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Abstract 

Seismic hazard causes a considerable portion of loss in many countries annually and thus is of 

high importance. Seismic hazard and its consequences, known as seismic risk, have been 

studied in the fields of geology, earthquake engineering and structural engineering in the 

framework of probabilistic seismic hazard analysis (PSHA). PSHA could be simply defined as 

the probability of occurrence of an earthquake characteristic (e.g., PGA), considering 

uncertainties namely magnitude, location and their resulting ground motion specified by 

ground motion prediction equation (GMPE). The final output of PSHA is the rate of exceeding 

specific intensity measure (IM), and could be expressed in terms of return period exceedance. 

For structural design purposes, for a given probability and structure’s design life, the seismic 

hazard could be stated in terms of return period TR, which is commonly applied in current 

design code (e.g., Eurocode 8).  

The above-mentioned explanations of return period of exceedance are based on the Poisson 

relationship between time and earthquake which assumes that the probability of an earthquake 

occurring remains unchanged by elapsing time. In the recent decades, however, it has been 

claimed that earthquake occurrence could be expressed through time-dependent models which 

means that elapsing time since the last earthquake affects its occurrence probability.  

This research focuses mainly on the effect of time-dependent seismic hazard on structural 

design, by evaluating the strength required by the structure (seismic capacity) for different time 

intervals elapsing from the last event. “Seismic capacity” is defined as the capacity required to 

provide a fixed failure rate. Two different seismic scenarios (i. e., a point source and a 

combined source including area and line source) have been investigated and results concerning 

different site-to-source distance, capacity dispersion of the structure and different recurrence 

properties of the time-dependent source have been discussed. The results obtained from the 

analyses highlight a significant influence of time-dependent hazard properties on the structural 

capacity required to attain a target reliability, and give evidence to the different roles played by 

the parameters considered in the analysis. 

Moreover, in order to deeper investigate the effect of time-dependent seismic hazard on 

structural design, the influence of soil classification, period and the GMPE implemented in the 

analysis have been assessed and the results discussed extensively. The analysis outcomes 

illustrate the remarkable impact of soil and period on structural response as well as the 

importance of appropriate GMPE used for the time-dependent seismic hazard.  
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Furthermore, machine-learning (ML) based models have been proposed for deriving fragility 

curves of buildings. Generating fragility curves is a critical key step in the Performance-Based 

Earthquake Engineering (PBEE) framework which is generally time-consuming. The accuracy 

of the quick accurate models proved the high reliability of ML-based techniques for obtaining 

fragility parameters namely dispersion and median. The developed ML-based prediction 

models could be used for estimating capacity (both time-dependent and time-independent 

cases) in further studies.      
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1 Research background, motivation, objectives and organization 

 

 

 

1.1 Definitions 

Definition of the frequent used terms in this thesis are provided in this subsection. The main 

terms are stochastic processes, counting process, interarrival and waiting time, memory, 

recurrence interval, return period: 

• Stochastic processes: a stochastic process could be defined as a system in which there 

are observations at certain times, and that its target outcome, that is, the observed value 

at each time is a random variable (Blomberg 2006). The fundamental concepts of 

stochastic processes are based on generating (pseudo) random numbers and the 

sequences of uniform random number provided by computer routines is an example of 

stochastic process (Slepchenko & Loew 2010, Ferrari 2001).  

• Counting process: a counting process is a type of stochastic process with non-negative, 

integer, and increasing values. The most common application of a counting process is 

to count the number of occurrences of some event of interest by elapsing time (time-

dependent events), and therefore the values are usually chosen non-negative real 

numbers [0, ∞). It is worth explaining that in the general form, negative values R = (−∞, 

∞) are also commonly used) (Olofsson 2006). 

• Arrival/ arrival time: the appearance of seismic energy on a seismic record is known as 

arrival while the time at which a particular wave / phase arrives at a station or detector 

is defined as arrival time.  

• Recurrence Interval: the approximate length of time between earthquakes in a specific 

seismically active area. 

• Recurrence interval (or return period): the average time span between earthquake 

occurrences on a fault or in a source zone is called recurrence interval (or return period). 



Chapter 1 Page 17 of 152 

Research background, motivation, objectives and organization  

 

 

1.2 Background 

One of the main concerns in earthquake engineering is to provide structural engineers with 

parameters which lead to a desire level of structure performance in a given ground shaking 

level. But there are always uncertainties in various factors including location, size and resulting 

shaking intensity of future earthquakes. Probabilistic seismic hazard analysis (PSHA) is used 

to provide a description of the future shaking by quantifying and combining mentioned 

uncertainties (Baker 2008).  

The outcomes of PSHA could be used for determining return period of exceedance which is 

defined as the probabilities of exceeding a given ground motion intensity within a specified 

time interval for a given rate of exceedance. Currently the Poissonian model is used for 

simulating exceedance probability which assumes that an earthquake occurrence probability 

remains constant by elapsing time since the last event.  

In the view point of structural design, the probability of a ground motion level within a given 

design life of a structure is considered. As a result, the seismic hazard could be also expressed 

in terms of return period (TR), specifically in design codes and provisions (e.g. Eurocode 8) 

(Shahbazi et al. 2018). 

Models which are used in PSHA are generally divided into two main categories: time-

independent and time-dependent models. It should be taken into account that both time-

dependent and time-independent models are based on the “characteristic earthquake model” 

(magnitude-frequency characteristic of earthquake occurrence) which assumes that the seismic 

activity on a given segment should be dominated by earthquakes of similar characteristics that 

recur at somewhat regular intervals. Both of them also require moment-balanced models which 

are consistent with the global plate rate models and slip rate determined on individual faults 

(Peterson et al. 2007). 

One of the most well-known time-independent models which is mostly used by earthquake 

engineers is Poisson models (Eq. 1.1). 

( ) /1
Rt T

T

R

f t e
T

−=   (1.1) 

where RT  is the return period. In Poisson models the time elapsed since the last earthquake is 

not considered. It should be taken into account that they can be used for small earthquakes 

because they do not model large earthquakes on specific faults properly (Jalalalhosseini et al. 
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2017). Poisson models are appropriate for sites with a single source where the time since the 

last earthquake is more than the meantime interval and the source has strong characteristic time 

behaviour (Mousavi and Salehi 2018). 

On the other hand, non-Poisson models which are also known as renewal time-dependent 

models, are appropriate for large earthquakes (Jalalalhosseini et al. 2017). Results of time-

dependent models are broadly consistent with the elastic rebound theory of earthquakes. 

Parameters including static elastic fault interaction, visco-elastic stress transfer and dynamic 

stress changes from earthquakes on close faults may affect the results of time-dependent 

earthquake probability. But the most important factor is the time elapsed since the last event 

(because of stress increment on fault) (Petersen et al. 2007). 

The distributions which are commonly used in renewal models are normal, lognormal, gamma 

and Weibull distributions. It is noteworthy that  

• Lognormal distribution is appropriate for model inter-event time distribution for large 

earthquakes. 

• Normal distribution is not appropriate sometimes since it should be truncated at t=0 due 

to impossibility of negative inter-event time (Hebden and Stein 2009). 

• Gamma distribution is recommended as a probability model for waiting time (Bak et 

al. 2002).  

• Lognormal or Gamma distribution are recommended for a probabilistic treatment of 

crustal rapture time (Estera 1970).   

• The Weibull distribution function is commonly considered for the PDF of inter-event 

time (Hagiwara 1974).  

One of the models which has attracted researchers’ attention to properly describe the 

probability distribution of inter-event time is Brownian Passage Time (BPT) (Matthew et al. 

2002). 

In the BPT model, which has been proposed to describe the probability distribution of inter-

event time (Matthew et al 2002), earthquake occurrence is assumed to have periodicity 

(Jalalalhosseini et al. 2017). 

In fact, in the BPT model, which is based on Brownian relaxation oscillator, the load state 

increases steadily by elapsing time, reaches a failure threshold and relaxes instantaneously back 
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to the ground level. BPT is defined by two parameters: μ and α, which are mean time (or time 

between earthquakes) and aperiodicity of meantime, respectively. α is the coefficient of 

variation: α=1 refers to irregular Poissonian behaviour and α=0 refers to periodic behaviour 

(Matthew et al. 2002).  

The probability density function for BPT model is given in Eq. (1.2): 

( )
( )

2

22

2 32
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t T

T tR
T

T
f t e

t





−

=          (1.2) 

where RT  is the return period and  is the aperiodicity of the interarrival time. As it was 

mentioned before, by decreasing α, the hazard function increases whilst it becomes Poisson-

like when α increases (=1) (Jalalalhoseeini et al. 2017). Hazard function provides the 

instantaneous probability of occurrence at the time t, given that no event had occurred 

previously, and describes the hazard variation in time (Eq. 1.3). 
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where ( )TF t  is cumulative distribution function (CDF). According to Nishenko and Buland 

(1987) lognormal distribution for ( )TF t  leads to more reliable results. The BPT is 

approximately indistinguishable from the lognormal distribution for up to three recurrence 

times and has several advantages in comparison to lognormal distribution. Firstly, BPT is based 

on a physical process which is the reflection of the stress evolution at one point. Secondly, by 

elapsing time since the last event, lognormal hazard rate tends toward zero probability (which 

is not reasonable) whilst BPT tends toward (2μα2)-1. Finally, stress changes in the faults and 

their influence on earthquake triggering are easily incorporated in BPT. However, the problem 

with using BPT is that changing stress is probably not uniform on all the fault length (Smith 

2006). It should be taken into consideration that one of the fundamental problems of the BPT 

under the effect of stress changes of real fault is that, changes in stress are not distributed 

uniformly across the fault due to their significant spatial extent (Boyd et al. 2008, Smith 2006, 

Zafarani and Ghafoori 2013). 

1.3 Motivations, novelty and significance 

Motivation and significance of this research could be denoted in two parts: 
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• In the first part of the study, concerning the influence of time-dependent seismic hazard 

on structural design, the focus is on evaluating structures’ failure probability 

considering time-dependent seismic hazard. As mentioned previously, the final output 

of PSHA could be expressed as the probabilities of exceeding a given ground motion 

intensity within a specified time interval for a given rate of exceedance. This parameter 

has been used in design codes (e.g., Eurocode 8) by implementing time-independent 

seismic hazard defined by Poisson model (POI).  

In the current research, whereas, time-dependent seismic hazard is applied for the first 

time for determining structures’ failure probability. It is also worth mentioning that 

previous studies carried out on time-dependent seismic hazard mainly aimed at 

evaluating and comparing various time-dependent hazard models (e.g., BPT, Weibull, 

Gama, etc.) and their influence on the outcomes’ accuracy. This study, however, 

emphasizes the application of time-dependent seismic hazard analysis in the viewpoint 

of structural engineering. Otherwise noted, time-dependent seismic hazard is used to 

figure out the possible effects on structural design. Briefly noted, the significance of the 

first part is (i) implementing time-dependent seismic hazard for the purpose of structural 

engineering for the first time and consequently, (ii) providing the effect of time-

dependent seismic hazard on the design process to be considered in the next revisions 

of design codes.  

• As far as the second part is taken into account, the research motivation could be 

expressed as the need for proposing models for easier obtaining fragility curves which 

is a key step in performance-based earthquake engineering (PBEE). It should be 

explained that the main objective of PBEE is to design structures that are capable of 

demonstrating anticipated desirable performance objectives, in contrast to the 

conventional approach of designing structures to strictly satisfy the codes’ provisions. 

PBEE is based on accurate prediction of seismic capacities and demands. It utilizes the 

pre-defined performance objectives which combines the damage or performance limit 

states with the seismic hazard level. By the application of PBEE, making decisions 

concerning the choice of structural systems and detailing levels based on life-cycle 

performance and cost analysis would be possible (AlHamaydeh et al, 2019). It is worth 

recalling that the conventional methods used for obtaining fragility curves 

fundamentally includes steps namely (i) collecting appropriate seismic records, (ii) 
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scaling the collected records, (iii) developing numerical model of a structure which 

could simulate its nonlinear behavior, (iv) analyzing the numerical model for a series 

of scaled records until reaching the building failure, and (v) reaping step iv for each 

record. The above-mentioned steps are recognized as Incremental Dynamic Analysis 

(IDA). The most significant drawback of IDA is being time-consuming, specifically in 

the case of analyzing tall and complicated buildings. A few studies, therefore, have 

been carried out to date in order to develop and present alternative methods using 

machine learning-based approaches. IDA analysis, however, still needs to be conducted 

in the recent ML-based models.  

As a result, considerably faster and more accurate models are developed and introduced 

here. IDA is eliminated and the fragility curves could be obtained by defining 

structures’ properties (i. e., plan area, height, period, construction material, lateral 

resisting system, soil classification of the building location, damage state and design 

code).  

1.4 Aims and objectives 

Earthquakes are one of the natural hazards which pose the greatest threat to life and could lead 

to remarkable financial losses. The main objective of this research is therefore evaluating 

performance of the structures subjected to time-dependent seismic load in order to enhance 

their response to dynamic loads. In other words, this study aims at designing buildings more 

accurately by considering realistic scenarios which generally involve time-dependent seismic 

hazard. Besides, the application of machine learning-based techniques for analysing structures’ 

behaviour is assessed for the sake of easiness and accuracy. More specifically, the main 

research objectives are as below: 

→ State-the-art-review on time-dependent seismic hazard and structural response  

Previous studies conducted on time-dependent hazard analysis were carefully evaluated in 

terms of models introduced so far, their adjustable variables and their results. More clearly, 

the review aimed at finding out the most accurate time-dependent model implemented for 

simulating seismic occurrence. The appropriate variables which led to the most reliable 

results are determined and used for this study. The most recent studies on time-dependent 
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structural response were also reviewed in order to fill the research gap and provide practical 

conclusions to be considered in the design codes and analysis process.  

→ Influence of time-dependent seismic hazard on structural design 

Considering earthquake occurrence as a periodical model, known as time-dependent 

seismic hazard, has been extensively assessed by researchers. The influence of time-

dependent seismic hazard on structures’ behavior has not been yet analyzed sufficiently. 

The main concern of the present research, as a result, is to clearly realize how time-

dependent seismic hazard affect structural behavior by elapsing time. More clearly, the 

response of structures subjected to time-dependent and time-independent seismic hazard 

was compared together. The effect of site-to-source distance, structural dispersion and 

aperiodicity parameter of time-dependent hazard model was also investigated analytically.  

→ Influence of soil classification, period and GMPE on time-dependent seismic hazard 

and structural response 

In order to deeper assess the influence of time-dependent hazard on structures’ behaviour, 

other potential effective parameters were considered in our analytical study. Otherwise 

mentioned, the aim of this phase was to assess if site location (soil classification), period 

and the GMPE used in the analysis could have a significant effect on the final outcomes.  

→ Reviewing both analytical and machine learning-based models for deriving fragility 

curves and developing ML-based models for obtaining fragility parameters and 

fragility curves consequently 

This section was mainly aimed at developing a model for obtaining fragility curves easier. 

To this end, the models introduced based on either analytical analysis or ML-based 

techniques are reviewed and their shortcomings are determined. Accordingly, ML-based 

models are developed for yielding fragility parameters of buildings accurately and in a quite 

short time. It is worth explaining that the time-consuming analytical analysis required for 

Incremental Dynamic Analysis (IDA) could result in inaccurate results sometimes. In the 

prediction models provided in this section the IDA is eliminated and therefore they pose 

the benefits namely (i) easier implementation, (ii) quicker performance and (iii) more 

accurate results in comparison to conventional approaches. These models return fragility 
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parameters of reinforced concrete (RC), steel and masonry buildings by considering 

buildings properties and site characteristics. 

1.5 Thesis organization  

The present thesis is organized in two main parts: part I (sections 2, 3, & 4) which focuses on 

time-dependent hazard analysis and its influence on structural design, Part II (section 5) which 

aims at developing ML-based methods for deriving fragility curves of buildings. It should be 

explained that each section is organized independently of other sections and readers do not 

need to refer to previous sections.  Organization of each section is summarized below: 

→ Chapter 2: State-of-the-art review on time-dependent seismic hazard and Time-

dependent structural response: 

In the second section of the thesis, the most significant and recent studies carried out 

on time-dependent seismic hazard are collected from highly ranked international 

publications. Their aim, methodology and remarkable conclusions are presented and 

discussed. The review focused on the time-dependent hazard models implemented so 

far and the influence of their parameters on the analysis outcomes. More importantly, 

time-dependent structural response assessed in previous researches are provided and 

their conclusions are discussed as well.  

→ Chapter 3: Influence of time-dependent seismic hazard on structural design 

In the third part of the research, the implemented methodology which was 

fundamentally based on the application of PSHA and fragility curves in different time 

intervals is extensively explained. Next, two seismic sources are defined: (i) a point 

source (both time-dependent and time-independent) and (ii) a more realistic source 

combined of an area source (time-independent) and a line source (time-dependent). The 

results of a time-dependent seismic source were compared and analyzed to those of a 

time-independent source. Furthermore, the effect of site-to-source distance (source 

characteristics), structural response dispersion (structure property) and aperiodicity of 

time-dependent hazard model (BPT) on both seismic hazard and structure behavior 

(seismic capacity) was assessed. It is worth explaining that “seismic capacity” is 

defined here as the capacity required to provide a fixed reliability level, measured by 

the failure rate. Then, the structure response variation in different times elapsed since 

the last event (earthquake) is discussed. The conclusions of the first part, highlighted a 

remarkable effect of time-dependent seismic hazard on structural design. 
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→ Chapter 4: Influence of soil classification, period and GMPE on time-dependent 

seismic hazard and structural response 

The influence of time-dependent seismic hazard on structural design is deeper 

investigated in the fourth section of the current thesis by considering different GMPEs, 

soil classifications and periods. GMPEs proposed by (Ambraseys et al. 1996) and 

(Sabetta and Pouliese 1996) ware applied in the analysis and the results compared 

together. The effect of soil and period on the results was also assessed by changing the 

Ambrasyes GMPE which are dependent on both soil type and period. Seismic hazard 

and structural capacity obtained for each set of the above-mentioned variables was 

analyzed in different time elapsed since the last earthquake and the outcomes are 

discussed.  

