 

where 

𝐏 = [
𝐂 𝐌
𝐌 𝟎

]                 𝐐 = [
𝐊 𝟎
𝟎 −𝐌

]                  𝚪 =  [
𝐛
𝟎
] (13a,b,c) 

By pre-multiplying equation (12) by 𝐏−1, the following state equation can be obtained 

𝐯̇ = 𝐀𝑐𝐯 + 𝐁𝑐𝑓 (14) 

where 

𝐀𝑐 = [
𝟎 𝐈

−𝐌−1𝐊 −𝐌−1𝐂
]            𝐁𝑐 = [

𝟎
𝐌−1𝐛

] (15a,b) 

in which 

𝐌 = 𝐌𝑠 + 𝐌𝐿𝑃𝑀       𝐊 = 𝐊𝑠 + 𝐊𝐿𝑃𝑀        𝐂 = 𝐂𝑠 + 𝐂𝐿𝑃𝑀  (16a,b,c) 

and 𝐈 is the identity matrix of order 5. In modern control theory equation (14) is used together with the 

following observation equation to express system (1) in the form of a continuous-time state-space model:  

𝐲 = 𝐃𝑐𝐯 + 𝐄𝑐𝑓 (17) 

By assuming that the observation equation includes all the set of accelerations at the dofs (this 

assumption will be clear in the next section where the analytical model is compared with a real system 



in which accelerations are measured) the following expressions hold for the output matrix 𝐃𝑐 ∈ ℝ5𝑥10 

and for the transmission matrix 𝐄𝑐 ∈ ℝ5𝑥1: 

𝐃𝑐 = [−𝐌−1𝐊 −𝐌−1𝐂]         𝐄𝑐 = 𝐌−1𝐛   (18a,b) 

It must be remarked that if the input is constituted by forces, the observed accelerations are absolute, as 

those registered in the real system through instrumentations during tests; on the contrary, if the input is 

represented by soil accelerations, Eq. (17) provides accelerations relative to the ground. Thus, in order 

to get the absolute accelerations if 𝑓 = 𝑢̈𝑔, Eq (18b) should be substituted with 

𝐄𝑐 = 𝐌−1𝐛 + 𝐛̅ (18c) 

It can be remarked that the eigenvalue problem associated to (12) is 

𝐏𝛙𝚲 + 𝐐𝛙 = 𝟎 (19) 

where 𝛙 ∈ ℂ10𝑥10 contains the complex eigenvectors as columns and 𝚲 ∈ ℂ10𝑥10 is a diagonal matrix 

containing the 10 complex eigenvalues λ𝑖 (i = 1…10). For a structure in which the radiation damping of 

the soil-foundation system is taken into account, a stable system is expected, and the eigenvalues are 

either complex-valued with negative real parts or negative real-valued. If the eigenvalue is complex-

valued, the relevant eigenvector is also complex and corresponds to an under-damped vibration mode; 

if the eigenvalues are real-valued, the corresponding eigenvectors are real, and modes are over-damped. 

Also, all the complex eigenvalues and eigenvectors appear in complex-conjugate pairs, while each over-

damped mode can be considered as an independent basic unit. If 𝑛𝑐 ≤ 5 is the number of pairs of 

complex eigenvalues, they appear in the form 

λ𝑐 , λ𝑐
∗ = −ξ𝑐ω𝑐 ± 𝑗ω𝑐√1 − ξ𝑐

2        c=1…𝑛𝑐 (20) 

in which ξ𝑖 and ω𝑖 are the i-th damping ratio and resonance frequency of the corresponding undamped 

system. By individually handling the real 𝑛𝑟 = 10 − 2𝑛𝑐  eigenvalues, they appear in the form  

λ𝑟 = −ω𝑟         r=1…𝑛𝑟 (21) 



Thus, it can be shown that 𝛙 and 𝚲𝑐 have the following layouts 
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where 𝛗 and 𝚲 are the eigenvectors and eigenvalues of the second order system (1).  

It can be proven that [30] 

which implies that 𝚲 contains the eigenvalues and 𝛙 the eigenvectors of 𝐀𝑐. Consequently, matrix 𝐀𝑐 

can be used instead of 𝐏 and 𝐐 to solve the eigenvalue problem. 

2.3 Identification of the discrete-time state-space model for the real soil-foundation-pier system 

Let we assume that dynamic tests are performed on a real soil-foundation-pier system to study its 

transverse dynamics and that its dynamics can be well represented by the above presented analytical 

interpreting model. Measurements are usually taken at discrete time instants 𝑘 spaced by the time 

interval Δ𝑡. Usually, accelerations are measured due to the availability of accurate and lightweight 

accelerometers and the sensors layout must be conceived to make it possible obtaining accelerations 

relevant to the dofs of the above described system. A possible sensor layout, which assures such 

condition, is shown in Figure 2. Starting from the measured accelerations, those associated to the dofs 

of the analytical model are computed; for the example shown in Figure 2, the following transformation 

holds 
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 (24) 

𝐀𝑐 = 𝛙𝚲𝛙−1 (23) 
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Figure 2. Sensor layout on a real soil-foundation-pier system. 

 

Depending on the performed dynamic tests, the input actions can be known or not; the following three 

situations are herein considered and addressed below within the proposed procedure: 

1. forced vibration tests are performed through the use of a vibrodyne acting on one degree of 

freedom of the system (i.e. at the deck or the foundation level); 

2. ambient vibration tests are executed by measuring the ambient excitation coming from the 

ground (e.g. through the use of geophones); 

3. ambient vibration tests are executed without measuring the ambient excitation. 

Anyway, a general expression of the discrete-time state-space model has the following form: 

𝐯𝑘+1 = 𝐀𝑑𝐯𝑘 + 𝐁𝑑𝐠𝑘 + 𝒘𝑘  (25a) 

𝐲𝑘 = 𝐃𝑑𝐯𝑘 + 𝐄𝐠𝑘 + 𝒗𝑘 (25b) 

where 𝐯𝑘 = 𝐯(𝑘Δ𝑡) is the discrete-time state vector which contains the sampled displacements and 

velocities, 𝐠𝑘 is the sampled input,  and 𝒘𝑘  and 𝒗𝑘  are zero mean vector signals accounting for process 

noise due to disturbances and modelling inaccuracies and due to sensor inaccuracies, respectively. In the 

observation equation, 𝐲𝑘 are the outputs and matrix 𝐃𝑑 is the output matrix that extracts the observed 

dofs from the whole system. Obviously, if only the vibration of the structure is measured, it is impossible 

to distinguish, from an identification point of view, between the term 𝐠𝑘 and the noise terms. Depending 



on the performed tests, input-output or output-only techniques can be used for the state-space model 

identification and the evaluation of the modal parameters; however, if ambient vibration tests are 

performed without measuring the ground noise, matrices 𝐁𝑑 and 𝐄 cannot be identified. In this case, an 

indirect load estimation must be performed to proceed with the proposed methodology.  