→ Chapter 5: Fragility curves of buildings; a critical review and a ML-based evaluation 

The fifth section aimed at proposing machine learning-based models for obtaining 

fragility curves of structures. To this end, firstly the most recent analytical and ML-

base models developed are reviewed in order to find out their shortcomings and 

research gap. Then, a database was collected from high-ranked international 

publications for training and testing the proposed models. Building properties (plan 

area, height, period, resisting system) soil classification, design code and damage state 

were the input for estimating the target outputs (dispersion and median). Various ML-

based techniques namely nonlinear regression, decision Tree, Random Forest, K-

Nearest Neighbors and Artificial Neural Network were used for developing prediction 

models. The accuracy of the models is assessed by performance metrics and Taylor 

diagram. The results proved the high reliability of developed ML-based models for 

obtaining fragility curves using the defined input variables. More importantly, a 

sensitivity analysis conducted in order to realize the influence of input parameters on 

fragility behavior of buildings.   

→ Chapter 6: Summary and conclusions  

A summary of the main aims and methodologies of the research is provided in the last 

section. The remarkable outcomes are presented as well and the route to further studies 

is suggested regarding the outcomes of this thesis.  
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The research outcomes have been published in journal papers and presented in conferences as 

listed below:  

• Dall’Asta, A., Dabiri, H., Tondi, E., & Morci, M. (2021). Influence of time-dependent seismic hazard 

on structural design. Bulletin of Earthquake Engineering, 19(6), 2505–2529. doi:10.1007/s10518-021-

01075-3 

• Dabiri, H., Faramarzi, A., Dall’Asta, A., Tondi, E., Morici, M., (2022), Predicting Fragility Curves of 

RC structures Using ML-based techniques, Journal of Building Engineering, under review 

• Dabiri, H., Dall’Asta, A., Tondi, E., Morici, M., (2019), Evolution of structural capacity in the case of 

time-dependent point source, GNGNTS 2019, 12-14 November, Rome, Italy. 

• Dabiri, H., Dall’Asta, A., Tondi, E., Morici, M., (2019), Preliminary study on the impact of time-

dependent seismic hazard on design capacity, XVIII ANIDIS congress, 15-19 September, Ascoli Piceno, 

Italy. 

  

https://link.springer.com/article/10.1007/s10518-021-01075-3
https://link.springer.com/article/10.1007/s10518-021-01075-3
https://www.researchgate.net/publication/337565885_Evaluation_of_structural_capacity_in_the_case_of_time-dependent_point-sources
https://www.researchgate.net/publication/337565885_Evaluation_of_structural_capacity_in_the_case_of_time-dependent_point-sources
https://www.researchgate.net/publication/335870556_Preliminary_study_on_the_impact_of_time-dependent_seismic_hazard_on_design_capacity?_sg=2Np8Vq8EchnbBitfGk3v7C8J8bFB_D-geilSsNfMMgLDFYAnPB2lf3TOrhfUKs2j-OpOTyqTxBQpBEzdgXoFl2O1jxNrTjY68Xs2ux4e.7U7tKxCduqMHQmHJ5IcBBVeDrMZifOfUcOQon7xeeW8PW99yjcr92FQk_XGHUQ2lJ16-1xRp5Dpuxl0MHUWu9w
https://www.researchgate.net/publication/335870556_Preliminary_study_on_the_impact_of_time-dependent_seismic_hazard_on_design_capacity?_sg=2Np8Vq8EchnbBitfGk3v7C8J8bFB_D-geilSsNfMMgLDFYAnPB2lf3TOrhfUKs2j-OpOTyqTxBQpBEzdgXoFl2O1jxNrTjY68Xs2ux4e.7U7tKxCduqMHQmHJ5IcBBVeDrMZifOfUcOQon7xeeW8PW99yjcr92FQk_XGHUQ2lJ16-1xRp5Dpuxl0MHUWu9w
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2 Literature review 

 

 

 

Various studies have been conducted on using time-independent and time-dependent hazard 

analysis. Some of them are presented in this section. 

2.1 Jalalalhosseini et al. (2017) 

Jalalalhoseini et al. (Jalalalhosseini, Zafarani et al. 2018) analysed time-dependent seismic 

hazard for Tehran city (located in Iran) and surrounding area. They utilized the Brownian 

Passage Time model (Matthews, Ellsworth et al. 2002) to predict the seismic performance of 

active faults in Tehran. They presented the total hazard curves by combining the results of the 

BPT model (with different values of aperiodicity parameter) with the hazard from small to 

moderate background seismicity. The results of their study were presented by seismic hazard 

maps which demonstrated the probabilities of exceeding different ground motion levels at any 

site due to the earthquake in seismic sources in a special period.  

In their study, to evaluate the influence of aperiodicity parameter on the hazard, three values 

of α (0.25, 0.5 and 0.75) were considered and investigated. Based on their research, α=0.5 leads 

to more reliable results rather than other values.  

One of the most significant conclusions they reached in their study was that there is a notable 

difference (10%-20%) between time-dependent maps and time-independent maps near a fault 

source. Otherwise stated, time-independent maps are similar to time-dependent maps in the 

areas which are far from sources. The other notable point of their study was that the areas with 

relatively short period since the last earthquake, the hazard of time dependent map is less than 

the hazard of time-independent map.  
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2.2  Mousavi and Salehi (2018) 

In Mousavi and Salehi study (Mousavi and Salehi 2018), the recurrence intervals for Dasht-e-

Bayaz region, eastern Iran was evaluated by applying Weibull, Gamma, lognormal and 

Brownian Passage Time. According to their research, the Weibull model has the benefit of 

overcoming the limitation of both exponential and normal distribution. On top of this, based 

on their research, the outcomes obtained by Weibull distribution demonstrated a better 

consistency.  

Primary required variables to estimate model parameters were TR (mean recurrence interval) 

and SR (standard deviation of recurrence interval) which were considered 9 and 8 years, 

respectively. The parameters assumed for the four models and the standard deviation were as 

Table. 2.1 and 2.2: 

Table 2-1. Parameter estimation from the Maximum Likelihood Estimation method. 

Probability model Parameter MLE value 

Lognormal model 
m 1.75 

σ 1.1 

Weibull model 
α 0.077 

β 1.12 

Gamma model 
r 1.17 

c 0.12 

BPT 
μ 9.33 

α 0.72 

 

Table 2-2. Standard deviation of models based on Utsu (1984) and Matthews et al. (2002) studies. 

model Variance (V[Ti]) Standard deviation 

Weibull 

2

22 1
{ ( 1) ( 1)}

 

−

 + − +  8.47 

Gamma 2 4/r c  81.25 

Lognormal 
2 22 ( 1)me e + −  16.16 

BPT 
2( )  45.13 

 

To find the most proper model for the site, two methods were used to choose the best 

distribution: Bayesian information criterion (BIC) as given in Eq. 2 and maximum likelihood 

criterion which uses the maximum logarithmic of likelihood value to find the best model.  
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( ) ( )2BIC KLn N Ln L= −   (2.1) 

where N is the number of observed data and K is the number of parameters which describes 

the model. The model with lower absolute values of Ln L and BIC can be selected as the best 

model. Hazard function for Dasht-e-Bayaz was calculated and drawn in Fig. 2.1. 

 

Figure 2-1. Time-dependent and time-independent hazard functions for the Dasht-e-Bayaz region in east of Iran 

Mousavi and Salehi (2018). 

Considering Fig. 2, it can be said that hazard function values of the lognormal model increase 

near the mean recurrence time (1.75), while it decreases sharply by elapsing time since the last 

event. This reduction in the occurrence rate in lognormal distribution can be considered as one 

of its defects. The occurrence rate in Weibull and Gamma models increases constantly by 

elapsing time since the last event.  

2.3  Zafarani and Ghafoori (2013) 

In this study (Zafarani and Ghafoori 2013), the earthquake recurrence intervals for the Iranian 

Plateau were evaluated by considering three models: Gamma, lognormal and the BPT.  

The approach in which the parameters of the models are estimated by likelihood function for 

lognormal and Gamma distribution can be found in (Utsu 1984). 

The likelihood function of the BPT model is as Eq. 2.2: 

2
1/2

1 2 3 2 3 2
1

( )
( , , ,..., | , ) ( ) exp( )

2 2

n
i

T n

i i i

t
L f t t t t

t t


 

  =

− −
= =   (2.2) 

where n is the number of earthquakes.  

The maximum likelihood estimates of model parameters μ and α can be obtained by calculating 

following Eq. 2.3-2.6: 
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/ 0LnL   =  (2.5) 

/ 0LnL   =  (2.6) 

    

Fig. 2.2 demonstrates the cumulative distribution of the observed inter-event time calculated 

for 15 sources and the curves of cumulative function obtained using three models.  

Based on the study conducted by Zafarani and Ghafoori, considering the logarithmic of 

likelihood function (Ln L), the lognormal model leads to more reliable results for regions with 

intermittent occurrence characteristics in Iran. On the other hand, Gamma distribution was the 

worst in comparison to the other models.   
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Figure 2-2. Cumulative distribution of the observed time intervals and the curves of FT (t) = P(T < t) using 

three models for 15 regions (Zafarani and Ghafoori 2013). 
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2.4 Akinci et al. (2009) 

In this research (Akinci, Galadini et al. 2009), time dependent models were characterized using 

BPT model to assess probability seismic hazard for central Apennines, Italy. The influence of 

aperiodicity parameter, α, on probabilistic ground motion and its deaggregation was also 

evaluated in their study. Maps for PGA and SA1 on rock for 10% probability of exceedance in 

a time period of 50 year were shown to compare the separate contribution of smoothed 

seismicity and fault components.  

Akinci et al. investigated the differences in the results of earthquake-included ground-motion 

hazard using Poissonian and non-Poissonian models. It should be noted that (Pace, Peruzza et 

al. 2006) also developed PSHA for the same location with several differences in their data and 

assumption. Akinci et al. used historical catalogues working in (Cruppo di Lavoro 2004) while 

Pace et al. use CSIT catalogues (Augliera, Cattaneo et al. 2001). The other difference was that 

in Akinci et al. study, the faults with magnitude greater than 5.9 were considered whilst the 

ounces greater than 5.5 were considered by Pace et al. In spite of Pace et al. study, Akinci et 

al. estimated aperiodicity for three faults as a guide for finding the range of α and investigating 

its influence on PSHA. Fig. 2.3 illustrates the basic procedure for preparing hazard maps 

schematically.  

 

Figure 2-3. Scheme used to make hazard calculations for the central Apennines (Akinci et al. 2009). 

In their study, it was assumed that earthquake hazard is due to the background earthquake 

(seismicity of unknown faults, 4.6≤M<5.9) and geological data (M>5.9). Details of these two 

mentioned models can be found in (Akinci, Galadini et al. 2009). 

Some studies have been conducted to find the value of α. (Ellsworth, Matthews et al. 1999) 

concluded that “1) the limited worldwide earthquake recurrence data have the α values of 

0.46±0.32. 2) The 35-recurrence interval sequence examined are compatible with a shape factor 
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of 0.5 and 3) 35 earthquakes had no systematic difference when grouped by tectonic style.” 

Fig. 2.4 shows the effect of α values on the time-dependent results. 

 

Figure 2-4. Graph showing 50 yr probability of the Aremogna–Cinquemiglia fault/earthquake occurrence as a 

function of elapsed time ratio. Curves are for Poisson model and BPT model with indicated α values (Ellsworth, 

Matthews et al. 1999). 

 

According to the study results, it could be said that generally “the smaller the α, the nearer the 

rise in hazard above the Poisson level that the average recurrence time occurs”. Moreover, for 

the lowest values of α, elapsed time affects the time-dependent probabilities significantly. 

Based on the obtained results, the probabilities increase by elapsing time except for faults with 

recently occurred earthquakes. Fig. 2.5 illustrates the map of probabilistic PGA with 10% 

probability of exceedance in 50 years using BPT and Poisson models. 
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Considering Fig. 2.5, following conclusions were drawn: 

• Hazard increases continuously: one fault having elapsed time greater than the average 

recurrence interval dominates at the site. 

• Hazard decreases and then levels off: the domination of a fault having elapsed time 

shorter than average recurrence interval decreases to the point where the background 

seismicity dominates. 

• Hazard maintains a steady level: background seismicity always dominates. 

• Hazard stays level and then increases: background seismicity loses domination to a fault 

with elapsed time longer than the average recurrence interval. 

Figure 2-5. Maps of probabilistic PGA having 10% probability of exceedance in 50 years, derived from both 

gridded seismicity and faults BPT renewal model using the (a) α=0.3, (b) 0.5, (c) 0.7, and for (d) Poisson model 

(Ellsworth, Matthews et al. 1999, Zafarani and Ghafoori 2013, AlHamaydeh, Aly et al. 2019). 
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• Hazard stays level and then decreases: a fault having elapsed time shorter than average 

recurrence interval. 

• Hazard decreases and then increases: initially a fault having recurrence time shorter 

than the average recurrence interval dominates but then loses domination to another 

fault having elapsed time longer than average recurrence interval. 

• Hazard increases and then decreases: a dominating fault has elapsed time near 0.6 times 

the average recurrence time, a value where the probability of occurrence increases and 

then decreases as α goes from 0.7 to 0.5 to 0.3.   

2.5  Panthi et al. (2011) 

In Panthi et al. research (Panthi, Shanker et al. 2011), a model was proposed for earthquake 

occurrence in the region of northeast India. Based on their results, the time interval between 

two main shocks depends on the preceding main shock magnitude while it is independent of 

the following main shock. They suggested a linear relationship between the logarithmic of 

repeat time (T) of two events and the magnitude of the preceding main shock (Eq. 2.7). 

 pLog T cM a= +   (2.7) 

Where c is the positive slope of line, a is the function of magnitude of the considered earthquake 

and Mp is preceding main shock magnitude. c and a are assumed to be 0.21 and 0.35 in the 

region of the study (northeast India and its surrounding regions). They believed that their study 

outcomes can be considered for long term seismic hazard in the delineated seismogenic region.  

It should be mentioned that their study was based on Raid’s theory of the elastic rebound theory 

which assumes that an earthquake occurs when stress reaches a critical value in a fault of 

seismogenic source. Fig. 2.6 illustrates two values of stresses: τ1 and τ2, which affect the 

performance of a fault. The constant value of τ1 means that the model is time predictable (stress 

drop changes to different shocks). On the other hand, when the value of τ2 is constant, the 

model assumed to be slip predictable (earthquakes start a variable states of stress).  
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Figure 2-6. Earthquake Recurrence Model: (a) time-predictable model showing stress build-up to a certain 

value (τ1) and non-uniform stress drop; and (b) slip predictable-model illustrating non-uniform stress build-up 

and stress drop to a certain minimum value (τ2) (after Shimazaki and Nakata, 1980). 

2.6 Papaioannov and Papazachos (2000) 

In this study (Papaioannou and Papazachos 2000), time-dependent and time-independent 

hazard for 144 broad sites of Greece were evaluated. Probability of occurrence of strong ground 

motion with macro seismic intensity I≥VII (in MM scale) in the period of 1996-2010 was 

presented using time-dependent hazard analysis. 

They considered the results of previous studies (Byerlee and Brace 1968, Brune 1973) which 

is based on elastic rebound theory. According to this theory, when two sides of a fault move in 

opposite direction, they lock. After reaching a sufficient level of shear stress, slip occurs by 

releasing energy and then the fault locks again. The sequence of stress accumulation and release 

suggests that the time and magnitude of occurrence of an earthquake may not be stochastically 

independent.  

The equation suggested by (Papazachos and Papazachou 2003) was considered in their study 

(Eq. 2.8) to assess seismic hazard: 

0 0.19 0.33 0.39  7.81t min pLog T M M log m= + − +   (2.8) 

Where Tt is the intervent time of the main shock of every source. Mmin is the magnitude of the 

smallest main shock considered (Mmin≥5.5), Mp is the magnitude of the proceeding main shock 

and m0 is the moment rate. Time-dependent seismic hazard was assessed by a computer 

program and the probability of occurrence of a seismic motion with intensity I≥VII for each 

site was calculated and plotted accordingly at the corresponding sites in the map of Fig. 2.7. 
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Figure 2-7. Probabilities for the occurrence of strong-ground motion (I ≥ VII) at each one of the 144 examined 

sites in the area of Greece during the period 1996–2010 (Papaioannou and Papazachos 2000). 

 

Based on the comparison made between assessed time dependent hazard with observed macro-

seismic intensities of the period of 1950-1995, time-dependent models lead to reliable results.  

2.7  Chat et al. (2013) 

Long term and short term probabilistic seismic hazard by considering ground motion prediction 

equations for crustal and subduction earthquakes were assessed by (Chan, Wu et al. 2013). An 

appropriate approach for time-dependent probabilistic seismic hazard determination was 

presented using an updated earthquake catalogue. In their study, (Kagan and Knopoff 1978) 

model which is known as ETAS was considered. Based on the time-space Epidemic Type 
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Aftershock (ETAS), each earthquake is regarded as a main shock that may trigger a consequent 

earthquake. In this study an approach for the short-term PSHA was also proposed.  

2.8  Matthews et al. (2002) 

In this study (Matthews, Ellsworth et al. 2002), a model was proposed for rapture time on a 

recurrence earthquake source. The events interval was assumed to have a BPT distribution 

because of its noteworthy distribution:  

• The probability of immediate rapture is zero.  

• Between t=0 and mean recurrence time, hazard rate increases from zero to a finite 

maximum and then decreases to a quasi-stationary level, in which the conditional 

probability of event becomes time-independent.  

• When coefficient of variation is less than, equal or greater than 1/ 2 0.707 , the 

quasi-stationary failure will be greater than, equal or less than mean failure rate. 