The load estimation is possible starting from the computation of the receptance matrix of the system, 

namely the matrix containing the Frequency Response Functions (FRF) between nodal displacements 

and nodal forces, expressed in terms of the modal parameters and poles obtained from the Operational 

Modal Analysis (OMA) [24]. The problem can be easily addressed in the frequency domain through the 

following equation: 

𝐕(ω) = −ω2𝐇(ω)𝐅(ω) (26) 

where 𝐕(ω) is the Fourier Transform of the measured accelerations and 

𝐇(ω) = ∑(
𝑄𝑐φ𝑐φ𝑐

𝑇

𝑗ω − λ𝑐
+

𝑄𝑐
∗φ𝑐

∗φ𝑐
∗𝐻

𝑗ω − λ𝑐
∗

)

𝑛𝑐

𝑐=1

 (27) 

where H denotes the Hermitian transpose. In equation (27) φ𝑐 and λ𝑐 are the c-th un-scaled mode shape 

and eigenvalue, respectively, obtained from the OMA. In addition,  

𝑄𝑐 =
γ𝑐

2

2𝑗|λ𝑐|
 (28) 

is a factor accounting for the scale of the mode φ𝑐. In equation (28) γ𝑐 is the scaling factor of the c-th 

mode that allows obtaining the mass normalised mode shape from the un-scaled one. When OMA is 

performed, forces are not measured, the modal participation factors cannot be determined and the mode 

shape vectors cannot be scaled. However, different methods have been proposed recently to estimate the 

scaling factors involving repeated testing in which mass changes are introduced in the points where the 

mode shapes are known [21]. Thanks to these appraoches, scaling factors can be computed by 

performing a controlled mass addition experiments on the tested structure. 

Starting from equation (26) the loads can be computed in the frequency domain according to  



𝐅(ω) = −
𝐇−1(ω)𝐕(ω)

ω2
 (29) 

and the relevant counterpart of input signals in the time domain can be evaluated through an Inverse 

Fourier Transform. It is worth noting that if this approach is adopted, estimated forces acting on the 

structure are those deriving from the overall ambient excitation, including tremors, wind, traffic and 

human activities in general. 

Once the loads acting on the structure are definitively known, an input-output identification can be 

performed by assuming the model to be of the same order of the analytical one proposed in the previous 

section, in order to assure that matrix 𝐀𝑑 and 𝐀𝑐 as well as 𝐃𝑑 and 𝐃𝑐 have the same dimensions. 

However, despite the latter have the same rank, they may be substantially different because they refer to 

a discrete and a continuous system, respectively, and because the state-space model representation is not 

unique. Indeed, the set (𝐀𝑝ℎ , 𝐁𝑝ℎ , 𝐃𝑝ℎ) in physical coordinates is equal to that of a set (𝐀𝑟, 𝐁𝑟, 

𝐃𝑟) = (𝐓̅𝐀𝑝ℎ𝐓̅−1, 𝐓̅𝐁𝑝ℎ, 𝐃𝑝ℎ𝐓̅−1) where 𝐓̅ is any invertible transformation that changes the set of 

coordinates. Thus, after converting the identified discrete state-space model (𝐀𝑑, 𝐁𝑑, 𝐃𝑑) to the relevant 

continuous-time representation (𝐀𝑟, 𝐁𝑟, 𝐃𝑟) (this is possible if the sampling interval Δ𝑡 is sufficiently 

small to prevent aliasing [23, 36]), the latter is not in the physical coordinates unless a suitable 

transformation 𝐓 is applied. The transformation 𝐓 that allows converting the identified state-space model 

into the physical coordinates can be determined through different approaches that depend on the 

measured quantities. In the sequel, the case that assumes the full set of accelerations available is 

addressed. The system matrix in the physical coordinates can be obtained according to the following 

transformation: 

𝐀𝑝ℎ = 𝐓𝐀𝑟𝐓
−1 (30a) 

𝐁𝑝ℎ = 𝐓𝐁𝑟 (30b) 



𝐃𝑝ℎ = 𝐃𝑟𝐓
−1 (30c) 

Taking into account the layout of matrices appearing in equation (18a) and (15a), and suitably 

partitioning matrix 𝐓, and 𝐃𝑟, the following conditions can be imposed for the evaluation of the 

transformation 𝐓: 

[−𝐌−1𝐊 −𝐌−1𝐂] [
𝐓11 𝐓12

𝐓21 𝐓22
] = [𝐃𝑟11 𝐃𝑟12] (31a) 

[
𝐓11 𝐓12

𝐓21 𝐓22
] [

𝐀𝑟11 𝐀𝑟12

𝐀𝑟21 𝐀𝑟22
] = [

𝟎 𝐈
−𝐌−1𝐊 −𝐌−1𝐂

] [
𝐓11 𝐓12

𝐓21 𝐓22
] = [

𝐓21 𝐓22

𝐃𝑟11 𝐃𝑟12
] (31b) 

Equation (31b) provides a system of four equations in the unknowns 𝐓11, 𝐓12, 𝐓13, 𝐓14, from which 

components of matrix 𝐓 can be obtained as follows: 

[

𝐓11

𝐓12

𝐓21

𝐓22

] = [

𝐀𝑟11 𝐀𝑟21 −𝐈 𝟎
𝐀𝑟12 𝐀𝑟22 𝟎 −𝐈
𝟎 𝟎 𝐀𝑟11 𝐀𝑟22

𝟎 𝟎 𝐀𝑟12 𝐀𝑟22

]

−1

[

𝟎
𝟎

𝐃𝑟11

𝐃𝑟12

] (32) 

Once the trasformation 𝐓 is computed, equations (30) can be used to compute the system matrix in the 

physical coordinates. Extracting the stiffness, mass and damping matrices from the state-space model in 

physical coordinates is now a linear problem; by recognising that the layout of matrices 𝐀𝑝ℎ  and 𝐁𝑝ℎ  is  

𝐀𝑝ℎ = [
𝟎 𝐈

−𝐗 −𝐘
]           𝐁𝑝ℎ = [

𝟎
𝒁
] (33a,b) 

the linear problem can be formulated as 

𝐗 = 𝐌−1𝐊                𝐘 = 𝐌−1𝐂                     𝐙 = 𝐌−1𝐛   (34a,b,c) 

However, the above equations are not sufficient to compute 𝐌, 𝐊 and 𝐂 if 𝐛 is not square and full rank 

(as almost always occurs since forces are never applied at all the degrees of freedom) and further 

equations must be added exploting the symmetry properties of matrices 𝐌, 𝐊 and 𝐂, which allow writing 

𝐌𝐗 = 𝐗𝑇𝐌                𝐌𝐘 = 𝐘𝑇𝐌   (35a,b) 