Based on the elastic-rebound model, which was proposed first by (Lawson and Reid 1910), 

great tectonic earthquakes may reoccur at regular time intervals. (Hagiwara 1974) concluded 

that Gaussian distribution cannot be an appropriate choice for stochastic recurrence model 

since it assigns positive probability to negative intervals. He investigated using Gamma, 

lognormal and Weibull distributions and finally applied Weibull on grounds of “practical 

convenience”. And its popularity in “probabilistic quality control”. (Nishenko and Buland 

1987) concluded that lognormal provided the best fit to the distribution of normalized intervals. 

They also concluded that coefficient of variation in lognormal is almost constant across 

sequence from different regions with different characteristic time scales.  

(Matthews, Ellsworth et al. 2002) used the BPT model and compared it with other ones. 

Moreover, they assessed applying this model to the fault which their last rupture is unknown. 

Some models which are considered for probability distributions are shown in Fig. 2.8. Fig 2.9 

also illustrates the BPT distribution and hazard rate for different values of α.  
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Figure 2-8. Probability density (a) and cumulative distribution (b) functions of exponential (Poisson), BPT, 

log–normal, gamma, and Weibull models. All distributions have mean 1 and standard deviation 0.5 (except the 

exponential distribution) (Matthews, Ellsworth et al. 2002). 

 

 

Figure 2-9. Probability functions for BPT (1, α), α= 1/4, 1/2, 1, 2: probability densities (a) and hazard rates (b) 

(Matthews, Ellsworth et al. 2002). 

 

As it could be seen in Fig. 2.9, small values of α lead to nearly symmetrical densities with 

pronounced control density near the mean value, while larger values of α result in highly 

skewed to the right densities which sharply peak at a value left of the mean. As shown in hazard 

rate diagram, the Brownian failure process reaches a quasi-stationary state in which residual 

time to failure becomes independent of elapsed time. Common models which are considered 

for earthquake rupture periodicity were compared by(Matthews, Ellsworth et al. 2002).  

2.9  S. Hebden and Stein (2009) 

Damage due to future earthquakes can be estimated by ground shaking hazard maps. Hazard 

and risk maps are prepared by incorporating earth science and engineering to estimate the 
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probability of occurrence rate of earthquake, ground shaking level and building response to a 

ground motion (Petersen, Cao et al. 2007). Using these maps, larger predicted motion will lead 

to higher predicted seismic hazard. Seismic hazard maps are also used to revise the codes which 

are utilized to design structures.  

It should be kept in mind that in the locations where the recurrence rate of large damaging 

earthquake is low hazard estimation is rather complicated because of poor knowledge of 

required date. 

Based on the previous studies, high hazard in central and eastern United States (CEUS) is due 

to four main assumptions: the first one is the earthquake magnitude which is assumed for the 

future event (known as characteristic earthquake). Second one is the relation between ground 

acceleration at a given distance for an earthquake at a given size (GMPE). The third factor is 

the time window or probability level chosen to define the hazard. 2% probability of exceedance 

in 50 year or once in 2500 years was considered by (Frankel, Mueller et al. 1996, Frankel, 

Petersen et al. 2002) to illustrate the hazard as the maximum acceleration predicted at a 

geographic point. This consideration leads to the much higher hazard in comparison to the 

former assumption (1% in 50 years or one in 500 years by (Algermissen, Perkins et al. 1982)) 

and is because of lack of knowledge of large earthquakes. The fourth factor is the recurrence 

interval of large earthquakes.  

Fig. 2.10 compares time-dependent and time-independent models for earthquake recurrence.  

According to this study, when the time elapsed since the last earthquake is less than 

approximately 2/3 of the assumed mean recurrence interval, time-dependent models predict 

lower probabilities.  

The effect of the model chosen depends on the ratio of elapsed time since the last earthquake 

to the assumed mean recurrence time and the assumed probability distribution and variability 

of the recurrence time.  
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(a) (b) 

 

(c) 

Figure 2-10. Comparison of time-dependent and time-independent models for earthquake recurrence. (a): 

Representative probability density functions for the distribution of recurrence times of characteristic 

earthquakes in the New Madrid zone. Recurrence times are described by Gaussian distributions with a mean 

of 500 years and a standard deviation of either 100 or 200 years, or a lognormal distribution with a similar 

mean and coefficient of variation. Time zero corresponds to the date of the past major earthquake in 1811. 

(b): Comparison of the conditional probability of a large earthquake in the New Madrid zone in the next 50 

years, assuming that the mean recurrence time is 500 years. In the time-independent model the probability is 

always 10%. In the time-dependent models ((a)) the probability is small shortly after the past one and then 

increases with time. Because the time since 1811 is less than 2/3 of the assumed mean recurrence interval, 

these models predict lower probabilities of a large earthquake in the next 50 years at present and for the next 

hundred years. (c): Schematic comparison of time-independent and time-independent models for different 

seismic zones. Charleston and New Madrid are “early” in their cycles, so time-dependent models predict 

lower hazards. The two model types predict essentially the same hazard for a recurrence of the 1906 San 

Francisco earthquake, and time-dependent models predict higher hazard for the nominally “overdue” 

recurrence of the 1857 Fort Tejon earthquake. The time-dependent curve is schematic because its shape 

depends on the probability distribution and its parameters (Hebden and Stein 2009). 

 

In this study, hazard maps prepared using both time-dependent and time-independent models 

were compared. Parameters including assumed maximum magnitude of the largest earthquake, 

GMPE model, and probability level were considered the same to compare only the effect of 

different models. Based on the results, the time-dependent model predicted considerably lower 

hazard for the 50-year period. Fig. 2.11 shows the effect of using time-dependent and time-

independent models. Fig. 2.12 also compares the results of using two models. 
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Figure 2-11. Comparison of predicted hazard values for Memphis and St. Louis for a range of return periods 

or, equivalently, probabilities of exceedance, for time-independent and time-dependent models. These are shown 

for peak ground acceleration in the left column and for acceleration with a period of 1 s in the right column 

(Hebden and Stein 2009). 

 

Figure 2-12. Comparison of predicted hazard values for Charleston and Columbia for a range of return periods 

or, equivalently, probabilities of exceedance, for time-independent and time-dependent models. These are shown 

for peak ground acceleration in the left column and for acceleration with a period of 1 s in the right column 

(Hebden and Stein 2009). 

 

As it can be seen in Fig. 2.12, time-dependent model predicts lower hazard at present and in 

the future time period shown.   
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2.10 Boyd et al. (2008) 

(Boyd, Zeng et al. 2008) presented a time-dependent seismic hazard analysis for Alaska and 

the Aleutians. It is noteworthy that time-independent maps consider all sources statistically 

independent. On the other hand, in time-dependent analysis, BPT model is used to calculate 

conditional probability of occurrence for the next 50 years.  

Based on their study, two notable events can change time-dependent probabilistic seismic 

hazard estimation: occurring earthquake on characteristic fault segments and stress changes on 

the fault due to regional earthquake. It should be taken into account that significance of stress 

transfer depends on the location, orientation and sense of slip-on target faults. Previous studies 

showed that changing co-seismic stress may have a lasting influence on probability. Others 

also suggest that transferring visco-elastic stress transfer can play a significant role over the 

long term. Based on BPT, changing co-seismic stress cannot affect the earthquake probability 

for a long term and continuing post-seismic relaxation should be considered in earthquake 

triggered models. 

Based on this research, smaller and more frequent earthquakes in the Gutenberg-Richer 

component of a seismic hazard model have a more contribution to seismic hazard than an equal 

contribution from a characteristic component. They concluded that when a time-dependent 

model without stress changing is considered, the probability of earthquake occurrence alters 

notably (decreasing to approximately zero or increasing to several times the value of time-

independent ones). Moreover, co-seismic stress changes can have a local influence on 

earthquake probabilities, while post seismic effects can be far-reaching in both time and space, 

finally, combining time-dependent and time-independent sources, the seismic hazard does not 

change considerably.  

2.11 Petersen et al. (2007) 

The hazard map of peak ground acceleration for 10% probability of exceedance in 30 years 

from the 2002 national seismic hazard models obtained considering time-independent and 

time-dependent PSHA are shown in Fig. 2.13 and Fig. 2.14, respectively. Fig. 2.15 is also 

provided to show the difference between Fig 2.13 and Fig. 2.14 (a ratio map) (Petersen, Cao et 

al. 2007). 
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Figure 2-13. Time-independent (Poisson) map for rock site condition and a 10% probability of exceedance in 

30 years. This map was developed from the 2002 national seismic hazard model but also includes the new 

Poisson model for T-I Model 3 (Petersen, Cao et al. 2007). 

 

Figure 2-14. Time-dependent map for rock site condition and a 10% probability of exceedance in 30 years. This 

map was developed by equally weighting three time-dependent models (T-D model 1, 2, and 3) (Petersen, Cao 

et al. 2007). 
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Figure 2-15. Ratio of the time-dependent map (figure 2-13) and the time-independent map (figure 2-14) for rock 

site conditions and a 10% probability of exceedance in 30 years (Petersen, Cao et al. 2007). 

Time-dependent and time-independent hazard maps (PGA) for California with a 10% 

probability of exceedance for a time period of 30 years was presented by Petersen et al. Based 

on the results of their research, time-dependent maps differ by approximately 10-15% from the 

time-independent map for a site which is located near a fault. For the sites which are located 

well away from the time-dependent sources the maps were almost the same. Moreover, for the 

sites, where a long time elapsed since the last earthquake, time-dependent hazard was 

considerably more than time-independent ones. Finally, for the sites where a short time elapsed 

since the last event, time-dependent hazard was lower than time-independent hazard (sites close 

to faults in the first half of their seismic life).  

2.12 Douglas et al. (2013) 

(Petersen, Cao et al. 2007) tested risk-targeting procedure of (Luco, Ellingwood et al. 2007) 

for mainland France using the hazard model presented by (Martin, Combes et al. 2002) and the 

PGA map to define the demand spectrum of the French seismic design code. They compared 

the current PGA with the outcomes of risk-targeted approach. It should be noted that their study 

focused on loading of new structures not retrofitting or risk analysis of existing buildings.   

Two performance level mentioned in (Eurocode 8 2004) are “no-collapse requirement” and 

“damage-limitation requirement”: “no-collapse” (the structure withstand the seismic design 

action without collapse, retains its integrity and have residual load-bearing capacity after the 



Chapter 2 Page 47 of 152 

Literature review  

 

 

earthquake) should be considered for an event with a 10% probability of exceedance in 50 

years (475-year return period) and “damage limitation” (structure withstand a more frequent 

seismic action without damage or limitation of use) should be met for an event with 50% 

probability of exceedance in 50 years (95-year return period).  

Seismic hazard curves and fragility curves are convolved to calculate seismic risk, as given in 

Eq. 2.9 and Eq. 2.10 (Kennedy 2011): 

0 0
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= −  
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=   
  (2.10) 

 

 

Where 0 ( )aP a  is the fragility curve (conditional probability of failure given the ground motion 

level a for a design-level of 0a  and H(a) is the seismic hazard curve (the exceedance frequency 

corresponding to ground motion level a). It is noteworthy that derivation of hazard curves is 

less accurate than derivation of fragility curves. The main reason is that hazard is obtained in 

PSHA for a small number of ground-motion whilst fragility curves are obtained by analytical 

equations. Lognormal distribution is commonly used for obtaining fragility curves and is 

mainly based on two parameters: mean, μ, and standard deviation, β. (

( ) {[ ( ) ( )] / }P a Ln a Ln  = − ). 

It should be noticed that the whole hazard curve is considered by risk integral (not the design 

ground motion on the PGA). As a result, the slope of hazard curve affects the results 

considerably. It means that the relative ranking in design PGA changes just when hazard curve 

slopes vary.  

It should be taken into account that the fragility curves should be based on the results of 

structure analysis using (Eurocode 8 2004).  

As it was mentioned before, the value of β can affect the results. (Luco, Ellingwood et al. 2007) 

considered β=0.8 while chapter 21 of (ASCE 7-10 2013) standard 7-10 uses β=0.6 for its site-

specific ground motion procedure for seismic design. (Crowley, Colombi et al. 2011) also 

reported the value of β around 0.5. (Douglas, Ulrich et al. 2013) considered 0.5 for this 

parameter. 
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Based on the conclusions drawn by (Douglas, Ulrich et al. 2013), choosing high values for β 

and low probability of collapse leads to unrealistic fragility curves because it predicts low 

collapse probability even for very high shaking levels.  

They concluded that by choosing reasonable values for the free input parameters, the obtained 

maps will be approximately similar with the maps which are currently used. In brief, the risk-

targeted method is strongly depended on the input parameters and it could be used if the input 

parameters adopted reasonably.  

2.13 P. Kennedy (2011)  

ASCE standard 43-05 approach is used to define the risk-consistent for site specific response 

spectrum (SSRS). (Kennedy 2011) studied the assumptions made in the ASCE Standard 43-05 

by amplifying the commentary of (ASCE 2005).   

It should be kept in mind that when Uniform Risk Response Spectrums are considered as the 

SSRSs, plants at different sites should have consistent seismic risks. While, risk-consistency 

goal is not achieved in case of using uniform hazard response spectrum (UHRS); the UHRS 

does not consider that different slopes, which are critical to obtaining risk-consistent seismic 

designs, of the seismic hazard curves is due to different sites. 

Based on ASCE Standard 43-05 (ASCE 2005), the seismic demand and structural capacity are 

aimed at having sufficient conservatism to reasonably achieve both of the following: 

“1. less than about a 1% probability of unacceptable performance for the design basis 

earthquake ground motion and 

2. less than about a 10% probability of unacceptable performance for a ground motion equal to 

150% of the design basis earthquake ground motion.” 

 Seismic fragility, which is defined as the conditional probability of failure versus 

ground motion levels, typically has a lognormal distribution. It is mainly described by two 

parameters, such as a seismic margin factor, FP, corresponding to a conditional probability of 

failure, PFC, and an estimate of the capacity variability (i.e., the logarithmic standard deviation, 

β). 

ASCE Standard 43-05 target levels of conservatism result in the seismic margin factors F1%, 

F5%, F10%, F50%, and F70% for a 1%, 5%, 10%, 50%, and 70% conditional probability of 

unacceptable behaviour, respectively, which are provided in Table 3. When β is less than 0.39, 
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the second of the two conditional probability goals control the fragility, whilst, for β greater 

than 0.39, the first goal controls. By specifying both goals, the following margins are achieved: 

• F1% ≥1.0. 

• F5% ≥1.3. 

• F10% ≥1.5. 

• F50% increases with increasing β. 

According to EPRI (1994) and past performed seismic probabilistic risk assessments (SPRA) 

studies, β value for structures and major passive mechanical components located on the ground 

or at low elevations within structures, is in the range of 0.3 -0.5. While, it is 0.4–0.6 for active 

components mounted at high elevations in structures. Therefore, the range 0.3–0.6 covers the 

practical range for β. 

 These required damage frequency (DF) factors are compared with ASCE Standard 43-

05 DF given by Eq. (6). The required DF were calculated using Eq. 2.11-2.14. The range of 

PA  were chosen 1.5-6.0. The calculated DF were compared with the DF values according to 

ASCE Standard 43-05. 

1

%

[ ] HKf

P

P

R e
DF

F

−

=  

(2.11) 

21
( )

2
P H Hf X K K = −  

(2.12) 

1

log( )
H

R

K
A

=  
(2.13) 

0.1H
R

H

SA
A

SA
=  

(2.14) 

 

Where 2.326PX =  , 0.1HSA  is the spectral acceleration at the mean exceedance fragility H (

41 10 /H mean yr−=  ) and 0.1HSA  is the spectral acceleration at 0.1H. 

1 2( , )DF Maximum DF DF=  (2.15) 

1 1.0DF =   
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0.80

2 0.6( )RDF A=  (2.16) 

 

According to (Kennedy 2011) study (Table 2.3), choosing the value of β equal to 0.4 and 0.5 

lead to more reliable results than those for β of 0.3 and 0.6. In their study, the fragility β values 

were approximately in the 0.4–0.5 range while β of 0.3 and 0.6 were extreme low and high, 

respectively. 

Table 2-3. Design factor required to achieve a probability ratio 10 (Kennedy 2011). 

AR 

DF 
DF Eq. 

(6) F1%=1.1 

Β=0.30  

 F1%=1.0 

Β=0.40  

F1%=1.0 

Β=0.50   

F1%=1.0 

Β=0.60   

1.50 0.88 0.93 0.95 1.03 1.00 

1.75 0.96 0.96 0.91 0.91 1.00 

2.00 1.05 1.03 0.95 0.90 1.04 

2.25 1.16 1.11 1.00 0.93 1.15 

2.50 1.27 1.21 1.07 0.97 1.25 

2.75 1.38 1.30 1.14 1.03 1.35 

3.00 1.50 1.40 1.22 1.08 1.44 

3.25 1.61 1.50 1.30 1.14 1.54 

3.50 1.73 1.60 1.38 1.21 1.63 

3.75 1.84 1.70 1.46 1.27 1.73 

4.00 1.96 1.80 1.54 1.34 1.82 

4.25 2.07 1.90 1.62 1.40 1.91 

4.50 2.19 2.01 1.70 1.47 2.00 

4.75 2.30 2.11 1.79 1.54 2.09 

5.00 2.42 2.21 1.87 1.60 2.17 

5.25 2.54 2.31 1.95 1.67 2.26 

5.50 2.65 2.42 2.04 1.74 2.35 

5.75 2.77 2.52 2.12 1.80 2.43 

6.00 2.88 2.62 2.20 1.87 2.52 

 

2.14 Martins et al. (2015) 

One of the uncertainties in structure collapse, which is considered in designing Codes, is the 

building’s ultimate capacity and is defined as the maximum ground motion intensity. It is, 

therefore, considered as a random variable. As an explanation, if the ground motion level, a, 

exceeds the structure capacity, ac, the structure will collapse. Structure capacity is modelled as 

a lognormal distribution, which is defined by two parameters: logarithmic standard deviation, 

β, and the median, âc, (for which P[ac<âc]=0.5).  
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(Martins, Silva et al. 2015) investigated the effect of structural fragility on the risk-targeted 

hazard assessment. They analysed 3-story and 5-story RC structures to drive fragility curves in 

accordance with Eurocode 8 (Eurocode 8 2004) using both of the fundamental period of 

vibration, Sa, and peak ground acceleration, PGA. 