By defining a stack operator S (i.e. an operator that produces a vector by lining up columns of the matrix 

to which it is applied) and remembering the identity (𝐔𝐕𝐖)𝑆 = (𝐖𝑇 ⊗ 𝐔)𝐕𝑆, the following conditions 

hold: 

𝐊𝑆 = (𝐗𝑇 ⊗ 𝐈)𝐌𝑆 (36a) 

𝐂𝑆 = (𝐘𝑇 ⊗ 𝐈)𝐌𝑆 (36b) 

𝐛𝑆 = (𝐙𝑇 ⊗ 𝐈)𝐌𝑆 (36c) 

(𝐗𝑇 ⊗ 𝐈)𝐌𝑆 = (𝐈 ⊗ 𝐗𝑇)𝐌𝑆 (36d) 

(𝐘𝑇 ⊗ 𝐈)𝐌𝑆 = (𝐈 ⊗ 𝐘𝑇)𝐌𝑆 (36e) 

where 𝐈 is a 5x5 identity matrix and ⊗ is the Kronecker product. Equations (36) can be re-arranged in 

the following system 

[
 
 
 
 
 

𝐗𝑇 ⊗ 𝐈 𝟎 −𝐈

𝐘𝑇 ⊗ 𝐈 −𝐈 𝟎
(𝐙𝑇 ⊗ 𝐈) 𝟎 𝟎

(𝐗𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐗𝑇) 𝟎 𝟎

(𝐘𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐘𝑇) 𝟎 𝟎 ]
 
 
 
 
 

[
𝐌𝑆

𝐂𝑆

𝐊𝑆

] =

[
 
 
 
 
𝟎
𝟎
𝐛𝑆

𝟎
𝟎 ]

 
 
 
 

 (37) 

System (37) can be solved in the least square sense to compute components of the mass, damping and 

stiffness matrices of the system if vector 𝐛 is known, namely if FVTs are performed and the positions at 

which forces are applied on the structure are known. If the excitation is represented by the ambient noise 

coming from the ground, 𝐛 depends on the unknowns, as evident from equation (10), unless forces are 

estimated through the recontruction of the receptance matrix starting from a set of AVTs and OMA 

performed on the system. Anyway, if accelerations exciting the structure at the ground level are 

measured during AVTs, the following system can be assembled 



[
 
 
 
 
 

𝐗𝑇 ⊗ 𝐈 𝟎 −𝐈

𝐘𝑇 ⊗ 𝐈 −𝐈 𝟎
(𝐙𝑇 ⊗ 𝐈) − 𝐑 𝟎 𝟎

(𝐗𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐗𝑇) 𝟎 𝟎

(𝐘𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐘𝑇) 𝟎 𝟎 ]
 
 
 
 
 

[
𝐌𝑆

𝐂𝑆

𝐊𝑆

] =

[
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟎]
 
 
 
 

 (38) 

where, taking into account equation (10), 

𝐑 =

[
 
 
 
 
1 𝟎1𝑥5 0 0 𝟎1𝑥10 0 0 𝟎1𝑥5

0 𝟎1𝑥5 1 0 𝟎1𝑥10 0 0 𝟎1𝑥5

0 𝟎1𝑥5 0 1 𝟎1𝑥10 0 0 𝟎1𝑥5

0 𝟎1𝑥5 0 0 𝟎1𝑥10 1 0 𝟎1𝑥5

0 𝟎1𝑥5 0 0 𝟎1𝑥10 0 1 𝟎1𝑥5]
 
 
 
 

 (39) 

A non-trivial solution of the system can be found in this case avoiding the need of estimating forces 

acting on the structure through the receptance matrix (i.e. avoiding the need of repeting AVTs by adding 

some masses on the structure in different posistions and repeating tests and OMAs) by assuming for 

example the mass of the deck 𝑚𝑑 to be known. This allows formulating the following linear system of 

equations 

[
 
 
 
 
 

∪2:25
𝑎𝑙𝑙 (𝐗𝑇 ⊗ 𝐈) 𝟎 −𝐈

∪2:25
𝑎𝑙𝑙 (𝐘𝑇 ⊗ 𝐈) −𝐈 𝟎

∪2:25
𝑎𝑙𝑙 [(𝐙𝑇 ⊗ 𝐈) + 𝐑] 𝟎 𝟎

∪2:25
𝑎𝑙𝑙 [(𝐗𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐗𝑇)] 𝟎 𝟎

∪2:25
𝑎𝑙𝑙 [(𝐘𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐘𝑇)] 𝟎 𝟎 ]

 
 
 
 
 

[
∪1

2:25 𝐌𝑆

𝐂𝑆

𝐊𝑆

] = 𝑚𝑑

[
 
 
 
 
 

∪𝑎𝑙𝑙
1:1 (𝐗𝑇 ⊗ 𝐈)

∪𝑎𝑙𝑙
1:1 (𝐘𝑇 ⊗ 𝐈)

∪𝑎𝑙𝑙
1:1 [(𝐙𝑇 ⊗ 𝐈) + 𝐑]

∪𝑎𝑙𝑙
1:1 [(𝐗𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐗𝑇)]

∪𝑎𝑙𝑙
1:1 [(𝐘𝑇 ⊗ 𝐈) − (𝐈 ⊗ 𝐘𝑇)]]

 
 
 
 
 

 (40) 

where ∪𝑘:𝑙
𝑖:𝑗

 is an operator extracting rows from i to j and columns from k to l from the matrix to which it 

is applied.  

2.4 Calculation of the stiffness, mass, and damping parameters of the analytical model 

Once matrices 𝐌, 𝐊 and 𝐂 are determined, the stiffness, mass, and damping parameters of the system 

can be computed by comparing analytical terms of the matrices with the identified ones. In detail, the 

translational stiffness of the bridge support devices is  

𝑘 = 𝐊1,1 (41) 



while the stiffness matrix of the pier 𝐊𝑝, which governs relationship between the top (p) and base (b) 

displacements collected in the vector [𝑢𝑝 𝜑𝑝 𝑢𝑏 𝜑𝑏]𝑇 and the shear forces (𝑉) and bending 

moments (𝑀) collected in the vector [𝑉𝑝 𝑀𝑝 𝑉𝑏 𝑀𝑝]𝑇 can be determined from 

𝐊𝑝 =

[
 
 
 
 
𝐊2,2 − 𝐊1,1 𝐊2,3 + 𝐊1,3 𝐊1,1 − 𝐊2,2 𝐊2,3 + 𝐊1,3

𝐊3,3 + 𝐊1,3(ℎ𝑐 + ℎ𝑑) −𝐊2,3 − 𝐊1,3 𝐊3,5 + (𝐊2,3 + 𝐊1,3)ℎ𝑓

𝐊2,2 − 𝐊1,1 −𝐊2,3 − 𝐊1,3

𝑠𝑦𝑚 𝐊3,3 + 𝐊1,3(ℎ𝑐 + ℎ𝑑) ]
 
 
 
 

 (42) 

by assuming the geometric parameters to be known (or measurable). As for the masses, the mass deck, 

if not assumed to be known during the identification procedure, can be determined through  

𝑚𝑑 = 𝐌1,1 (43a) 

while the remaining masses of the superstructure (i.e. of the pier cap and of the pier) can be computed 

through 

𝑚𝑐 =
2

ℎ𝑐
𝐌2,3 (43b) 

𝑚𝑝 = 2(𝐌2,2 −
2

ℎ𝑐
𝐌2,3) (43c) 

Unfortunately, the remaining three equalities between components of the identified and analytical mass 

matrices do not allow the computation of the foundation mass and the masses of the LPM (four 

unknowns). However, it can be reasonable to assume that the foundation mass 𝑚𝑓 can be easily estimated 

from the design drawings of the structure and the density of the material, so that the masses of the LPM 

can be determined.  