Figure 2.16 and Figure 2.17 demonstrate the obtained fragility curves using Sa(T1) and PGA, 

respectively, as ground motion intensity measure (IM). 

  

Figure 2-16. Case study fragility curves: Right: 3 storey structures; Left: 5 storey structures. (IM=Sa(T1)) 

(Martins, Silva et al. 2015). 

 

  

Figure 2-17. Case study fragility curves Right: 3 storey structures; Left: 5 storey structures. (IM=PGA) (Martins, 

Silva et al. 2015). 

In the previous studies, values of β were chosen between 0.5-1 (Luco, Ellingwood et al. 2007, 

Douglas, Ulrich et al. 2013, Ulrich, Negulescu et al. 2014, Silva, Crowley et al. 2016). 

(Douglas, Ulrich et al. 2013) considered β=0.5 as an appropriate lower boundary fragility 

curve, whilst, (Luco, Ellingwood et al. 2007) proposed values in the order of 0.8. (Martins, 

Silva et al. 2015) Resulted that if Sa is used as IM, the values of β will be in a range of 

approximately 0.35-0.45. While it will be up to 0.8 if PGA is considered. This is because PGA 

is a less efficient IM than Sa(T1) in predicting maximum inter-storey drift. 
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It should be also noted that the fragility curves obtained by considering PGA as IM, the β values 

are within the mentioned interval but in other curves the β values were lower than the minimum 

suggested by the literature. 

The other notable conclusion of their study was that the probability of collapse at the design 

ground motion, ades, for buildings designed according to the newest regulation should be around 

10-3 to 10-2 (similar to the results of (Luco, Ellingwood et al. 2007)). (Ulrich, Negulescu et al. 

2014), on the other hand, reached the values ranging from 10-7 to 10-5 for the probability of 

collapse at the design ground motion. 

2.15 Gkimprixis et al. (2019) 

A new consistent terminology method for risk-targeting approach was developed by Gkimprixi 

et al. (2019). It should be explained that risk targeting has recently emerged as a tool for 

overcoming the limitations of current design code in which the structures are designed based 

on a uniform-hazard spectrum for a fixed return period. By implementing risk-targeting, 

consistent performance levels for structures with different properties through the definition of 

uniform-risk design maps would be obtained.  

The authors assessed the effect of the linearization of the hazard curve in their study. Then, 

risk-targeted behaviour factors (RTBF) method was verified by comparing the obtained results 

with those of uniform-risk design spectral accelerations for single-degree-of-freedom systems 

with elastic-perfectly plastic behaviour for two different sites. Eventually, RTBF was utilized 

for developing uniform-risk design maps for Europe. The presented maps illustrated the 

differences of seismic design levels due to difference between uniform-hazard and uniform-

risk concept. 

2.16 Gkimprixis et al. (2020) 

Gkimprixi et al. (2019) investigated alternative approaches for the seismic design of structures 

in a further study. The assessed the safety level and cost associated to different design 

approaches: (i) the design used in the current codes and is based on uniform-hazard response 

spectra, reduced to account for inelastic structural behaviour, (ii) a risk-targeting approach 

which aims at designing structures with the same risk of collapse throughout regions of 

different seismicity, and (iii) minimum-cost approach which aims to minimize the sum of the 

initial construction cost and the cost of expected losses caused by future earthquakes. The 

comparison of the above-mentioned methods was made through a 4-stor reinforced concrete 

structure located in different locations in Europe.   
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ABSTRACT  

Recent works on seismic hazard have introduced the concept of time-dependent seismic hazard 

and different models have been proposed to predict the inter-arrival time between consecutive 

events. Currently, the reliability assessment of structures and relevant design rules proposed by 

the codes are based on the Poisson recursive model, for which the frequency of the occurrence 

of seismic events does not change over time. This study presents results on the impact of Time-

Dependent Seismic Hazard on structural design, by evaluating the strength required by the 

structure (seismic capacity) for different time intervals elapsing from the last event. “Seismic 

capacity” is understood here as the capacity required to provide a fixed reliability level, 

measured by the failure rate. Two different seismic scenarios have been investigated and results 

concerning different site-to-source distance, capacity dispersion of the structure and different 

recurrence properties of the time-dependent source have been discussed. Finally, the impact of 

recursive properties of time-dependent model is analysed and discussed. The results obtained 

from the analyses highlight a significant influence of time-dependent hazard properties on the 

structural capacity required to attain a target reliability, and give evidence to the different roles 

played by the parameters considered in the analysis. Within the set of the considered case 

studies, the ratios between seismic capacities evaluated by the time-dependent and non-time-

dependent model span the range [0,1.32] in the first scenario, where inter-arrival time varies 

from 0 to two times the mean return period. The second scenario involves multiple sources and 

observed ratios were in the range [0.84,1.23], extreme values are relevant to inter-arrival times 

equal to 139y and 371y, respectively.  
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3.1 Introduction  

Risk assessment involves analysis of the level of earthquake hazard, building vulnerability and 

exposure; it is based on a prediction of possible hazardous events, in terms of recurrence in 

time, and is oriented to the estimation of potential consequences, considering different sources 

of uncertainty. In this section, attention is focused on the probability of construction failure 

(consequence) due to an earthquake (event). 

Generally, this type of risk analysis is developed within the context of the PEER framework 

(Porter 2003; FIB 2012) where the seismic hazard assessment is typically based on a constant 

rate of occurrence in time (constant-rate seismic hazard model), described by the Poisson 

recursive model, and involves potential sources with different locations and different 

intensities. 

However, it is observed that small and medium magnitude events generally show different 

occurrence properties with respect to large magnitude events. The former generally occur as 

independent events, for which the recursive Poisson model is adequate, while the occurrence 

of the latter events is notably influenced by the previous history of the source activity. In this 

case, earthquakes tend to show a periodic trend and the fault activity generates earthquakes 

with similar magnitudes, also denoted as characteristic earthquakes (Schwarz et al. 1984; 

Wesnousky et al. 1994, Kramer 1996; Tondi and Cello 2003). 

From a theoretical point of view, approaches considering the recursive properties of strong 

events and models providing a time-dependent prediction of the interarrival time passing 

between two events, as noted by Anagnos and Kiremidjian (1988), dates back to earlier than 

the 70s (e.g., Vere-Jones, and Davies 1966, Kameda and Ozaki 1979, Hagiwara 1974). In 

addition, in their work, an overview of different models and a proposal for their classification 

is presented. 

Only recently have time-dependent models found practical applications thanks to the 

improvements in fault mechanism knowledge in some earthquake prone areas. Some studies, 

mainly limited to an assessment of the seismic hazard, have been proposed (Petersen et al. 

2007; Akinci et al. 2009; Chan 2013; Jalalalhosseini 2017; Mousavi 2018). 

Previous studies were generally oriented towards evaluating and comparing seismic intensities 

obtained by different models and their evolution in time while this research intends to analyse 
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the problem from a structural engineering perspective, evaluating the potential impacts of time-

dependent models on the structural dimensioning and, more generally, on the design process. 

Regarding this, it is useful to recall that the final objective of structural engineering consists of 

bounding the probability of failure of constructions during their lifetime and some target values 

are proposed in the codes of practice, such as Eurocode 0 or in Fajfar (2018), CEN (2006) and 

ASCE/SEI 7-16 (2017). This objective is generally obtained by simplified procedures avoiding 

a full probabilistic analysis and many recent works have been oriented to improving these 

methods in order to control the effective probability of failures (Fiorini et al. 2014; Franchin et 

al. 2018; Gkimprixis et al. 2019). 

This study presents a general methodology to relate a time-dependent prediction of the 

earthquake occurrence to the structural properties (time-dependent capacity) necessary to 

ensure a target level of safety, expressed by the failure rate, including uncertainties regarding 

earthquake intensity, source location, propagation and structural properties. Results obtained 

by using the time-dependent Brownian Passage Time model (BPT) (Mattheus et al. 2002) are 

compared with results obtained with the time independent Poisson model (POI). 

Numerical results concerning two different scenarios are presented, in order to provide general 

information about the potential impact of the time-dependent hazard on the required strength 

for constructions. In the former scenario a single point-source is considered and the constant 

structural capacity associated with the Poisson recursive model is compared to the time-

dependent capacity associated with a time-dependent hazard rate, analysing the influence of 

the different site-to-source distances and the dispersion of the structural response. Effects 

produced by near fault phenomena are not considered in this study. 

From a qualitative point of view, these results can be considered as an upper bound of the 

impact of the time-dependent hazard on design because realistic scenarios generally involve 

both low-medium intensity sources, spread across a large area, without periodic recursive 

properties, and high intensity sources, concentrated on faults and with periodic recursive 

properties. In order to provide some quantitative results about realistic situations, a scenario 

involving both a time-independent area-source and a time-dependent line-source are 

considered and the results relevant to different locations of the time-dependent source are 

discussed, as well as the influence of the structural system response and the recursive properties 

of the time-dependent source. 
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3.2 Methodology 

3.2.1 Time-dependent seismic capacity 

The earthquake is here considered as an event E  whose occurrence in time is described by 

( )Tf t  providing the Probability Density Function (PDF) of the time elapsing from the last 

event (inter-arrival time). The origin 0t =  of the time axis is placed at the instant of occurrence 

of the last event. Different models have been proposed to describe the probabilistic distribution 

of the inter-arrival time in literature and a review can be found in (Anagnos and Kiremidjian 

1988). These models are generally based on the mean value of the inter-arrival time RT  and on 

one or more parameters describing the expected dispersion of the inter-arrival time. 

Starting from ( )Tf t  and the relevant Cumulative Density Function (CDF) ( )TF t , it is possible 

to evaluate the hazard rate function ( )Tr t  using the expression 

( )
( )

( )1

T
T

T

f t
r t

F t
=

−
          (3.1) 

which provides the instantaneous probability of occurrence at the time t, given that no event 

had occurred previously, and describes the hazard variation in time. 

The probability of occurrence of one event within a time interval t  (e.g. construction lifetime) 

starting at t , given that the event had not occurred before, can be obtained by integrating the 

ratio ( ) ( )( )1T Tf t F t+ − . In the case of time intervals notably shorter than RT , the likelihood 

connected to multiple events can be neglected and the occurrence of only one event can be 

considered as representative of the total probability of failure (Takahashi et al. 2004). 

The system reliability depends both on the hazard rate and the properties of the response 

system. The latter can be collected in a vector   of parameters describing dynamic 

properties and capacity limits, and the system reliability can be expressed by the failure rate

( ) ( ) ( ),f T fp t r t P  , expressing the instantaneous probability of failure at time t  . It is 

obtained by combining the hazard rate function with the probability of failure 

( ) ,fP P failure E  =    conditional to the occurrence of the event E . In this study it is assumed 

that structural properties do not vary in time. 

Structural design requires that the failure rate be lower than a threshold *
fp  suggested by the 

codes and this study focuses on the evaluation of the structural seismic capacity necessary to 
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strictly satisfy the safety requirement ( ) *,f fp t p   for different values of time elapsing from 

the last event. 

The failure rate of the structural system, given the event occurred, depends on system properties 

 , thus it is possible to associate to each instant t a relevant sub-set of system properties 

* *    necessary to strictly satisfy the target condition, i.e. 

( ) ( ) ( ) ( )* * * * *: ,f f f fp t r t P r t P p   = = . 

As a final result, the relationship *t   between the time elapsing from the last event and the 

minimum capacity required to achieve a fixed safety level can be discussed in order to analyse 

the impact of time-dependent hazard on structural design. 

It should be noted that the recurrence models ( )Tf t  proposed in literature are generally 

continuous and start from a probability density equal to 0 at the initial instant (in many models 

the function slope is also 0 at the initial instant), therefore previous equality can be evaluated 

only for t t  with ( ) *: ft r t p= , i.e. when the instantaneous probability of occurrence of the 

event becomes larger than the acceptable failure rate, otherwise inequality ( ) *,f fp t p   also 

holds for * 1fP = . This is not a marginal point because * 1fP =  means that no seismic capacity is 

required for an elapsed time shorter than t  and models proposed in the literature sometimes 

provide quite large values for time t . 

3.2.2 Conditional probability of failure 

The probability of failure conditional to event occurrence 
fP  depends on uncertainties 

regarding the event characteristics and the system properties. 

Concerning uncertainties about the event, the following will consider a seismic scenario where 

magnitude M  may vary within a specified interval and sources are located at a point as well 

as spread on line or surface and combined sources are considered. The random values of M  

are described by a PDF ( )Mf m  defined on the magnitude interval M . The site-to-source 

distance is also a random variable X  and it is described by a PDF ( )Xf x  and the range of 

distance values is denoted as X . The ground motion properties at the site are described by a 

scalar value providing the motion intensity I  and the relevant time evolution. The distribution 

of the intensity probability, given magnitude and distance of the event, is denoted by ( ),If i M X  

and it can be determined on the basis of Ground Motion Prediction Equations (GMPEs), also 
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referred as Ground Motion Models (GMMs). Generally, GMPEs are in the form 

( ) ( ) ( ) ( )ln , 0, 0,E E A AI g M X    = + + , where E  and A  represent the inter-event and the intra-

event residual respectively (Stafford et al. 2008). Both inter-event and intra-event residuals, are 

assumed to be a Gaussian random variable with 0-mean and variances E  and A , and their 

parameters are related to soil conditions and faulting type.  

In conclusion, the PDF of the intensity can be obtained by combining different sources and 

possible magnitudes, as follow 

( ) ( ) ( ) ( ),
X M

I I M Xf i f i m x f m f x dmdx
 

=    (3.2) 

The recursive properties of ground motion with intensity i  at the site of interest are often 

described by the so called seismic hazard ( ) ( ) ( )( ); 1I T IH i t r t F i= −  providing the instantaneous 

probability of occurrence of a ground motion with intensity larger than i .The response 

properties of the structural system are described by using parameters providing the fragility 

curve * 1fP =  commonly described by using a log-normal CDF (Kennedy and Short 1994; 

Cornell et al. 2002), whose characteristic parameters are c  and   collected in the vector 

 ,c = . In particular parameter c  is the intensity measure producing 50% of failure (median) 

and  is the logarithmic standard deviation describing the dispersion of results due to both 

record-to-record variability and uncertainties about the system response. 

Therefore, the conditional probability of failure can be obtained by the convolution integral 

( ) ( ) ( ),f C I
R

P F i f i di 
+

=   (3.3) 

where R+  represent the set of positive real numbers. 

3.3 Flow chart methodology 

The relationship between system properties   and failure rate fp  is nonlinear and parameters 

*  at the target *
fp  at a given inter-arrival time have been obtained by the following iterative 

procedure, illustrated in Figure 3.1. In the methodology, the hazard at the considered site is 

initially evaluated, considering the recursive and intensity properties of the source, as well as 

the propagation of the ground motion, from source to site. Separately, the structure capacity is 

obtained by computing the fragility curve, for the tentative value of the parameter vector  . 

Finally, the failure rate obtained is compared with the target value and   is updated if required. 
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Figure 3-1. Flow chart illustration of the employed methodology.  

3.4 Point source 

In this section a point-source has been analysed, comparing the results obtained from a POI 

recursive model with those from a BPT model. In addition, a parametric analysis has been 

carried out considering, different source-site distances and different values of logarithmic 

standard deviation for the structure’s response. 

3.4.1 Overall scenario and parametric analysis 

The characteristic earthquake refers to the Paganica Fault located in central Italy. The Paganica 

Fault is a normal fault, striking north-west and dipping to the south-west, belonging to the 

active fault systems of the central Apennines and responsible of the 2009-L’Aquila earthquake 

Mw=6.3 (Chiaraluce et al., 2009). The surface expression is represented by several fault 

segments which have ruptured differently in time and space during the 2009-L’Aquila 

earthquake (Galli et al. 2011). Several models have been proposed recently for the related 

seismogenic source and in this article we use the model of 3D seismogenic sources proposed 

by Pace et al. (2006), which is based on an interdisciplinary analysis integrating structural, 

geological (surface and subsurface), morphotectonic, paleoseismological, seismological, and 

rheological data. The relevant properties of the model of the fault have been chosen according 

to Polidoro et al. (2013).  

The return period of the event E is 750RT yr=  and is characterised by a magnitude distribution 

following a truncated Gaussian distribution centred at 6.3 =  and spanning the range 

 , 5.8,6.8M m Mm m = =   with a standard deviation 0.1667 = . The magnitude PDF, scaled 

coherently with the interval length, assumes the form 
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( )

( ) ( )

; ,

; , ; ,
M

M m

n m
f m

N m N m

 

   
=

−
 (3.4) 

where ( ); ,n m    is the PDF of a normal distribution with mean   and standard deviation  , 

( ); ,N m    is the corresponding CDF. 

The results presented compare outcomes from the POI model, providing a constant hazard rate, 

with results coming from a time-dependent recursive model. The POI model is defined by 

( ) /1
Rt T

T
R

f t e
T

−=  ( ) /1 Rt T
TF t e−= −  (3.5a, b) 

based on one parameter only, 750RT yr= . In this case, the hazard rate defined in Equation 1, 

obtained starting from Equation 3.5, does not change over time, it is constant and assumes the 

value of ( ) 1
0 1 0.00133Rr t r T yr−= = = . 

The distribution of the inter-arrival time of the time-dependent hazard was determined utilising 

the BPT model (Mattheus 2002), based on rebound theory (Reid 1910) and often used in the 

description of characteristic earthquake recurrence (e.g. Working Group of California 

Earthquake Probabilities 1999; Takahashi et al. 2004; Polidoro et al. 2013). Its expression is 

( )

( )
2

2
 

2

2 32

R

R

t T

T tR
T

T
f t e

t





−
−

=   (3.6) 

which represents a renewal model depending on two parameters, the mean inter-arrival time 

750RT yr=  and parameter  ruling the aperiodicity, intended as the possible deviation from the 

reference return period RT . Some Authors (Matthew et al. 2002, Jalalalhoseini et al. 2017, 

Garcia-Aristizabal et al. 2012), conducted studies on the impact of   on hazard rate. It is 

noteworthy that low values of   leads to nearly symmetrical densities with a pronounced peak 

near the mean value and the curve degenerates into a Dirac’s function when   tends to 0 

(periodic event). 

The hazard rate varies over time and it has been evaluated by Equation 6 assuming 0.43 = , 

according to the study on the seismic scenario considered in Pace (2006). Figure 3.2 reports 

trends of the interarrival time probability density functions and hazard rates of the two models; 

in particular, the time-dependent model provides the same hazard rate as the POI model at the 

time 1.0 422t yr= , evaluated starting from the occurrence of the last event. It can be observed in 
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Figure 3.2a that POI model provides a not realistic description of the inter-arrival time, the 

PDF ( )Tf t  is initially high for short time intervals and it regularly decreases, despite source 

activities generally show a periodic behaviour. Consequently, a structural design based on POI 

model is more demanding with respect the design based on BPT model when time intervals 

passed from the last event are short and it is less demanding for long time intervals. This can 

also be deduced from Figure 3.2b where the two hazard rates are compared, it is evident that 

the constant value of POI is larger than time-dependent hazard rate of the BPT model for the 

time intervals lower than 1.0t , and the opposite occurs for longer time intervals. For 1.0t t=  both 

models, POI and BPT model, furnish the same value of failure rate. 

The seismic intensity has been measured using the Peak Ground Acceleration (PGA), obtained 

from the GMPE proposed by Sabetta and Pugliese (1996), where the logarithm of the seismic 

intensity I  produced by an event with intensity m , at a distance x , can be evaluated by 

( ) 2 2
10 10 1 1 2 2log logI a bm c x h e S e S = + − + + + +                (3.7) 

where 0E = =  is a 0-mean Gaussian random variable that represent the inter-event residual, 

1S  and 2S are parameters depending on characteristic of soil, h  is the fictitious depth, and 

1 2, , , ,a b c e e  are the model constants. Respect to expression previously introduced for the GMPE, 

in the Equation (3.7) the intra-event residual is not taken into account ( 0A = ). In this study, 

parameters of the Equation (3.7) are evaluated from the work of Sabetta and Pugliese (1987). 

For the parameters, the following values are assumed: 1.562a = − , 0.306b = , 1c = , 1 1S = , 

1 0.169e = , 2 0S =  and 5.8h = , while the standard deviation of   equal to 0.173. It is worth 

noting that in the case of point source, the site to source distance x x=  is fixed, thus the integral 

of Equation 2 reduces to 

( ) ( ) ( ),
M

I I Mf i f i m x f m dm


=                         (3.8) 
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( ) 310Tf t − ( ) 310Tr t −

 

Figure 3-2. (a) Probability density functions of interarrival time and (b) hazard rates for the POI model and the 

BPT model. 

 

3.4.2 Target failure rate and capacity properties 

In this section the seismic capacity required to ensure a target failure rate equal to *
fp  has been 

evaluated for different time intervals elapsing from the last event. 

The seismic capacity has been described by the parameter c , introduced in Section 2, and the 

target value of the failure rate has been assumed equal to * 56.667 10fp −=  . This was obtained by 

combining the conditional probability of failure 0.05fP =  (ASCE/SEI 7-16, Table 1.3-2) 

considering a Category III for the building risk, with the reference value of the hazard rate 

1
0 0.00133r yr−=  provided by the POI recursive model for the seismic scenario considered. 

The following results report the numerical values referring to three specific times 0.5 333 rt y= , 

1.0 422 rt y=  and 2.0 661 rt y= . In particular, at the intermediate value 422yr, the hazard rates for 

both the POI model and BPT model are the same and are equal to 0r , while at the first value 

333yr the hazard rate of the time-dependent model is equal to 00.5r  , and at the third value 

661yr the time-dependent hazard rate is equal to 02.0r . Finally, the variation in the required 

capacity for t  larger than the limit value t , such that ( ) *
T fr t p= , is graphically reported and 

discussed. 

Two parametric analyses were developed separately in order to study the results for source-to-

site distances x  varying from 5 km to 20 km, and capacity dispersion   varying from 0.40 to 

0.80 (FEMA P-750; ASCE/SEI 7-16; Kennedy 2011).The extended range of   values is 

defined considering that the epistemic uncertainties in the structural model which could have a 

significant influence on the collapse capacity producing a high capacity dispersion (Dolsek 

2009). 
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In the former analysis the site-to-source distance varies and the capacity dispersions are fixed, 

whereas in the latter parameter   varies while the results are evaluated at a fixed distance. 

3.4.3 The impact of site-to-source distance on the required capacity  

The effect of the distance on the required capacity has been evaluated by changing site-to-

source distance x = 5 km, 10 km and 20 km, whilst parameter 0.60 =  remained the same. As 

mentioned above, the effects produced by near fault phenomena are not considered. In addition, 

the influence of the time period from the last event has been considered and compared using 

the three different times previously introduced. 

Figure 3.3 illustrates a comparison between seismic hazard and required capacity, given event 

occurrence. The red dashed line reports the Complementary Cumulative Density Function 

(CCDF) ( ) ( )1I IG i F i= −  of seismic intensity I  and describes the probability of exceedance of 

I . The black continuous line reports the probability of failure for systems with different 

capacities, expressed by the response parameter c . As expected, the two curves intersect 

approximately when the median value of the predicted seismic hazard coincides with the 

capacity parameter c , while the probability of failure is larger than the probability of intensity 

exceedance for rare events as a consequence of the capacity dispersion. 

In order to discuss the trend of 
fP  it is useful to start from the case of deterministic capacity (

 = 0) In this case, the integral of Equation 3.3 weights only the portion of intensity PDF where 

intensity is larger than capacity, and the conditional 
fP  is overlapped to the Hazard Function 

( )G i . When a dispersion   is added, values of i  that are lower or higher than c  are differently 

weighted by the PDF of I , based on its slope. Consequently, 
fP  is larger than ( )G i  when the 

slope of PDF of I  is negative in the neighbourhood of c  and it is lower when the slope is 

positive. 

Figure 3.3 also shows a comparison of the results concerning different site-to-source distances. 

It is evident that the capacity corresponding to the target conditional probability of failure 

* 0.05fP =  decreases when the site-to-source distance increases. More precisely, the capacity 

corresponding to  is 1. 85g4c =  for the smallest considered distance, equal to 5 km, and it 

decreases by 34% and 63% passing from 5 km to the larger values 10 km and 20 km, 

respectively. 

*

fP
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Figure 3.4 shows the analysis results considering different hazard rates, assuming parameters 

0.60 =  and 5;10 ;20 kmx = . In particular, the first row reports the hazard curve ( )IH i  for three 

specific instants, i.e. 333yr, 422yr, and 661yr, while the second row reports the related ( )fp c  

curves. Table 3.1 provides the data related to the required capacity and compares the results 

obtained for the 3.3 different site-to-source distances. As mentioned previously, the reference 

time is 422yr, in this case the hazard rates provided by the POI and BPT models are the same. 

In addition, variations from the reference case have been evaluated by means of the expression 

( )ref refc c c c= − . 

According to the data reported in Table 1, by elapsing time from the last event, required 

capacity, c  increases. However, the variation of the required capacity is notably smaller than 

the variation in event occurrence. In this regard, it is useful to recall that the hazard rate at 

0.5 333t yr=  is half the reference value 
0r  but the capacity reduction is approximately 23.28% for 

all the distances considered. On the other hand, the hazard rate at 2.0t =661yr is twice the 

reference value but the required increment in the capacity parameter is limited to 25.84% across 

the distance values. Therefore, a notable variation in the hazard rate does not translate into a 

similarly notable variation in the capacity required for the structure. Based on the percentages 

of the differences provided in the last column of Table 3.1, it can be observed that the change 

in the required capacity c  by elapsing time is the same for different values of r . At this regard, 

it can be observed that the integral of Equation 3.3 can be posed in the form 

( ) ( )lnln
f

ic
P d


 

 

 − −
 =        

  (3.9) 

where   and   are the CDF and the PDF of the normal distribution, respectively, and ( )ln i =

. In the case considered in this section   and   are two constants, therefore the integral does 

not vary if the difference between ( )ln c  and ( )ln i  does not vary or, in other words, the ratio 

/c i  does not vary. 

As a first consequence, once the target *
fP  is chosen, the ratio /c i  becomes fixed. Furthermore, 

if i varies by a factor  , also the relevant c  must change by the same factor. It can be observed 

that i  varies by factors 0.66 and 0.37 passing from 5km to 10km and 20 km, (according to 

Equation 3.7), and the same factors influence the variation of c . As an additional result, it can 

be observed that the relative variations of c , reported in the last column, concern ratios between 
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quantities varied by the same factor and they cannot vary with the distance, so that the same 

results hold for different location. 

For a deeper insight into the trend in time of the capacity required for the target failure rate, the 

values of c  obtained in the range  0 ,1500yr yr  have been reported in Figure 3.5, for the three 

distances considered. Based on the curves shown in Figure 5, it can be said that when the site 

is close to the source ( x  = 5 km) elapsed time affects the required structure performance 

considerably more than the case in which the site is far from the source ( x  = 20 km in this 

study). As expected, for each distance to source, the capacity increases as the time elapsing 

since the last event increases and derive from the shape of hazard rate reported in Figure 3.2. 

The trend in time shows that capacity requirements based on the POI model are lower than the 

corresponding requirements evaluated by the BPT model for inter-arrival times larger than the 

balance point 1,0 422t yr= , but the differences are not so large and they do not significantly vary 

for t  larger than RT . A notably different trend is observed in the range of short time intervals 

between POI model and BTP model, where it can be observed that the BPT model rapidly vary 

and drop to zero at time 215t yr= . Based on this result, a null or very low seismic capacity is 

required for buildings erected after the last earthquake in a time window approximately equal 

to 2RT . This conclusion is partially mitigated in the case of multiple and independent sources, 

as discussed in the following section. The capacity required for intervals shorter than the limit 

value t  is equal to 0, as discussed in the previous section, and derives from decay properties 

of the inter-arrival time distribution function Tf . 

 

 

,c i

(a) (b) (c) 

= 10kmx = 20 kmx

( )IG i

( )fP c

= 5kmx

*

fP*
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Figure 3-3. ( )IG i and ( )P c
f

 curves for 0.60 = and (a) x  = 5 km, (b) x  = 10 km and (c) x  = 20 km. 
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Figure 3-4. Analysis result for different hazard rates considering parameters 0.60 =  and (a) 5kmx = , (b) 

10kmx = , (c) 20kmx = ; first row reports ( )IH i  curves for point source; second row reports ( )fp c  curves. 

 

Table 3-1. Required capacity for the target failure rate considering 0.60 = , different distances and different 

times. 

Distance x  

(km) 

Median value 

of demand (g) 
t (yr) 

Capacity c  

(g) 
c  (%) 

5 0.4474 

333 1.139 -23.28 

422 1.485 0.00 

661 1.869 25.84 

10 0.2964 

333 0.755 -23.28 

422 0.984 0.00 

661 1.238 25.84 

20 0.1645 

333 0.419 -23.28 

422 0.546 0.00 

661 0.687 25.84 
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215
 

Figure 3-5. The change in required capacity by elapsing time considering 0.60 =  and variable x . 

3.4.4 The impact of   on the required capacity 

The influence of parameter  , describing the dispersion of the seismic intensity producing 

failure, has been analysed in this section considering a fixed site-to-source distance x  = 10 km 

and three different values of  , i.e. 0.40 = , 0.60 = , and 0.80 = . 

Figure 3.6 provides a comparison between seismic intensity and required capacity, concerning 

structural systems with different dispersion  , given earthquake occurrence. The dashed red 

line reports the CCDF ( )IG i  of seismic intensity I  and the continuous black line reports the 

conditional probability of failure for systems with different capacity parameters c . 

The capacity corresponding to the target conditional probability of failure * 0.05fP =  notably 

increases as the capacity dispersion increases. More precisely, the capacity necessary for *

fP  

is 0.765c g=  for the smallest considered value of 0.40 = , while it increases about 29%, and 

70% passing from 0.40 =  to the larger values of 0.60 =  and 0.80 =  , respectively. Figure 

3.7 shows the analysis results considering different hazard rates assuming parameters 

0.40; 0.60; 0.80 =  and epicentral distance 10 kmx = ; in particular, the first row reports the 

hazard curve ( )IH i  for three specific instants, i.e. 333yr, 422yr, and 661yr, while the second 

row reports the related ( )fp c  curves. 

Table 3.2 provides the data related to the required capacity and compares the results obtained 

for the 3 different values of  , and the expression ( )ref refc c c c= − has been used to evaluate 

the change in the required capacity with respect to reference case 1,0 422t yr=  . Also, in this case, 

the variation in the required capacity is notably smaller than the variation in event recurrence.  

Contrary to the previous case, it can be observed that the percentage variation in the required 

capacity c  due to different elapsed time is different for different values of r . Based on the 
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previous discussion about the results reported in Table 3.1 and the integral ruling of the target 

*
fP , it can be concluded that the results of this section are influenced by the parameter   and 

the ratio /c i  at the target *
fP  is no longer a constant. Indeed, according to the discussion of 

Figure 3.3, in this case c  is greater than i  and increments in   lead to increments in c . 

Finally the trend in time of the capacity required for the target failure probability has been 

discussed and the values of c  obtained in the range  0 ,1500yr yr  have been reported in Figure 

3.8 for the three values of   considered. As expected, the changes in required capacity by 

elapsing time are almost the same, as shown in Figure 5.  

The curves in Figure 3.8 show that the required capacity increases as time elapses from the last 

event and that the rate of this increment is not a constant but decreases with elapsing time. 

The qualitative trends of the curves reported in Figure 3.8 are similar to the trends of curves 

reported in Figure 3.5, and follow from the trend of time-dependent hazard rate. In this case, it 

can be observed that the relationship between required capacity and dispersion is nonlinear, so 

that differences between the cases 0.40 =  and 0.60 =  are smaller with respect to differences 

between the cases 0.60 =  and 0.80 = . Previous conclusions about the different trends for t  

smaller or larger that the balance value 1,0t  hold in this case too. 
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Figure 3-6. ( )G i
I

and ( )P c
f

 curves for 10kmx = and (a) 0.40 = , (b) 0.60 =  and (c) 0.80 = . 
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Figure 3-7. Analysis result for different hazard rates considering the epicentral distance 10kmx =  and (a) 

0.40 = , (b) 0.60 = , (c) 0.80 = ; first row reports ( )IH i  curves for point source; second row reports 

( )fp c  curves. 

 

Table 3-2. Table 2 Required capacity for the target failure rate, 10x =  km, different   and different times.  

Parameter   

 

Median value 

of demand (g) 
t  (yr) 

Capacity c  

(g) 
c  (%) 

0.40 0.2964 

333 0.620 -18.89 

422 0.765 0.00 

661 0.917 19.91 

0.60 0.2964 

333 0.7548 -23.28 

422 0.9838 0.00 

661 1.2381 25.84 

0.80 0.2964 

333 0.9406 -27.92 

422 1.3049 0.00 

661 1.7334 32.84 
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Figure 3-8. The change in required capacity by elapsing time considering  and variable  . 

3.5 Combined sources 

In this section the more realistic case of multiple sources has been considered and the analysis 

combines two sources with different properties: an area-source producing medium-low 

intensity earthquakes whose recurrence has been described by the no-memory POI model and 

a line-source producing high intensity earthquakes with a periodic recurrence described by the 

BPT model. The results consider different time periods elapsing from the last event and the 

influence of three variable parameters have been discussed: the location of the time-dependent 

source, the dispersion of the structural response due to model uncertainty and record to record 

variability, and the recursive properties of the time-dependent source. 

3.5.1 Overall scenario and parametric analysis 

A time-independent reference scenario, is initially introduced. It consists of an area source and 

the probability of event occurrence is homogeneously distributed across a circular surface with 

a radius 50kmMx = , centred at the considered site. The relevant PDF of the site-to-source 

distance has been described by the expression 

( )
2

2
XA

M

x
f x

x
=   0,XA Mx =  (3.10) 

   

Furthermore, the reference source is able to generate events E  with magnitude m  in the range 

M , and the PDF of possible magnitudes is provided by the Gutenberg-Richter law 

( )
m M

m

M m m

e
f m

e e



 

 −

− −
=

−
 ,M m Mm m =    (3.11) 

 

   

10kmx =
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where 5mm =  and 8Mm =  are the lower and upper magnitude limits, respectively, and the 

function slope is described by parameter ( )1 ln 10 =   (Gulia et al. 2016). The time recurrence 

is provided by the POI model (Equation 3.4), defined by the characteristic parameter 

1
0 0.31r yr−=  (Scozzese et al. 2020), which describes the constant hazard rate and coincides with 

the mean annual frequency of the event, so the mean inter-arrival time is 1/ 0.31 3.22RT yr= = . 