Above assumption on the foundation mass, make it possible to fully estimate parameters of the LPM. 

This means that the soil-foundation impedance matrix, approximated through the LPM, can be estimated 

starting from a dynamic experimental investigation on the real structure. Considering the well-

recognised role of soil-structure interaction effects on the seismic response of structures, especially 



bridges [37-42], the proposed procedure makes it possible to experimentally estimate the soil-foundation 

impedance matrix for a real SFP system. 

In detail, the following equations hold for the stiffness parameters of the LPM: 

𝑘𝑥 = 𝐊4,4 −
1

ℎ
[(𝐊2,2 − 𝐊1,1) (ℎ + ℎ𝑓 +

ℎ𝑝

2
) − 𝐊4,5] (44a) 

𝑘ℎ𝑥 =
1

ℎ
[(𝐊2,2 − 𝐊1,1) (ℎ𝑓 +

ℎ𝑝

2
) − 𝐊4,5] 

(44b) 

𝑘𝑟𝑦 = 𝐊5,5 + 𝐊3,5 − 𝐊3,4 (ℎ𝑓 +
ℎ𝑝

2
)

− ℎ [(𝐊2,2 − 𝐊1,1)(ℎ𝑓 +
ℎ𝑝

2
+

ℎ𝑓
2

ℎ
+

ℎ𝑝ℎ𝑓

ℎ
+

ℎ𝑝
2

4ℎ
) − 𝐊4,5] 

(44c) 

As for the masses, the following equations provide terms of the LPM mass matrix 

𝑚𝑥 = 𝐌4,4 − (𝐌2,2 −
2𝐌2,3

ℎ𝑐
) (

ℎ𝑓

ℎ
+ 1) − 𝑚𝑓 (

ℎ𝑓

2ℎ
+ 1) +

𝐌4,5

ℎ
 (45a) 

𝑚ℎ𝑥 = (𝐌2,2 −
2𝐌2,3

ℎ𝑐
)
ℎ𝑓

ℎ
+ 𝑚𝑓

ℎ𝑓

2ℎ
−

𝐌4,5

ℎ
 (45b) 

𝐼𝑦 = 𝐌5,5 − (𝐌2,2 −
2𝐌2,3

ℎ𝑐
) (ℎ𝑓ℎ + ℎ𝑓

2) − 𝑚𝑓 (
ℎ𝑓ℎ

2
+

ℎ𝑓
2

4
) + 𝐌4,5ℎ (45c) 

It should be remarked that the geometric parameter h of the LPM can be chosen almost arbitrarily [33]. 

Finally, the damping coefficients deserve some considerations. It was assumed that the overall damping 

matrix of the soil-foundation-pier system is the sum of the LMP damping matrix and the superstructure 

damping matrix, the latter expressed as a combination of the stiffness and mass matrices of the 

superstructure, according to a Rayleigh approach. In this sense, coefficients α and β can be determined 

considering the damping ratios and frequencies obtained from the identification procedure. In detail, for 

the i-th mode it results 

ω𝑖 = |λ𝑖| (46a) 



ξ𝑖 = −
Re(λ𝑖)

ω𝑖
 (46b) 

As an example, the first two modes can be considered for the calibration of the Rayleigh coefficients. 

Finally, once the Rayleigh coefficients are estimated, the superstructure contribution to the damping 

matrix can be estimated and the following equations can be exploited for computing the expected 

damping coefficients  of the LPM: 

𝑐𝑥 = 𝐂4,4 +
𝐂4,5

ℎ
−

α

ℎ
[(𝐌2,2 −

2

ℎ𝑐
𝐌2,3) (ℎ𝑓 + ℎ) + 𝑚𝑓 (

ℎ𝑓

2
+ ℎ)]

−
β

ℎ
(𝐊2,2 − 𝐊1,1) (ℎ𝑓 +

ℎ𝑝

2
+ ℎ) 

(47a) 

𝑐ℎ𝑥 =
α

ℎ
[(𝐌2,2 −

2

ℎ𝑐
𝐌2,3) ℎ𝑓 + 𝑚𝑓

ℎ𝑓

2
] +

β

ℎ
(𝐊2,2 − 𝐊1,1) (ℎ𝑓 +

ℎ𝑝

2
) −

𝐂4,5

ℎ
 (47b) 

𝑐𝑟𝑦 = 𝐂5,5 + 𝐂4,5ℎ − αℎ [(𝐌2,2 −
2

ℎ𝑐
𝐌2,3) (ℎ𝑓 +

ℎ𝑓
2

ℎ
) + 𝑚𝑓 (

ℎ𝑓

2
+

ℎ𝑓
2

4ℎ
)]

− βℎ [(𝐊2,2 − 𝐊1,1) (ℎ𝑓 +
ℎ𝑝

2
+

ℎ𝑓
2

ℎ
+

ℎ𝑝ℎ𝑓

ℎ
) +

𝐊3,3

ℎ
+ 𝐊1,3 (

ℎ𝑐

ℎ
+

ℎ𝑑

ℎ
)] 

(47c) 

2.5 Suggested test procedures and analytical steps 

In this section, tests procedures that allow the application of the proposed identification methodology 

are briefly discussed; both FVTs and AVTs are considered and the necessary experimental and numerical 

steps are listed in, up to the identification of the stiffness, mass and damping properties of system. In 

addition, a flowchart of the test procedures and of the analytical steps is reported in Figure 3 to 

summarise the operational steps. 