This reference scenario has been compared with a different scenario characterized by the same 

magnitude range and overall mean annual frequency, but, in the alternative scenario, the 

magnitude interval has been split into two sub-intervals, i.e. M MA ML =  as illustrated in 

Figure 3.9. The former range 1,MA mm m =    concerns low-medium intensity earthquakes 

generated by a time independent area-source and the latter range  1,ML Mm m =  concerns high 

intensity earthquakes generated by a time-dependent line-sources (characteristic earthquakes, 

Ellsworth et al. 1999). The magnitude that bounds the two ranges has been fixed at 1 7m = . The 

mean annual frequencies of occurrence of events belonging to the two intervals ML  and MA  

have been defined according to the previous distribution (Equation 3.11), considering that the 

frequency of events with a magnitude in the sub-domain ML is ( )( ) 1
0 0 11 0.0028L Mr r F m yr−= − =  

(mean inter-arrival time 1/ 0.0028 358RLT yr== ), where ( )MF m  is the CDF of previous 

magnitude distribution defined in the total range M . The resulting mean annual frequency of 

events in the sub-domain MA  is ( ) 1
0 0 1 0.3072A Mr r F m yr−= =  (mean inter-arrival time 

1/ 0.3072 3.25RA yrT == ). 

The PDF of the magnitudes must be defined separately for the two sources. For what concern 

the area-source, it has been assumed that magnitude values are distributed according to the 

previous Gutenberg-Richter law (reference case), and can be simply obtained by scaling the 

previous overall distribution (Equation 3.11) 

( )
( )

( )11

M
MA

M

f m
f m

F m
=

−
 

1,MA mm m =    (3.12) 

   

For what concern the line source, it has been assumed that the magnitudes of characteristic 

earthquakes are distributed according to a Gaussian distribution (Equation 3.4) centred at the 

intermediate magnitude 7.5 = , characterised by a standard deviation 0.1667 =  (Polidoro et 

al. 2013), and scaled coherently with the interval length  1,M Mm m = , as in Equation 3.4. 
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Magnitude distribution of area source and line source considering three different times is 

reported in Figure 3.9. 
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Figure 3-9. Magnitude distribution of area source and line source at three different times. 

Regarding recurrence in time of events in the combined source (Line + Area), the recurrence 

coming from the area-source has been described using the POI model (Equation 3.5) with a 

constant hazard rate is 0 Ar , while the recurrence of  events coming from the line-source has 

been described using the BPT model (Equation 3.6) with mean inter-arrival time 

01  3 8/ 5RL L yT r r== . In the latter case, the PDF of the inter-arrival time t  also depends on 

periodicity parameter  , which influences the shape of the curve. 

The site-to-source distance x  of earthquakes with magnitudes in MA  is homogeneously 

distributed in the previous aforementioned area, so the previous distribution of Equation 10 has 

been used, while the site-to-source distance x  of earthquakes with magnitudes in ML  is 

homogeneously distributed along the line and the following distribution has been used 

( )
2 2

2
XL

x
f x

L x d
=

−

 ( )
22, / 2XL d d L

 
 = +  

 (3.13) 

   

where L = 30 km is the length of the line-source and d  is the distance from the line to the site. 

In the following it has been assumed that the length of the line source is fixed while a parametric 

analysis has been carried out considering different positions, corresponding to different values 

of d . The GMPE ( ),If i m x , previously introduced for the point source case, has been adopted 

here too. 

Finally, the dispersion of the structural response has been described by  , considering different 

values in the following analyses, and the capacity parameter c  is calculated for each set of 
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parameters, in order to obtain a failure rate * 42.0 10fp −=  , chosen in accordance with general 

trends of codes (Fajifar 2018). 

Summing up, the following parametric analysis considers three independent parameters: the 

distance d , in order to evaluate the influence of the location of the time-dependent source on 

the required capacity c , the periodicity parameter   in order to evaluate the influence of the 

recurrence properties of high intensity earthquakes, and the dispersion  , in order to evaluate 

the influence of the structural system properties.  

Concerning the distances, three values have been investigated d d= , 0.5d d=  and 2.0d d= , 

where 15kmd = . The reference distance 15kmd =  represents a particular location of the line 

source producing approximately the same hazard as the reference scenario (area source with 

POI recursive model) at . 

Regarding parameter  , values 0.40 = , 0.60 = , and 0.80 =  have been considered (as in the 

previous case of point source), in accordance with the variability proposed in FEMA P-750, 

ASCE/SEI 7-16. 

Finally, for periodicity parameter  , the three values 0.40 = , 0.50 =  and 0.60 =  have been 

investigated. 

3.5.2 Impact of the distance of the time-dependent line-source 

The inter-arrival time of the line source has been defined according to Equation 6, using 

parameters 0.5 =  and 358RT yr= . The first group of analyses carried out considered an elapsed 

time 1.0 185t yr=  such that the constant hazard rates of the POI model coincide with the hazard 

rate of the time-dependent BPT model, i.e. ( )1.0 0L Lr t r= . 

In the first part, the effects of the line source distance on the required capacity (in this discussion 

on result, the term “capacity” will be used to briefly denote parameter c  corresponding to the 

intensity associated with a probability of failure equal to 0.5) has been evaluated by changing 

distance d , whilst parameter 0.60 =  and periodicity parameter 0.50 =  are fixed. The effect 

of the distance on the required capacity has been evaluated by comparing the results obtained 

for 15kmd d= =  with the results obtained for the distances 0.5 7.5kmd d= =  and 2.0 30kmd d= =

. 

* 42.0 10fp −= 
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In the second part, the effect of time-dependent hazard rate has been investigated considering 

different values of time elapsing it  from the last event. In particular three specific times 

0.5 139 rt y= , 1.0 185 rt y= , and 2.0 371 rt y=  have been considered, the hazard rate of the time-

dependent line source is equal to the reference value 0Lr  at 1.0t , while it is 00.5 Lr  at 0.5t  and it is 

02.0 Lr  at 2.0t . Figure 3.10 shows the hazard rate considered and the particular specific times 

adopted in the following analyses. 

The first row in Figure 3.11 reports the seismic hazard ( )IH i  describing the probability of 

exceedance of the intensity i  , for the three different locations of the line-source, 7.5kmd =

(Figure 3.11a), 15kmd =  (Figure 3.11b), and 30kmd = (Figure 3.11c). The figure reports both 

the total hazard ( )IH i  derived from the combined sources and the single contributions coming 

from the area source ( )A

IH i  and line source ( )L

IH i . It can be observed that, for exceedance 

probabilities higher than 210− , usually used for checks at serviceability limit states, the hazard 

is essentially due to the area source while the contribution due to the line source is negligible. 

At lower values of exceedance probabilities, usually interesting for checks at ultimate limit 

states ( 32 10− ), the hazard is mainly due to the line source. Developed study concerns a target 

failure rate equal to 42 10−  and results are strongly influenced by rare events related to high 

intensities with low probability of exceedance. This range of intensities is notably influenced 

by the time-dependent source and this makes the required capacity varying with inter-arrival 

time. By increasing the site to source distance, the hazard decreases, the contribution due to the 

line source becomes negligible for a distance 30kmd = and the hazard is almost completely due 

to the area source (Figure 3.11c). 

The second row in Figure 3.11 compares the combined hazard with the failure rate related to 

different capacity c . In general, it can be observed that the required capacity is close to the 

hazard intensity when high probability of failure is considered. Differently the distance 

between the two curves becomes ever larger when considering decreasing probabilities of 

failure. As expected, the location of the line-source producing rare and strong earthquakes 

notably influences the capacity required for low values of the probability of failure. 

Figure 3.12 compares the results obtained for different time intervals elapsing from the last 

event, for the three line-source locations. The upper row reports the hazard curves for the three-

time intervals and the lower row reports the curves relating required capacities with expected 

probability of failure. A significative influence of the time-dependent hazard has been observed 
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in the case 7.5kmd = , where the contribution of the line source is prevalent respect the to area 

source in the definition of the overall hazard. Moving away from the line source, the time-

dependent effects are less relevant up to be negligible for 30kmd =  where the area source 

contribution is predominant. Also, the curves reporting failure rate vs capacity follow the same 

trends of the hazard curve. Furthermore, the differences among hazard curves and capacity 

curves reduce when increasing the distance of the time-dependent line-source, and the 

differences relevant to required capacity become almost negligible in the case 30kmd = .The 

result provides a useful information about the dimension of the area where structural design 

should be carried out considering the previous seismic history. 

 

( )Tr t
BPT model 

POI model 

02.0 0.0056Lr =

00.5 0.0014Lr =

01.0 0.0028Lr =

0.5 139t yr= 2.0 371t yr=

( )t yr

1.0 185t yr=

 

Figure 3-10. Hazard rate for BPT model and POI model with 358RT yr=  considering 0.50 = . 

 

Table 3.3 provides numerical values of the required capacity for line sources located at different 

distances from the site, considering the three different hazard rates, and relevant instants, as 

previously discussed. Reported capacities refer to the target failure rate ( 42 10fp −=  ) and the 

table also reports the percentage variations ( )ref refc c c c= −  of required capacity with respect 

to the reference case ( 15kmd = , 1.0t t= ). At the reference time, required capacity spans 1.366g 

to 2.105g, passing from the farthest to the nearest location of the line-source, and, in the latter 

case, it attains the maximum value 2.590g at the time 
2.0 371t yr= . 
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Figure 3-11. Analysis results considering parameters 0.50= , 0.60 =  and (a) 7.5kmd = , (b) 15kmd = , (c) 

30kmd = ; first row reports ( )IH i  curves for area, line and combined source; second row  reports ( )IH i  and 

( )fp c  curves. 
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Figure 3-12. Analysis result of combined source for different hazard rates considering 0.50= , 0.60 =  and (a) 

7.5kmd = , (b) 15kmd = , (c) 30kmd = ; first row reports ( )IH i  curves and second row ( )fp c  curves. 
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Table 3-3. Required capacity for the target failure rate considering 0.60 = and 0.50 =  for different site to 

source distance d  and different times elapsing since the last event.  

 Capacity c  (g) c  (%) 

d (km) 
00.5 Lr  

( )139Tr yr  

01.0 Lr  

( )188Tr yr  

02.0 Lr  

( )371Tr yr  

00.5 Lr  

( )139Tr yr  

02.0 Lr  

( )371Tr yr  

7.5 1.755 2.105 2.590 -16.638 23.018 

15 1.478 1.623 1.851 -8.919 14.104 

30 1.337 1.366 1.418 -2.121 3.866 

3.5.3 Impact of system capacity dispersion (  ) 

A second group of analyses have been carried out considering three different values of the 

structural response dispersion  , 0.40 = , 0.60 = , and 0.80 = . Distance 15kmd =  and 

recursive parameter 0.50 =  do not vary and the previous three elapsed times 0.5 139 rt y= , 

1.0 185 rt y= , and 2.0 371 rt y=  have been considered. 

Figure 3.13 reports the probability of failure ( )fp c  of systems with different capacities, 

considering different values of  , in addition to the graph of the seismic hazard ( )IH i . In 

general, it should be noted that by increasing  , the difference between hazard and capacity 

increases (roughly doubling from the lower to the higher   value). 

Although the values of capacity obtained considering 0.40 =  are close to hazard values for 

probabilities greater than 210− , there is a considerable difference between hazard and capacity 

for all probabilities when values 0.60 or 0.80 are considered. In addition, by decreasing failure 

probability, the difference between hazard and failure probability increases considerably for all 

the values of   especially for the value of 0.80 = . In this case, the slope of the curve 

describing the failure rate is quite small and this leads to a noticeable increment in the required 

capacity c . 

Figure 3.14 shows the influences of   variation for the three different hazard rates ( 00.5 Lr , 

01.0 Lr  and 02.0 Lr ). It can be noted that both hazard and required capacity increase when 

increasing the elapsing time. In this case the influence of the time-dependent hazard are limited 

as the line source does not play an important role in relation to the overall hazard. 

The values of required capacity c  for 0.40 = , 0.60 =  and 0.80 =  at the three mentioned times 

t  have been presented in Table 4. According to the outcomes provided in this table, the values 
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of capacity corresponding to 0.40 =  , 0.60 =  and 0.80 =  are 1.193g, 1.623g, and 2.379g, 

respectively. In general, the parameter   strongly influences the required capacity. However, 

it can be observed that the percentage variations over time are similar for the considered cases, 

because   influences a similar manner the contributions to the failure rate due to the two 

sources. 

3.5.4 Impact of recursive properties ( ) 

The third important parameter which can affect the required capacity in time-dependent case 

is  . As mentioned before,   is the aperiodicity parameter describing the recursive properties 

and influencing the trend of the hazard rate ( )Tr t  over time. In this group of analyses, three 

values of   are considered: 0.40 = , 0.50 =  and 0.60 =  (Akinchi et al. 2009). Values larger 

than 0.60 have not been investigated because they provide a negative slope and a discussion 

about its physical meaning is still open. 

The variation in time of required capacity has been analysed by reporting results relevant to 

the same instants considered in the previous sections, i.e. 0.5 139t yr= , 1.0 185t yr= , and 2.0 371t yr=

. This makes it possible to compare outcomes concerning variation of   with previous results 

but it must be recalled that the previous correspondence between instants and hazard rates holds 

for the reference case only 0.50 = , and it is now lost for the other values of   . 

Figure 3.15 shows how the hazard rate varies in time for the three different values of  . The 

values of elapsed times considered in the comparison are highlighted. It can be observed that 

the three curves intersect approximately at 250yr, so, for elapsing times lower than 250yr the 

hazard rate provided by 0.40 =  is lower than the reference hazard rate, and higher for 0.60 =

. Conversely, the hazard rate for 0.40 =  is higher than the reference case, and lower for 0.60 =  

when elapsed time is larger than 250yr. It is worth noting that the case 0.60 =  cannot attain a 

hazard rate value twice the reference hazard rate 0 0.0028Lr = . 
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Figure 3-13. Analysis results of combined source in terms of ( )IH i  and ( )fp c for different hazard rates, 

considering 0.50 = , 15kmd =  and (a) 0.40 = , (b) 0.60 = , (c) 0.80 = .  
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Figure 3-14. Analysis results of combined source for different hazard rates considering 0.50 = , 15kmd =  

and (a) 0.40 = , (b) 0.60 = , (c) 0.80 = ; first row reports ( )IH i  curves and second row ( )fp c  curves. 

 

Table 3-4. Required capacity for the target failure rate considering 15kmd = and 0.50 =  for different values 

of   and different times elapsing since the last event.  

 Capacity c  (g) c (%) 

  
00.5 Lr  

( )139Tr yr
 

01.0 Lr  

( )185Tr yr  

02.0 Lr  

( )371Tr yr  

00.5 Lr  

( )139Tr yr  

02.0 Lr  

( )371Tr yr  

0.40 1.084 1.193 1.350 -9.168 13.149 

0.60 1.478 1.623 1.851 -8.919 14.104 

0.80 2.186 2.379 2.709 -8.095 13.888 
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A comparison between the hazard rate curves and the failure rate curves for different values of 

 , considering different elapsed time t , is reported in Figure 3.16, and numerical results are 

reported in Table 3.5. For the minimum value of elapsed time 0.5 139t yr=  the required capacity 

goes from c  = 1.380 g to c  = 1.563g, passing from 0.40 =  to 0.60 = . In the case 1.0 185t yr=  

the variation of capacity is limited, while for the case 2.0 371t yr=  the required capacity decreases 

from c  =1.932g to c  = 1.794g, varying   from 0.40 to 0.60. It can be observed that the 

variation in capacity across different   values is more pronounced for 0.5t  and 2.0t  than 1.0t ; 

this arise from the effects that parameter   produces in the hazard rate curve (Figure 15). 

Finally, Table 3.5 also reports the numerical values of variation ( )ref refc c c c= − . It can be 

observed that these variations are quite limited in both cases ( 0.60 =  and 0.40 = ) and, lower 

than variations observed in previous sections. The structural design is not very sensitive to this 

parameter, at least for the inter-arrival times considered in this section. Based on Figure 3.15, 

larger variations are expected for large time intervals (greater than 600yr) in the case of 0.40 =

. 

 

( )Tr t

0.40 =

BPT Models 

POI Model 

0.50 =

0.60 =

02.0 Lr

00.5 Lr

01.0 Lr

1.0 185t yr=

0.5 139t yr= 2.0 371t yr=

( )t yr
 

Figure 3-15. Hazard rate for BPT model and POI model with 358RT yr=  considering three values of  . 
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Figure 3-16. Analysis results of combined source for different hazard rates considering d =15 km, 0.60 =  and 

(a) 0.40 = , (b) 0.50 = and (c) 0.60 = ; first row reports hazard curves ( )IH i  and second row ( )fp c  

curves. 

Table 3-5. Required capacity considering d =15 km and 0.60 =  for different of   and different times elapsing 

since the last event.  

 Capacity c  (g) c  (%) 

0( )Lr t   = 0.40  = 0.50  = 0.60  = 0.40  = 0.60 

0.5t = 139yr 1.380 1.478 1.563 -6.607 5.739 

1.0t = 185yr 1.540 1.623 1.669 -5.076 2.859 

2.0t = 371yr 1.932 1.851 1.794 4.366 -3.092 

3.6 Conclusions 

The impact of Time-Dependent Seismic Hazard on design capacity has been assessed in this 

study by evaluating the strength required by the structure (seismic capacity) for different time 

intervals elapsing from the last event. “Seismic capacity” is understood here as the capacity 

required to provide a fixed reliability level, measured by the failure rate. Two different seismic 

scenarios have been investigated. In the first case, a point-source has been considered and 

results concerning different three site-to-source distances x , and capacity dispersion   have 

been discussed. The case study presented concerns the Paganica fault, located in Central Italy. 

In the second case, a combined source consisting of an area-source producing medium-low 

intensity earthquakes, whose recurrence was described by the no-memory POI model, and a 
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line-source producing high intensity earthquakes with a periodic recurrence described by the 

time-dependent BPT model has been considered. Results concerning three different site to line 

source distances d , capacity dispersions   and aperiodicity parameters  , describing the 

recursive properties of the hazard rate over time, have been investigated. 

Based on the results, the following conclusions can be drawn. 

• The ratio between the required capacity based on time-dependent model and the 

required capacity based on non-time-dependent model span a large interval and varies 

from values notably smaller than 1 for short inter-arrival times to value notably larger 

than 1 for long time intervals. Variations span the range [0, 1.32] in the case study with 

point source, lowest and highest values concern inter-arrival times equal to 0 and 2 RT , 

respectively Variations in the range [0.84, 1.23] have been observed in the parametric 

analysis involving combined sources. Extreme values concern the case where the time 

dependent line source is located at a distance 7.5d km= and the extreme values of inter-

arrival times 139y  and 371y , are considered, in conjunction with the intermediate values 

of dispersion 0.6 =  and aperiodicity parameter 0.5 =  Results reveals that the time-

recurrence properties of seismic sources exhibiting a periodic behaviour cannot be 

neglected in the structural design, also in the case of combined sources. 

• Required capacity rapidly varies for time interval shorter than the balance time 
1.0t , at 

which time-dependent and non-time-dependent hazards provide the same hazard rate, 

whilst it weakly varies for time intervals longer than the return period; Furthermore, 

high variations in hazard rates do not translate into proportional variations in the 

capacity required to ensure the target failure rate. Concerning structural design, special 

attention should be payed to source with time elapsing from last event shorter then 

return period and further investigation are required about the reliability of time-

dependent models because notable reduction of capacity may be involved. 

• In the case of point-source, (BPT model, 750RT yr= ), required capacity drops to 0 at a 

critical instant, 215t yr= . This is due to the decay properties of the inter-arrival time 

distribution function, widely used in previous studies. This means that no seismic 

capacity is required to the structure in a period long 
1.0t , after the last event. 

• The required capacity is notably influenced by the capacity dispersion and it increases 

more and more as the elapsed time increases. In particular, the detrimental effect of the 



Chapter 3 Page 86 of 152 

Influence of time-dependent seismic hazard on structural design  

 

 

dispersion cannot be neglected for >0.4. So that, the reduction of uncertainties in the 

structural model predicting the seismic response may play an important role in limiting 

the time-dependent failure rate and this is of special importance in the analysis of 

existing constructions. 

• The impact of time-dependent hazard on structural design is mitigated in the more 

realistic case study where both time-dependent sources and non-time-dependent 

sources are present. The time-dependent behaviour can be neglected in the design when 

the time-dependent source is sufficiently far (30 km in the case study). 

• The periodicity parameter provides a moderate influence of structural design (lower 

than 10% in the parametric analysis) but it is interesting to observe that a strong 

periodicity (small  ) reduces the required capacity for short time intervals and a weak 

periodicity (large  ) increases the required capacity. The opposite when large time-

interarrival times are considered. 

• Numerical results reported in the research only concern some case studies where a 

limited set of realistic scenarios (source recursive properties, propagation laws and 

structural properties) have been considered. They show that time-dependent hazard 

may notably influence the structural design and provide some information about the 

most important parameters. However, a deeper investigation is required to provide more 

precise suggestions about structural design rules for constructions in seismic prone area  
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Abstract 

Time-dependent hazard models have been used by researchers to evaluate the probability of 

earthquake occurrence by elapsing time. Time-dependent response of structures, on the other 

hand, has attracted the structural engineers’ concern recently; however, not enough studies 

have been conducted on this important subject matter to date.  

In this study, the structural capacity in the case of time-dependent seismic hazard is evaluated 

and discussed. To aim the study objective, a combined source consisting of an area source 

(generating medium to low-intensity earthquakes by a POI model) and a line source (generating 

high-intensity earthquakes by a time-dependent BPT model) is considered. The GMPE 

proposed by Ambraseys et al. was used in order to consider the effect of site soil conditions, 

period and time elapsed since the last event on both demand and capacity values. Furthermore, 

the obtained results are compared by the results of analysis performed using Sabetta and 

Pugliese to figure out the influence of GMPE on the outcomes.  

Results showed that the difference between demand and capacity for sites located on soil is 

higher than those located on rock. Moreover, in very short or very long periods, elapsing time 

does not affect the results significantly. More importantly, the changes of capacity are not the 

same as those of demand are slightly higher. Finally, The GMPE affects the results remarkably 

which shows the importance of appropriate GMPE selection for the region of the study.   
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4.1 Introduction 

Estimating the level for ground motion with a specified probability of exceedance could be 

done through probabilistic seismic hazard analysis (PSHA) [5]. The rate of exceedance is 

obtained in PSHA by considering parameters namely magnitude, site-to-source distance and 

ground motion propagation determined by ground motion prediction equations (GMPE). 

Although the influence of the local site on PSHA is seldomly considered in GMPE (e. g., 

(Ambraseys, Simpson et al. 1996)), it is not taken into account in the PSHA formulation 

directly (Bazzurro and Cornell 2004). Soil classification of the area where buildings are located 

on, however, has a crucial impact on both hazard and structural response (Bazzurro and Cornell 

2004, Shahbazi, Mansouri et al. 2018, Nabilah, Koh et al. 2019, Ezzelarab, Hassoup et al. 

2021).  

In PSHA, it is generally assumed that the soil classification of the site is the same as the one in 

the site considered for generating GMPE. This assumption could lead to inaccuracy of the 

results caused by ignoring soil condition of the site (Bazzurro and Cornell 2004). It is worth 

explaining that the main reason for the aforementioned inaccuracy is due to soil nonlinearity 

in the soil response (Bazzurro and Cornell 2004). As an example, the values obtained by two 

different GMPEs, (Sadigh, Chang et al. 1997) and (Boore, Joyner et al. 1997) are the same 

while different assumptions of soil classification are considered for each of which. As noted 

previously, a few GMPEs are developed in which site soil type is considered (e.g., (Ambraseys, 

Simpson et al. 1996) , and (Abrahamson and Silva 1997)). One method which could be used 

for considering soil effect is multiplying the hazard at the soil surface by the bedrock hazard 

(in the form either of uniform hazard spectra or of hazard curves) using a deterministic 

amplification function. This technique generates surface ground-motion levels whose 

exceedance rates are unknown, non-uniform, inconsistent across frequency, and generally 

nonconservative. Similarly, soil surface ground motions with unknown exceedance rates are in 

general obtained if one multiplies the bedrock hazard by the average National Earthquake 

Hazards Reduction Program (NEHRP) amplification factors (Schnabel, Seed et al. 1972). The 

influence of soil parameters on hazard and structures’ response has been evaluated more 

precisely in a limited number of studies recently.  

(Bazzurro and Cornell 2004) developed two novel techniques for addressing the above-

mentioned shortcomings: (i) adding a term, representing the soil response, in the current 

attenuation laws for rock ground motion, and (ii) adding a correction factor, referring the 

uncertainty in the amplification of the site soil at an appropriate level of bedrock ground 
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shaking. The proposed methods exhibited accuracy for sandy and clayey soils. (Ezzelarab, 

Hassoup et al. 2021) investigated the effect of local soil on the seismic hazard level in a specific 

area located in Egypt. The different earthquake response spectrum derived for the different 

varying areas considered in their study, proves the high importance of soil condition on the 

results. It is also claimed that motion amplification in soil could be up to 4 times than that of 

rock at high period ranges (Lam, Tsang et al. 2015). Nabilah et al., as an example, concluded 

that amplification of clayey soils is higher than those are recommended by Eurocode 8 

(Eurocode 8 2004, Nabilah, Koh et al. 2019). 

As far as structures’ response is concerned, soil effect could be also expressed as soil-structure 

interaction, which has attracted researchers’ attention due to its significance (Rajeev and 

Tesfamariam 2012, Carbonari, Morici et al. 2016, Givens, Mylonakis et al. 2016, Montoya-

Noguera and Lopez-Caballero 2018). It could be stated that structures constructed on flexible 

soil behave completely different in terms of deformation, stiffness and seismic parameters 

when compared to those located on rock (Zhao, Wang et al. 2017, Anvarsamarin, Rofooei et 

al. 2018, Shahbazi, Mansouri et al. 2018).  

The influence of time-dependent hazard on structural response considering soil classification, 

period and GMPE selection has not been assessed precisely to date. The main objective of this 

report, therefore, is to find out the trends of changing hazard and capacity required to a target 

failure probability in the case of time-dependent hazard model. Two main effective parameters 

are considered: (a) different soil conditions, and (b) different Ground Motion Prediction 

Equations (GMPE).  

Soil types (i. e., very soft or soft soil, stiff soil and rock), as has been proven in previous studies, 

changes both hazard and capacity significantly. However, the rate of change depends heavily 

on various parameters such as period, GMPE and time elapsed since the last event (earthquake).  

This research aims at realizing the impact of above-mentioned parameters on both demand and 

capacity for the first time.  

The results of this research are going to be presented in two main parts. In the first section, the 

results of a time-dependent combined source in different soil conditions are presented and 

discussed. In the second part, the results of two GMPE on the time-dependent combined source 

are compared and evaluated.    
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4.2 Methodology 

The methodology introduced in the first section, is also used in the present section for exploring 

the effect of soil classification, period and GMPEs on both demand and capacity.  

Briefly explained, in the methodology, the hazard at the considered site is initially evaluated, 

considering the recursive and intensity properties of the source, as well as the propagation of 

the ground motion, from source to site. Separately, the structure capacity is obtained by 

computing the fragility curve. Finally, the failure rate obtained is compared with the target 

value. 

Simply stated, PSHA and fragility curves are implemented to obtain capacity of a structure for 

a target probability failure. Otherwise mentioned, “seismic capacity” is defined as the capacity 

required to provide a fixed reliability level, measured by the failure rate. Details of the 

methodology are not represented here for the sake of shortness and readers are referred to 

chapter 3.   

The source considered in this study is a combination of two sources: (a) an area-source 

producing medium-low intensity earthquakes whose recurrence has been described by the no-

memory POI model and (b) a line-source producing high intensity earthquakes with a periodic 

recurrence described by the BPT model (Fig. 4.1). Only the line source was considered time-

dependent since it has been proven that periodical recurrence of high-magnitude earthquakes 

follows the introduced time-dependent hazard (e.g., BPT) while occurrence probability of low- 

to medium- magnitude earthquakes could be accurately simulated through time-independent 

models like Poisson model (POI) (Schwartz and Coppersmith 1984, Wesnousky 1994, Kramer 

1996, Tondi and Cello 2003).  

 

Figure 4-1. combined source considered in this study 

It is noteworthy that d (site to line source distance) and xM (radius of area source) are selected 

so that the case study source reflects a realistic seismic source (respectively 15 km and 50 km). 
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Dispersion of structural capacity, β, was also considered 0.60 which is in accordance FEMA 

P-750, ASCE/SEI 7–16 (FEMA 2009a, ASCE 7-10 2013).  

4.3 Different soil conditions  

In order to assess the effects of soil types on both demand and capacity, a GMPE which 

considers soil type on the prediction of wave propagation should be used in the analysis 

process. In the present study, the GMPE proposed by (Ambraseys, Simpson et al. 1996). is 

used (Eq. 4.1)_ENREF_1 accordingly: 

1 2 4log( ) log( ) A A S Sy C C M C r C S C S P= + + + + +  (4.1) 

      

where y is the parameter being predicted, in this case peak horizontal ground acceleration in g, 

Ms is the surface wave magnitude, and: 

2 2

0r d h= +  (4.2) 

where d is the shortest distance from the station to the surface projection of the fault rupture, 

in km, and ho is a constant to be determined with C1, C2, C3 and C4. The standard deviation of 

log(y) is 0, and the constant P takes a value of 0 for mean values and 1 for 84-percentile values 

of log(y). 

The term ho in equation (4.2) accounts for the fact that the source of the peak motion is not 

necessarily the closest point on the surface projection of the fault, or from the epicenter, and it 

does not represent explicitly the effect of the depth on the acceleration. 

As given in Eq. (4.1), this GMPE gives different values (here peak horizontal ground 

acceleration or PGA) in different soil conditions due to changing two parameters: SA and SS 

which vary as bellow for various soil types:  

• Very soft or soft soil (Vs≤180 or 180<Vs≤360 m/s): SA=0, SS=1; 

• Stiff soil (360<Vs≤750 m/s): SA=1, SS=0; 

• Rock (Vs>750 m/s): SA=0, SS=0;  

In the case of using spectrum ordinates, the parameters of the attenuation equation given in Eq. 

(1) changes by changing period as provided in Table 4.1: 
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Table 4-1. Changes of coefficients of Eq. (1) and (2).  

T C'1 C2 h0 C4 CA CS σ 

0.1 -0.84 0.219 4.5 -0.954 0.078 0.027 0.27 

0.2 -1.21 0.284 4.2 -0.922 0.135 0.142 0.27 

0.4 -1.94 0.377 3.6 -0.888 0.139 0.172 0.31 

0.6 -2.49 0.438 2.5 -0.881 0.124 0.212 0.32 

0.8 -2.86 0.485 3.7 -0.925 0.127 0.218 0.32 

2 -3.79 0.503 3.2 -0.728 0.101 0.182 0.32 

 

Fig. 4.2 compares the changes of parameters of Ambraseys GMPE when period alters. Based 

on the curves illustrated in this figure, parameters C’1 and h0 change considerably by changing 

T while other parameters remain almost the same. 

  

Figure 4-2. effect of T(s) on the parameters used in Eq. (1) 

As mentioned before, in the Ambraseys GMPE SA and SS vary for different soil types while 

other parameters remain constant. As far as different values of period are concerned, changes 

of other parameters are as explained previously and presented in Table 4.1. For the sake of 

shortness, six periods (which reflect the changes in results perfectly) were chosen to be used 

for obtaining demand and capacity required for a target failure probability: 0.1, 0.2, 0.4, 0.6, 

0.8 and 2 s.  

In order to consider the changes of demand and capacity by elapsing time, the results are 

compared in three different times: 139 yr, 185yr and 371 yr (corresponding to 0.5rL0, 1.0rL0 

and 2.0rL, respectively). 

4.3.1 Very soft or soft soil  

Figure 4.3 compares the results corresponding to different periods for a site located on a very 

soft (or soft) soil; ( )IH i  curves for line, area and combined source are depicted in the left 

columns while the right column presents the curves reporting ( )IH i and ( )fp c for the combined 

source.  
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Considering the ( )IH i curves in the left column, it could be said that: (a) for short periods (0.1 

and 0.2) the hazard is affected mostly by the area source rather than the line source, (b) on the 

contrary, for long periods (>0.8 s), the results of combined source is almost the same as line 

source and area source could be approximately ignored, and (c) for moderate periods 

(0.6s<T<0.8s) the contribution of line and area source in the results of the combined source is 

considerable.  
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Regarding the curves demonstrated in the right column, it could be noted that capacity values 

in all the considered periods are higher than the demand values for a target failure probability. 

The difference between capacity and demand, however, is not constant and changes by altering 

period. Otherwise noted, for short and long periods capacity and demand difference is less than 

that of moderate periods.  

In order to investigate the effect of time elapsed since the last event, demand and capacity 

values for a target failure probability (0.0002) for three different times (139yr, 185yr and 

371yr) are obtained and illustrated in Fig. 4.4. The left diagram shows the demand for different 

periods and times whereas the right diagram compares the capacity values. As expected, both  

demand and capacity increases by elapsing time. However, it should be taken into consideration 

that the difference of demand and capacity in different times is not constant; in short periods 

(up to 0.2s) demand and capacity do not change considerably by elapsing time while for higher 

periods (up to approximately 0.75s) elapsing time affects the result remarkably. For periods 

higher than 0.75s, the difference between the results of various times commence to decrease.  

  

Figure 4-4. Analysis result of combined source for different hazard rates for a site located in soft or very soft 

soil; left: demand curves and right: capacity curves 

The other significant point which should be pointed out is that the changes of capacity in 

different time elapses since the last event is slightly higher than those of demand values (see 

Fig. 4.5). 

A quantitative comparison between demand and capacity values for different periods and times 

elapsed since the last event is provided in Table 4.2. As was noted before, the changes of 

capacity values are more than those of demand values in two considered times (0.5rL0 and 

2.0rL0). It should be also noted that the changes of results for 371yr elapsed since the last event 

is higher than those of 139yr elapsed since the last event. This difference in the results is due 

to the changes of time-dependent hazard model (BPT) used in this study.  
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Figure 4-5. Analysis result of combined source for different hazard rates for a site located in soft or very soft 

soil 

Table 4-2. demand and capacity values for different T(s) for a site located on very soft or soft soil.  

 0.5 H(t) H(t) 2 H(t) 

T 

(s) 

Demand 

(g) 
∆i (%) 

Capacity 

(g) 

∆ĉ 

(%) 

Demand 

(g) 

Capacity 

(g) 

Demand 

(g) 

∆i 

(%) 

Capacity 

(g) 

∆ĉ 

(%) 

0.1 0.252 -3.08 0.441 -4.34 0.260 0.461 0.274 5.38 0.495 7.38 

0.2 0.432 -6.70 0.739 -7.39 0.463 0.798 0.508 9.72 0.897 12.41 

0.4 0.584 -11.92 0.928 -12.37 0.663 1.059 0.769 15.99 1.266 19.55 

0.6 0.562 -13.67 0.859 -14.78 0.651 1.008 0.767 17.82 1.234 22.42 

0.8 0.391 -16.81 0.585 -18.18 0.470 0.715 0.569 21.06 0.905 26.57 

2 0.166 -18.63 0.243 -20.07 0.204 0.304 0.249 22.06 0.390 28.29 

4.3.2 Stiff soil  

The left column of Fig. 4.6 depicts hazard curves, ( )IH i , for area, line and combined source 

for different periods; the combined hazard and capacity curves are also compared in the right 

column.  

Like the results obtained in the previous section, the hazard of the combined source is affected 

mostly by area and line source in short and long periods, respectively. For the moderate periods, 

however, the hazard due to combined source is influenced by both time-independent area and 

time-dependent source. It should be also noted that the hazard due to each case (the line, area 

and combined source) increases by increasing period, then it decreases for periods longer than 

0.4s.  