For FVTs, the following steps apply: 

1. perform FVTs using an exciter (i.e. a vibrodyne) and measure accelerations in the transverse 

direction in a sufficient number of points in order to calculate the experimental signals 

corresponding to the degrees of freedom of the hypothesised analytical interpretative model. The 



vibrodyne can be easily positioned at the deck level (or at the foundation level if the foundation cap 

is located above the ground level) in order to excite the system in the transverse direction with a 

sinusoidal sweep signal including all the expected system resonance frequencies; 

2. perform an input-output identification of the discrete-time state-space model through procedures 

available in the literature (e.g. subspace methods [24]) to compute matrices 𝐀𝑑, 𝐁𝑑, 𝐃𝑑 by assuming 

a model order consistent with that of the analytical system; 

3. convert the discrete-time state-space model into a continuous-time state-space model [36] to get 

matrices (𝐀𝑟, 𝐁𝑟, 𝐃𝑟). This is possible avoiding aliasing if a sufficiently small time step is assumed; 

suitable functions implemented in codes such as Matlab [43] can be used; 

4. compute the transformation 𝐓 according to equation (32) and evaluate the continuous-time state-

space model in physical coordinates (𝐀𝑝ℎ , 𝐁𝑝ℎ , 𝐃𝑝ℎ); 

5. solve system (37) in the least square sense to evaluate matrices 𝐌, 𝐊 and 𝐂. It is worth noting that 

in this case it is not necessary to assume the deck mass 𝑚𝑑 to be known; 

6. compute the stiffness, mass and damping parameters of the system following equations of Section 

2.4 assuming geometric parameters and the foundation mass 𝑚𝑓 to be known. 

For AVTs, the following steps apply if the noise exciting the structure is measured: 

1. perform AVTs measuring accelerations in the transverse direction in a sufficient number of points 

in order to evaluate signals relevant to the degrees of freedom of the analytical model. Tests include 

the measure of the noise at the foundation level in terms of accelerations; this can be done for 

example through geophones.  

2. perform an input-output identification of the discrete-time state-space model to compute matrices 

𝐀𝑑, 𝐁𝑑, 𝐃𝑑 assuming a model order consistent with that of the analytical system; 

3. convert the discrete-time state-space model into a continuous-time state-space model (𝐀𝑟, 𝐁𝑟, 𝐃𝑟);  

4. compute the transformation 𝐓 according to equation (32) and evaluate the continuous-time state-

space model in physical coordinates (𝐀𝑝ℎ , 𝐁𝑝ℎ , 𝐃𝑝ℎ); 



5. solve system (40) in the least square sense to evaluate matrices 𝐌, 𝐊 and 𝐂 by assuming the deck 

mass 𝑚𝑑 to be known; 

6. compute the stiffness, mass and damping parameters of the system following equations of Section 

2.4 assuming geometric parameters and the foundation mass 𝑚𝑓 to be known. 

For AVTs, the following steps apply if the noise exciting the structure is not measured: 

1. perform AVTs and measure accelerations in the transverse direction in a sufficient number of points 

in order to evaluate signals relevant to the degrees of freedom of the analytical model. Repeat tests 

by adding a known mass Δ𝑚 at the deck level, sufficiently small (e.g. 5% of the total mass of the 

deck) to avoid modification of the mode shapes but to produce a change in poles between the original 

structure and the loaded-one [21]. Partially or fully loaded trucks can be used as added masses on 

the deck; 

2. perform Operational Modal Analyses (OMAs) of the original structure and the loaded one, 

evaluating the modal parameters (e.g. resonance frequencies and mode shapes) of the original 

structure and the change in poles due to the added masses; 

3. estimate the scaling factors γ of modes that allows obtaining the mass normalised mode shapes from 

the un-scaled ones [21]; 

4. compute the receptance matrix 𝐇(ω) exploiting equations (27) and (28) and finally evaluate the 

input noise 𝐅(ω) in the frequency domain through equation (29) at each degree of freedom of the 

system. The relevant noise in the time domain can be obtained through an Inverse Fourier 

Transform. 

5. perform an input-output identification of the discrete-time state-space model to compute matrices 

𝐀𝑑, 𝐁𝑑, 𝐃𝑑; 

6. convert the discrete-time state-space model into a continuous-time state-space model (𝐀𝑟, 𝐁𝑟, 𝐃𝑟); 

7. compute the transformation 𝐓 according to equation (32) and evaluate the continuous-time state-

space model in physical coordinates (𝐀𝑝ℎ , 𝐁𝑝ℎ , 𝐃𝑝ℎ); 
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Figure 3. Flowchart of the test procedures. 

8. solve system (37) in the least square sense to evaluate matrices 𝐌, 𝐊 and 𝐂. It is worth noting that 

in this case it is not necessary to assume the deck mass 𝑚𝑑 to be known since forces acting on each 

degree of freedom are estimated. The latter are due to all the sources of the ambient excitation (e.g. 

tremors, human activities, traffic, wind); 



9. compute the stiffness, mass and damping parameters of the system following equations of Section 

2.4 assuming geometric parameters and the foundation mass 𝑚𝑓 to be known. 

3 Numerical illustration of the proposed methodology 

This section presents some applications to show the potentials of the methodology. Before the 

methodology can be applied to real case studies, a validation is proposed starting from the analysis of a 

known system. To this purpose, the model presented in section 2.1 is used, assuming the parameters 

reported in Table 1. Data are consistent with a steel-concrete twin girder bridge deck with span length 

of 25 m and 10 m high reinforced concrete piers of diameter 2 m. The concrete material has a Young’s 

modulus Eb = 30000 MPa, a Poisson’s ratio b = 0.2 and a density b =  2.5 t/m3. As for the soil-

foundation system, the LPM parameters are evaluated according to formulas proposed by Carbonari et 

al. [33] by considering a 3x3 reinforced concrete pile group of length L = 20 m and diameter d = 1 m, 

equally spaced of s = 3d. The pile material has a density p =  2.5 t/m3, a Poisson’s ratio p = 0.2, and a 

Young’s modulus Ep = 30000 MPa. The foundation mass is obtained from an estimated geometry, which 

complies with the pile layout. The soil deposit is assumed to be homogenous, with a density s = 1.8 

t/m3 and a shear wave velocity Vs = 250 m/s. Parameters of the LPM are also reported in Table 1. 

The mass, stiffness and damping matrices of the system are reported below; the latter is obtained 

according to equation (6), calibrating coefficients α = 0.6797 and β = 0.002 considering a 5% damping 

ratio for the first (1.2942 Hz) and second (6.9695 Hz) resonance frequencies of the undamped system. 

𝐌 =

[
 
 
 
 
300 0 0 0 0

129.25 81 0 0
72.9 0 0

𝑠𝑦𝑚 353.73 214.18

4100.8]
 
 
 
 

 (48a) 



𝐊 =

[
 
 
 
 
1e5 −1e5 −3e5 0 0

3.618e5 −1.009e6 −2.618e5 −1.8326e6
9.8012e6 1.3090e6 6.8068e6

𝑠𝑦𝑚 1.2173e6 1.7201e6

1.3855e8 ]
 
 
 
 

 (48b) 

𝐂 =

[
 
 
 
 
404.0131 −200.1020 −600.3060 0 0

811.8195 −1.9640e3 −523.8658 −3.6671e3
1.9662e4 2.6193e3 1.3621e4

𝑠𝑦𝑚 5.4365e4 −4.3993e4

6.7241e5 ]
 
 
 
 

 (48c) 

  

 

Table 1. Parameters of the validation model (see Figure 1) 

Bridge 

parameter 

Value Soil & 

Foundation 

parameters 

Value LPM 

parameter 

Value 

𝑚𝑑 300 t Pile layout 3x3 𝑚𝑥 157.32 t 

𝑚𝑐 90 t L 20 m 𝑚ℎ𝑥 7.16 t 

𝑚𝑝 78.5 t d 1 m 𝐼𝑦 3765.13 tm2 

𝑚𝑓 150 t s 3 m ℎ 2 m 

ℎ𝑑 1.2 m Ep 30000 MPa 𝑘𝑥 8.993e5 kN/m 

ℎ𝑐 1.8 m p 0.2 𝑘𝑟𝑦 1.231e8 kNm/rad 

ℎ𝑝 10 m p 2.5 t/m3 𝑘ℎ𝑥 56250 kN/m 

ℎ𝑓 2 m s 1.8 t/m3 𝑐𝑥 29804.95 kNs/m 

𝑘 1e5 kN/m Vs 250 m/s 𝑐𝑟𝑦 546190.31 kNms/rad 

Eb 30000 MPa   𝑐ℎ𝑥 23907.51 kNs/m 

b 0.2     

b 2.5 t/m3     

 

The pier stiffness matrix 𝐊𝑝 is 

𝐊𝑝 = [

2.6180e5 −1.3090e6 −2.6180e5 −1.3090e6
8.9012e6 1.3090e6 4.1888e6

2.6180e5 1.3090e6
𝑠𝑦𝑚 8.9012e6

] (49) 

while non-null or identity components of matrix 𝐀𝑐 (equation 15a) assume the form 



−𝐌−1𝐊 =

[
 
 
 
 

−333.33 333.33 1𝑒3 0 0
−5.9448e3 −3.7781e4 3.0316e5 4.3726e4 2.3938e5
1.0721e4 5.5820e4 −4.7130e5 −6.6540e4 −3.5935e5

0 484.8562 −2.7835e3 −3.2916e3 1.6104e4
0 421.5670 −1.5145e3 −247.5406 −3.4628e4]

 
 
 
 

 (50a) 

−𝐌−1𝐂 =

[
 
 
 
 
−1.3467 0.6770 2.0010 0 0
−11.8957 −76.2804 606.6377 87.4963 479.0054
21.4521 111.6965 −943.7525 −133.1486 −719.0665

0 0.9702 −5.5699 −165.4174 230.9553
0 0.8436 −3.0305 19.3675 −176.0350]

 
 
 
 

 (50b) 

Eigenvalues of matrix 𝐀𝑐 (i.e. of the SFP system) are (equations 22b) 

𝚲 = diag

[
 
 
 
 
 
 
 
 
 
−0.4486 − 𝑗8.1190
−2.6839 − 𝑗43.7082
−78.714 − 𝑗148.36
−509.83 − 𝑗499.17
−0.4486 + 𝑗8.1190
−2.6839 + 𝑗43.7082
−78.714 + 𝑗148.36
−509.83 + 𝑗499.17

−20.8814
−158.61 ]

 
 
 
 
 
 
 
 
 

 (51) 

As can be observed from the eigenvalues of equation (51), the soil-foundation-pier system is 

characterised by four under-damped vibration modes and one over-damped mode, which is not an 

oscillatory sub-system and will be omitted from the subsequent representations. 

Figure 4 shows the real parts (i.e. for phase angle = 0) of the under-damped mode shapes for the selected 

case study while Figure 5 shows the relevant complexity plots with the corresponding values of the 

Modal Complexity Factor (MCF) [24]. Each mode in Figure 4 is firstly normalised to get a unitary 

absolute value of the higher displacement modal component and then scaled for representation issues; 

the adopted Scale Factor (SF) for each mode is also included in the figure. The first mode is mainly 

translational with the deck, the pier cap and the foundation vibrating almost in phase (as documented by 

the very low MCF). Also, the second mode is mainly translational but presents a more important 

contribution due to the foundation translation and rotation, which lead to an increase of the MCF as a 

consequence of the non-classically damped soil-foundation system. In addition, the deck and the 

substructure oscillate in opposite directions.  



 
Figure 4. Shape of the under-damped modes. 

 

Figure 5. Complexity plots and Mode Complexity Factors (MCFs). 



Modes 3 and 4 mainly involve the rotational degrees of freedom; while Mode 4 is mainly characterised 

by the rotation of the pier cap, with the foundation almost undeformed, Mode 3 is characterised by 

rotations of both the pier cap and the pile cap. Consequently, taking into account that the non-classically 

damped nature of the system is only located in the soil-foundation system, MCF of Mode 4 is null and 

MCF of Mode 3 is the higher one. 

Two kinds of input-output dynamic identification test are simulated and the system responses, obtained 

numerically through the discrete-time state-space model of the SFP system, are assumed to be the 

measured responses from the corresponding real tests. In detail, a FVT and an AVT are simulated, the 

latter assuming that the input noise at the foundation level is measured in terms of accelerations. 

The FVT is simulated by applying a dynamic force similar to that generated by a vibrodyne at the deck 

level in the transverse direction of the SFP system. In order to excite all the system vibration modes a 

frequency sweep from 0.1 to 250 Hz is considered and the force intensity is defined taking into account 

the performance of real vibrodynes for which a quadratic dependence exists between the force and the 

angular velocity of the rotating masses. Figure 6a shows the first 5 seconds of the force time history used 

for the applications while Figure 6b shows the Short Time Fourier Transform of the complete signal, 

which has a duration of 40 seconds and a frequency content that varies linearly with time from 0.1 Hz 

to 250 Hz. The AVT is simulated considering that the SFP system is only excited by the ground 

accelerations 𝑢̈𝑔 that is assumed to be a white Gaussian noise; the latter is considered to be measurable 

through the use of geophones. Figure 7a shows the first 0.5 seconds of the acceleration time history used 

for the applications while Figure 7b shows, for the sake of completeness, the Short Time Fourier 

Transform of the full signal, which has a duration of 50 seconds and a flat spectrum within 0.1 Hz and 

300 Hz. A sampling frequency of 500 Hz is assumed.  

Figure 8 shows with a thick black line the first 5 seconds of the time histories of accelerations measured 

at the SFP degrees of freedom obtained from the FVT simulation, while Figure 9 shows, with the same 

kind of line, the system response obtained from the simulation of the AVT. 
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Figure 6. (a) First 5 s of the input force at the deck level and (b) time-frequency analysis of the whole input force. 
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Figure 7. (a) First 0.5 s of the input acceleration at the ground level and (b) time-frequency analysis of the whole input 

acceleration. 

 

Starting from the analytical (i.e. measured) response, a deterministic subspace identification procedure 

from Van Overschee and De Moor (N4SID algorithm) [24] is adopted for the system identification. The 

response of the identified systems to the measured excitations are shown with thin red lines in Figure 8 

and Figure 9, where a perfect matching of the measured and identified responses can be observed. 

Steps described in Section 2.5 are adopted to finally obtain the physical parameters of the SFP system 

starting from the discrete-time identified state-space model. In the sequel, consistency between the 

known and the identified systems are shown in terms of physical parameters and through the MACX 

criterion, which is an extension of the Modal Assurance Criterion (MAC) to complex eigenvectors [44]. 

Components of the continuous-time state-space model in physical coordinates, as well as the identified 

mass, stiffness and damping matrices, and the SFP system eigenvalues obtained from both the simulated 

tests are reported in Appendix A. 
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Figure 8. Response of the known and identified systems subjected to a sinusoidal sweep force at the bridge deck level. 

Table 2 shows the physical parameters of the SFP system identified from the two simulated tests, 

together with the relevant percentage errors with respect to the known system. As already mentioned, 

the approach assumes the geometric parameters to be known, including the LPM rigid link length (that 

can be assumed in an almost arbitrary manner without influencing the frequency-dependent soil-

foundation impedance functions [33]); obviously, for the present applications a value equal to that 

assumed for the case study is selected in order to make comparisons of the LPM parameters meaningful. 
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Figure 9. Response of the known and identified system subjected to a noisy ground acceleration. 

Furthermore, the foundation mass 𝑚𝑓 = 150 t is assumed to be known and, for the simulated AVT, also 

the deck mass 𝑚𝑑 = 300 t must be imposed to derive the remaining parameters. 

Percentage errors of the estimated physical parameters are always very low and practically negligible 

for values obtained from the simulated FVT. It is worth mentioning that the evaluation of the damping 

parameters of the LPM requires the estimation of parameters α and β that allow simulating the damping 

of the superstructure according to a Rayleigh approach; the latter are obtained starting from the first two 

identified resonance frequencies and damping ratios obtained from Equations (46). The system 



eigenvalues (and the relevant eigenvectors) are those of matrix 𝐀𝑝ℎ . In detail, the identified frequencies 

from the simulated FVT and AVT are practically the same and equal to 1.2942 Hz and 6.9695 Hz, while 

the relevant identified damping ratios are 5.5% and 6.13%, respectively. 

Table 2. Comparison between known and identified parameters 

  Simulated FVT Simulated AVT 

Pier parameters Known value Identified value Error [%] 
Identified 

value 
Error [%] 

𝑚𝑑 [t] 300 299.41 0.20 300 --- 

𝑚𝑐 [t] 90 89.96 0.05 88.80 1.33 

𝑚𝑝 [t] 78.5 78.48 0.03 77.41 1.39 

LPM 

parameters 
Known value Identified value Error [%] 

Identified 

value 
Error [%] 

𝑚𝑥 [t] 157.32 157.36 0.02 151.04 3.99 

𝑚ℎ𝑥 [t] 7.16 7.16 0.04 8.32 16.20 

𝐼𝑦 [tm2] 3765.13 3764.52 0.02 3697.43 1.80 

𝑘𝑥 [kN/m] 8.993e5 8.992e5 0.01 8.853e5 1.55 

𝑘𝑟𝑦 [kNm/rad] 1.231e8 1.231218e8 0.02 1.212076e8 1.54 

𝑘ℎ𝑥 [kN/m] 56250 56390.04 0.25 54068.66 3.88 

𝑐𝑥 [kNs/m] 29804.95 29802.95 0.01 29328.04 1.60 

𝑐𝑟𝑦 [kNms/rad] 546190.31 546056.95 0.02 537551.07 1.58 

𝑐ℎ𝑥 [kNs/m] 23907.51 23910.85 0.01 23523.59 1.61 

 

Table 2 only shows mass parameters of the superstructure; the stiffness matrix of the pier obtained from 

the simulated FVT and AVT are reported below in Equation (52a) and (52b), respectively. 

𝐊𝑝 = [

2.61988e5 −1.31080e6 −2.61988e5 −1.31080e6
8.91296e6 1.31080e6 4.19566e6

2.61988e5 1.31080e6
𝑠𝑦𝑚 8.91296e6

] (52a) 

𝐊𝑝 = [

2.57096e5 −1.28566e6 −2.57096e5 −1.28566e6
8.74367e6 1.28566e6 4.11297e6

2.57096e5 1.28566e6
𝑠𝑦𝑚 8.74367e6

] (52b) 

With reference to the matrix reported in Equation (49), percentage errors in the range of 0.01-0.16% are 

observed for the matrix of Equation (52a), obtained from the simulated FVT, and in the range of 1.61-

1.78% for the matrix of Equation (52b), resulting from the simulated AVT. 



Finally, Figure 10 shows the MACX values [44] obtained by comparing the complex eigen vectors of 

the known system and the complex eigenvectors of the identified systems; the latter are obtained by 

solving the eigenvalue problem for the matrixes 𝐀𝑝ℎ , whose components are available in Appendix A 

for both the case of the simulated FVT and AVT. MACX values in Figure 10 demonstrate a very good 

correlation between the mode shapes of the original system and those of the identified ones. MACX 

values are also reported in a table format in Figure 11 to highlight that values are practically coincident, 

with differences only beyond the forth decimal digit. In the same figure, values obtained with the 

classical MAC criterion are also reported; as can be observed, differences only appear for the third mode, 

which is characterised by a significant complex nature. 

 

 
 (a) (b) 

Figure 10. MACX diagrams between complex eigen vectors of the known system and the eigenvectors identified from (a) 

the simulated FVT and (b) the simulated AVT 
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Figure 11. Comparison of eigen vectors (known system and identified one): (a) MACX for to the simulated FVT; (b) 

MACX for the simulated AVT; (c) MAC for to the simulated FVT; (d) MAC for the simulated AVT 

 

4 Conclusions 

A methodology for the identification of the physical parameters of a model describing the transverse 

dynamics of soil-foundation-pier systems has been presented in this paper. The methodology, which 

excludes the need of model updating procedures, requires the execution of forced vibration or ambient 

vibration tests on the real structure that has to be characterised, from which the first-order state-space 

model can be identified according to well-established procedures available in the literature. The order 

of the model is assumed to be compliant with that of the developed interpreting model and the state-

space model is expressed in the physical coordinates, so that the space vector contains displacements 

and velocities. Finally, the stiffness, mass and damping matrices of the real system are identified, and 



the physical parameters of the numerical model are computed comparing the identified and numerical 

matrices. The procedure also allows the experimental identification of the parameters of a lumped system 

able to capture the frequency-dependent behaviour of the soil-foundation system in time domain 

analysis. The application of the proposed approach is based on the assumption that the system geometric 

parameters are known (i.e. measurable through in-situ inspections) and on some additional acceptable 

hypotheses that depend on the executed tests. In detail: 

1. if forced vibration tests are executed, all the physical parameters of the numerical model 

representing the real system can be determined by assuming the foundation mass to be known; 

2. for ambient vibration tests in which the noise exciting the structure is measured at the ground level 

through geophones, the physical parameters of the numerical model can be all estimated by 

assuming the deck and the foundation masses to be known. In this case, the methodology is based 

on the assumption that the exciting sources only come from the soil; 

3. data from ambient vibration tests can be also adopted without the need of measuring the ground 

accelerations; in this case, tests must be repeated with masses added on the structure in a suitable 

configuration that allows the estimation of the scaling factors of the modes determined through the 

operational modal analyses. The latter can be used to reconstruct the receptance matrix of the system 

and finally the input exciting the structures at the measured points. In this case, the estimated actions 

include all the sources of excitation (i.e. ground tremors, wind, traffic). 

Laboratory tests and applications of the proposed identification methodology on real bridges are 

ongoing; results will provide a clear overview of the approach feasibility and the accuracy of results 

obtained from the different approaches.  

Finally, it is worth remarking that the methodology can be also exploited for structural health monitoring 

and damage identification purposes by simply repeating tests during time and by identifying changes in 

the physical stiffness matrix of the structure, including the soil-foundation system, where damage cannot 

be observed directly. Finally, the procedure can be also applied in case of seismic data (e.g. obtained 

from a monitoring system) if both base and floor accelerations are registered; in this case, if tests 



performed before and after the earthquake are available, the presence of damage can be identified and 

the localization can be attempted.  

Appendix A 

Components of identified matrixes 𝐀𝑝ℎ  from the simulated FVT are  

−𝐌−1𝐊 =

[
 
 
 
 
−333.3511 333.2465 1000.6966 −0.4193 −3.1686
−5.9448e3 −3.7781e4 3.0316e5 4.3726e4 2.3938e5
1.0721e4 5.5820e4 −4.7130e5 −6.6540e4 −3.5935e5
−0.0024 484.8450 −2.7835e3 −3.2914e3 1.6104e4
−0.0073 421.5479 −1.5143e3 −247.4283 −3.4629e4]

 
 
 
 

 (A1a) 

−𝐌−1𝐂 =

[
 
 
 
 
−1.3467 0.6669 2.0026 0.0152 −0.0060
−11.8957 −76.2806 606.6391 87.5108 478.9996
21.4520 111.6964 −943.7518 −133.1480 −719.0661

0 0.9702 −5.5696 −165.4121 230.9530
0 0.8435 −3.0302 19.3716 −176.0367]

 
 
 
 

 (A1b) 

Identified mass, stiffness, and damping matrices from the simulated FVT are 

𝐌 =

[
 
 
 
 
299.4070 −0.1449 −0.0946 0.0150 −0.0481

129.1980 80.9632 0.0090 −0.0168
72.9030 0.0097 0.0153

𝑠𝑦𝑚 353.7520 214.1634

4100.1019]
 
 
 
 

 (A2a) 

𝐊 =

[
 
 
 
 
9.9960e4 −9.9960e4 −3.0028e5 43.3182 −249.6582

3.6195e5 −1.0105e6 −2.6200e5 −1.8337e6
9.8138e6 1.3108e6 6.8173e6

𝑠𝑦𝑚 1.2176e6 1.7211e6

1.3854e8 ]
 
 
 
 

 (A2b) 

𝐂 =

[
 
 
 
 
403.5218 −200.1251 −600.9333 −0.0827 −0.6122

812.0902 −1.9670e3 −524.2717 −3.6693e3
1.9687e4 2.6229e3 1.3642e4

𝑠𝑦𝑚 5.4367e4 −4.3997e4

6.7233e5 ]
 
 
 
 

 (A2c) 

Eigenvalues obtained from the simulated FVT are 



𝚲 = diag

[
 
 
 
 
 
 
 
 
 
−0.4486 − 𝑗8.1190
−2.6839 − 𝑗43.7082
−78.714 − 𝑗148.36
−509.82 − 𝑗499.17
−0.4486 + 𝑗8.1190
−2.6839 + 𝑗43.7082
−78.714 + 𝑗148.36
−509.82 + 𝑗499.17

−20.8814
−158.61 ]

 
 
 
 
 
 
 
 
 

 (A3) 

Components of identified matrixes 𝐀𝑝ℎ  from the simulated AVT are  

−𝐌−1𝐊 =

[
 
 
 
 
−333.3333 333.3333 1000.08 −0.0486 0.1894
−5.9448e3 −3.7781e4 3.0316e5 4.3728e4 2.3938e5
1.0721e4 5.5820e4 −4.7129e5 −6.6544e4 −3.5934e5

0 484.9290 −2.7842e3 −3.2909e3 1.6104e4
0.0105 421.5969 −1.5147e3 −247.8156 −3.4628e4]

 
 
 
 

 (A4a) 

−𝐌−1𝐂 =

[
 
 
 
 
−1.3470 0.6669 2.0009 −0.0004 0
−11.8826 −76.2740 606.6415 87.5118 479.0058
21.4325 111.6869 −943.7583 −133.1718 −719.0671
0.0041 0.9722 −5.5685 −165.4124 230.9554
0.0015 0.8428 −3.0305 19.3659 −176.0352]

 
 
 
 

 (A4b) 

Identified mass, stiffness, and damping matrices from the simulated FVT are 

𝐌 =

[
 
 
 
 
300 1.2497 0.8132 0.1529 0.2821

127.5143 79.9240 0.0532 0.0817
71.8420 0.0291 0.0209

𝑠𝑦𝑚 348.0815 210.7764

4035.5563]
 
 
 
 

 (A5a) 

𝐊 =

[
 
 
 
 
9.8711e4 −9.8366e4 −2.9478e5 54.6792 313.8934

3.5581e5 −9.9088e5 −2.5732e5 −1.8018e6
9.6280e6 1.2858e6 6.6843e6

𝑠𝑦𝑚 1.1973e6 1.6915e6

1.3634e8 ]
 
 
 
 

 (A5b) 

𝐂 =

[
 
 
 
 
401.5267 −196.0780 −588.9484 −0.8953 6.2032

798.6054 −1.9283e3 −515.3336 −3.6022e3
1.9315e4 2.5719e3 1.3373e4

𝑠𝑦𝑚 5.3494e4 −4.3291e4

6.6170e5 ]
 
 
 
 

 (A5c) 

Eigenvalues obtained from the simulated AVT are 



𝚲 = diag

[
 
 
 
 
 
 
 
 
 
−0.4487 − 𝑗8.1190
−2.6839 − 𝑗43.7081
−78.714 − 𝑗148.36
−509.83 − 𝑗499.17
−0.4487 + 𝑗8.1190
−2.6839 + 𝑗43.7081
−78.714 + 𝑗148.36
−509.83 + 𝑗499.17

−20.8762
−158.61 ]

 
 
 
 
 
 
 
 
 

 (A6) 
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