In terms of capacity curves, it should be stated that the changes of capacity are not the same as 

hazard and it is higher than hazard values in all periods. More importantly, the difference 

between hazard and capacity in moderate periods is larger than short and long periods.  
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Fig. 4.7 compares demand and capacity values for different periods in three different times 

elapsed since the last event (139yr, 185yr and 371yr). As could be observed in both diagrams, 

for very short periods (up to 0.2s) elapsing time does not have a notable effect on the results. 

For longer periods, both demand and capacity increase by elapsing time. It should be taken into 

account that the highest difference between demand or capacity values at different times 

belongs to T=0.4s.  

  

Figure 4-7. Analysis result of combined source for different hazard rates for a site located in stiff soil; left: 

demand curves and right: capacity curves 

 

In order to make a comparison between demand and capacity changes for three different 

considered times, all the curves are shown together in Fig. 4.8. It is obviously observed that 

capacity values are more dependent on time rather than demand values. In other words, the 

difference between capacity values at different times is larger than those of demand values.  

 

 

Figure 4-8. Analysis result of combined source for different hazard rates for a site located in stiff soil 

 

The changes of demand and capacity required for a target failure probability are provided 

quantitatively in Table 4.4 for different periods and three considered times. 
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Table 4-3. demand and capacity values for different T(s) for a site located on stiff soil 

 0.5 H(t) H(t) 2 H(t) 

T 

(s) 

Demand 

(g) 
∆i (%) 

Capacity 

(g) 
∆ĉ (%) 

Demand 

(g) 

Capacity 

(g) 

Demand 

(g) 

∆i 

(%) 

Capacity 

(g) 

∆ĉ 

(%) 

0.1 0.283 -3.41 0.496 -4.25 0.293 0.518 0.308 5.12 0.557 7.53 

0.2 0.425 -6.80 0.727 -7.39 0.456 0.785 0.5 9.65 0.883 12.48 

0.4 0.541 -11.89 0.86 -12.42 0.614 0.982 0.713 16.12 1.174 19.55 

0.6 0.459 -13.72 0.702 -14.70 0.532 0.823 0.627 17.86 1.008 22.48 

0.8 0.317 -16.80 0.474 -18.28 0.381 0.58 0.461 21.00 0.734 26.55 

2 0.142 -17.92 0.202 -19.84 0.173 0.252 0.212 22.54 0.324 28.57 

 

4.3.3 Rock  

Hazard curves, ( )IH i , for three considered sources for different periods and the combined 

hazard and capacity curves are demonstrated in the left and right columns of Fig. 4.9, 

respectively.  

The trend of demand and capacity changes for a site located on rock is similar to those observed 

for other soil conditions. The most significant point which should be mentioned is that the 

hazard due to the combined source is close to the hazard due to each of either line or area 

source. Regarding capacity curve, it could be said that while there is a notable difference 

between demand and capacity for short and moderate periods, they are almost the same in long 

periods (T=2.0 s). 

A comparison between demand and capacity curves at different times is made in Fig. 4.10. 

Like the results obtained for other soil types, both demand and capacity increases by elapsing 

time and the maximum increase of the mentioned values is in the period T=0.4s. It is also worth 

noting that due to the BPT hazard model, the difference of the values corresponding 185yr and 

371yr since the last event is higher than those of 139r and 185yr. 
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Figure 4-10. analysis result of combined source for different hazard rates for a site located on rock; left: 

demand curves and right: capacity curves 

In order to compare the changes of demand and capacity values, they are depicted in Fig. 4.11. 

As also provided quantitatively in Table 4, the changes of capacity values are higher than those 

of demand values, which means that the changes of demand do not translate to the changes of 

capacity exactly.  

 

Figure 4-11. analysis result of combined source for different hazard rates for a site located on rock 

 

Table 4-4. demand and capacity values for different T(s) for a site located on rock 

 0.5 H(t) H(t) 2 H(t) 

T 

(s) 

Demand 

(g) 
∆i (%) 

Capacity 

(g) 
∆ĉ (%) 

Demand 

(g) 

Capacity 

(g) 

Demand 

(g) 

∆i 

(%) 

Capacity 

(g) 

∆ĉ 

(%) 

0.1 0.237 -3.27 0.414 -4.39 0.245 0.433 0.257 4.90 0.466 7.62 

0.2 0.312 -6.59 0.533 -7.47 0.334 0.576 0.367 9.88 0.647 12.33 

0.4 0.393 -11.88 0.624 -12.48 0.446 0.713 0.518 16.14 0.852 19.50 

0.6 0.345 -13.75 0.527 -14.86 0.4 0.619 0.471 17.75 0.758 22.46 

0.8 0.237 -16.84 0.354 -18.24 0.285 0.433 0.345 21.05 0.548 26.56 

2 0.126 -17.11 0.16 -20.00 0.152 0.2 0.183 20.39 0.257 28.50 

 

Sections 4.1 – 4.3 compared demand and capacity values at different times and periods. The 

effect of soil conditions on the results is compared more precisely in Fig. 4.12 and Table 4.5.  
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Figure 4-12. analysis result of combined source for different soil conditions and different periods at 1.0rL0 

(solid curves: demand, dashed curves: capacity) 

The first significant point which could be understood from Fig. 4.12 is that the capacity values 

are significantly higher than demand values in all the three soil types. Moreover, the results 

obtained for a site located in very soft or soft soil is higher than those obtained for stiff or rock. 

Otherwise noted, the looser the soil is, the higher the demand and capacity will be. 

Additionally, demand (or capacity) values could be considered the same for a site located on 

very soft, soft or stiff soil up to period 0.25s. The above-mentioned comparisons could be 

quantitatively observed in the data provided in Table 4.5.  

 

Table 4-5. demand and capacity values for different soil types and T(s) at 1.0rL0 

 Very soft and soft Stiff Rock 

T (s) 
Demand 

(g) 

Capacity 

(g) 

Demand 

(g) 

Capacity 

(g) 

Demand 

(g) 

Capacity 

(g) 

0.1 0.26 0.461 0.293 0.518 0.245 0.433 

0.2 0.463 0.798 0.456 0.785 0.334 0.576 

0.4 0.663 1.059 0.614 0.982 0.446 0.713 

0.6 0.651 1.008 0.532 0.823 0.4 0.619 

0.8 0.47 0.715 0.381 0.58 0.285 0.433 

2 0.204 0.304 0.173 0.252 0.152 0.2 

 

4.4 Different GMPE  

Two GMPE models are considered in this research for analyzing demand and capacity values: 

(a) GMPE proposed by Ambrasyes et al., which was explained in section 4.2 (Ambraseys, 

Simpson et al. 1996), and (b) GMPE proposed by Sabetta and Pugliese which is given in Eq. 

(4.3) (Sabetta and Pugliese 1996): 

( ) 2 2
10 10 1 1 2 2log logI a bm c x h e S e S = + − + + + +             (4.3) 
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where   is a 0-mean Gaussian random variable, 1S  and 2S are parameters depending on 

characteristic of soil, h  is the fictitious depth, and 1 2, , , ,a b c e e  are the model constants. In this 

study, according to the work of (Polidoro, Iervolino et al. 2013) regarding the soil type, the 

following values are assumed for the parameters: 1.562a = − , , 0.306b = , 1c = , 1 1S =

, 1 0.169e = , 2 0S =  and 5.8h =  (Sabetta and Pugliese, 1996). The standard deviation of   is 

assumed equal to 0.173. 

hazard, ( )IH i , due to area, line and combined sources obtained using above-mentioned GMPEs 

are depicted in the left column of Fig. 4.13. Corresponding capacity curves are also illustrated 

in the right column.  

S
ab

et
ta

 a
n

d
 P

u
g

li
es

e 
(1

9
9

6
) 

  

A
m

b
ra

sy
es

 e
t 

al
. 

1
9

9
6

 

  

 

Figure 4-13. left column: ( )IH i  curves for area, line and combined source; right column: ( )IH i  and 

( )fp c  curves at 1.0
0

r
L  

Taking hazard curves shown in Fig. 4.13 into consideration, it could be observed that regardless 

of the GMPE used, the hazard due to the combined source is affected mostly by area and line 

sources for high and low probabilities, respectively. However, the results obtained by Sabetta 

and Pugliese GMPE are considerably higher than those of Ambrasyes et al. GMPE. The 

1.562a = −
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difference between capacity and demand in the results obtained using Sabetta and Pugliese is 

consequently higher than those of Ambraseys et al. Table 6 also provides the demand and 

capacity for the target failure probability (0.0002).  

In order to evaluate demand and capacity values in the case of time-dependent models, the 

obtained results are illustrated in Fig. 4.14. Red curves show hazard due to combined source 

while black curves depict capacity curves.  
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Figure 4-14. analysis result of combined source for different hazard rates using different GMPEs; left: 

demand curves and right: capacity curves 

 

As expected, independent of the GMPEs, demand and capacity increase by elapsing time. In 

the results obtained by the mentioned GMPEs, the capacity changes are slightly higher than 

those of demand (as also reported quantitatively in Table 4.6). It is noteworthy that the effect 

of elapsing time on both demand and capacity in the results obtained by Sabetta and Pugliese 

GMPE is more considerable in comparison to those obtained by Ambraseys et al. GMPE. These 

changes are provided in Table 4.6 quantitatively. 
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Table 4-6. demand and capacity values for different soil types and T(s) at 1.0rL0 

  0.5 r0  

(139yr) 

1.0 r0  

(185yr) 

2 r0  

(371yr) 

∆ (%) 

0.5 r0 

(139yr) 

2 r0 

(371yr) 

Ambraseys et al. 1996 
i (g) 0.16 0.167 0.178 -4.19 6.58 

ĉ (g) 0.275 0.292 0.321 -5.82 9.93 

Sabato & Pugliese et al. 1996 
i (g) 0.865 0.943 1.035 -8.27 9.75 

ĉ (g) 1.584 1.765 2.036 -10.25 15.35 

4.5 Summary and conclusions 

Seismic hazard and design capacity of structures in the case of time-dependent hazard model 

was investigated in this report. a combined source of an area source producing medium-low 

intensity earthquakes, whose recurrence was described by the no-memory POI model, and a 

line source producing high intensity earthquakes with a periodic recurrence described by the 

time-dependent BPT model were considered. The influence of GMPEs on the results was 

assessed by the application of two known GPMEs available in the literature: Sabetta and 

Pugliese 1996 and Amberaseys et al .1996. The effect of soil conditions was also evaluated by 

comparing the results obtained for three different soil categories: very soft and soft, stiff and 

rock. The main conclusions are:  

• The hazard due to combined source is affected mostly by area and line source in short 

and long periods, respectively in all the considered soil types. 

• The difference between demand and capacity for a site located on soil is larger than a 

site located on rock.  

• Regardless of the soil type and GMPE, by elapsing time, both demand and capacity 

increase. However, their increase rate is not the same and the capacity changes are 

slightly larger than demand changes. 

• For very short periods (less than 0.2s) or very long periods, elapsing time does not affect 

neither capacity nor demand. 

• Elapsing time affects both demand and capacity corresponding to moderate periods 

(0.4s in this study) significantly.  

• The GMPE used for the analysis affects the results remarkably and the most appropriate 

GMPE which is proposed for the region of the study should be used.  
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5 Fragility curves of buildings; a critical review and a machine learning-

based study 

 
 

 

Abstract 

Fragility curves are one of the substantial means required for seismic risk assessment of 

buildings in the framework of performance-based earthquake engineering (PBEE). Deriving 

fragility curves, however, needs an extensive numerical analysis which is time-consuming and 

sometimes inaccurate due to errors. In this study, hence, machine learning (ML)-based models 

are proposed for predicting fragility parameters of structures namely dispersion, β, and median, 

µ, based on a reduced set of information avoiding cumbersome computation. Firstly, a critical 

review on the analytical models proposed for deriving fragility curves is provided as well as 

ML-based models developed so far. Then, to achieve the research objective, a comprehensive 

database including 214 datasets from peer-reviewed international publications is collected. It 

is then divided into training (85%) and testing (15%) sub-datasets for the purpose of training 

the models and assessing the results, respectively. The most effective parameters on the target 

outputs are defined as input variables including construction material, building plan area, 

building height, damage state, buildings’ period and soil classification. β and µ were estimated 

utilizing various ML-based techniques namely nonlinear regression, decision tree, random 

forest, K-Nearest Neighbours (KNN) and Artificial Neural Network (ANN). The actual values 

and the values predicted by the proposed models are compared. Moreover, the models’ 

accuracy is assessed through performance metrics and Taylor diagram. The results 

demonstrated the high ability of the models for learning the relationship between inputs and 

outputs. According to the accuracy assessment, Decision tree was the most accurate model for 

predicting both β and µ. A sensitivity study was also conducted by changing input variables 

and estimation equations are provided accordingly.  
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5.1 Introduction 

5.1.1 background 

Among various natural hazards, earthquakes are recognised as the greatest threat to human 

beings (Özel and Güneyisi 2011, Frankie, Gencturk et al. 2013). As a result, risk assessment is 

undoubtedly of high importance which could help humankinds in the sense of life and 

economics (Prieto, Journeay et al. 2018). In this context, Performance-based Earthquake 

Engineering (PBEE) and potential failure mode analysis (PFMA) have been developed over 

the past years (Kiani, Camp et al. 2019, Saouma and Hariri-Ardebili 2021). PBEE is known as 

a process with quantitative measures as the output which reflect the response of structures 

under seismic loads (Lange, Devaney et al. 2014). One of the main issues in seismic risk 

analysis is various sources of uncertainties (e.g., randomness in ground motion, structural 

modelling related uncertainties, damage state, etc.) which is addressed by considering fragility 

curves in the PBEE framework (Kiani, Camp et al. 2019, Hwang, Mangalathu et al. 2021).  

5.1.2 Fragility curves definition  

Various definitions have been provided for clarifying the concept of fragility curves by 

researchers (Park, Towashiraporn et al. 2009, Rota, Penna et al. 2010, Cardone, Rossino et al. 

2018, Del Gaudio, De Martino et al. 2019, Alwaeli, Mwafy et al. 2020, Dall’Asta, Dabiri et al. 

2021). Simply stated, fragility is described as the probability of reaching or exceeding a 

specified damage measure (DM) under a given earthquake Intensity Measure (IM) for a 

structure (Park, Towashiraporn et al. 2009, Prieto, Journeay et al. 2018, Sandoli, Lignola et al. 

2021). In the viewpoint of mathematic, fragility curves could be expressed as Eq. 5.1 

(Mitropoulou and Papadrakakis 2011). 

FR(x) = P(θmax ≥ y|IM = x)            (5.1) 

where θmax is the maximum Engineering Damage Parameter (EDP), and y and x are the values 

of θmax (the threshold defined the DM limit state) and IM, respectively. It is worth clarifying 

that that θmax and IM are real-value positive random variables while y and x are particular 

values that can be assumed by samples of the random variable. The fragility curves could be 

drawn using lognormal distribution functions which are defined by two parameters: median (µ) 

and lognormal standard deviation (or dispersion, β). These parameters, therefore, are known as 

fragility curve’s parameters and could be estimated by different techniques e.g., the maximum 

likelihood method (Shinozuka, Feng et al. 2000, Mitropoulou and Papadrakakis 2011, Kiani, 

Camp et al. 2019). As a result, the fragility curves could be expressed as Eq. 5.2: 
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FR(IM) = Φ [
ln(𝑥) − 𝜇ln (𝑥)

𝛽ln (𝑥)
]             (5.2) 

where Φ(.) is the standardized normal distribution function, x is the PGA, µln(x) is the 

logarithmic median (is represented μ hereafter) and βln(x) is the logarithmic standard deviation 

(is represented β hereafter) defining the lognormal distribution (Mitropoulou and Papadrakakis 

2011, Del Gaudio, De Martino et al. 2019).  

As could be figured out from the above-mentioned explanations, the chosen IM could affect 

fragility curve of a building significantly. A macroseismic IM does not lead to accurate fragility 

curves because (i) it can cause interdependency between the vulnerability and the IM itself 

because it is obtained from observation of earthquake consequences on buildings, and (ii) it is 

a subjective parameter which means that it is influenced by the sensitivity and judgment of the 

surveyor (Del Gaudio, De Martino et al. 2019, Sandoli, Lignola et al. 2021). Hence, parameters 

namely peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground 

displacement (PGD) have been applied instead of macro seismic IMs (Del Gaudio, De Martino 

et al. 2019). Among these parameters, PGA is more common than others because of its 

simplicity for deriving fragility curves of complex buildings (Pejovic and Jankovic 2016). It 

should be also stated that different parameters could be used as EDP such as interstory drift 

ratio (IDR), ultimate rotation, etc. The most usual EDP, however, is IDR since it could reflect 

the structures’ damage state (Sandoli, Lignola et al. 2021) using different thresholds. 

5.1.3 Review on the methods for deriving fragility curves  

IDA is one of the most widespread methods for obtaining fragility curves which reflects the 

relationship between the defined IM and EDP. IDA could be performed through: (a) defining 

a metric for both the seismic action (IM) and the construction response (EDP), (b) performing 

a nonlinear model to relate the two metrics, (c) collecting a sufficient number of samples of the 

seismic actions and the model parameters to include uncertainties (Park, Towashiraporn et al. 

2009, Cardone, Rossino et al. 2018, Aljawhari, Gentile et al. 2021).  

Distribution of the obtained curves through the above-mentioned steps, intersected by a vertical 

line passing from each damage state will be approximated by a lognormal distribution with 

median (µ) and dispersion (β) which are used for deriving the fragility curve of the 

corresponding damage state. Fig. 5.1 displays the fragility curve derivation schematically.  
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(a) (b) 

  

(c) (d) 

Figure 5-1. Schematically illustration of driving fragility curves; (a) incremental dynamic analysis, (b) 

distribution at a specified damage state, (c) probability of failure for the damage state, and (d) fragility curves.  

The method shown in Fig. 5.1 is recognized as the conventional method for generating fragility 

curves. Several novel approaches have been developed and presented in the last few decades 

as well. The fundamental concepts of these methods are summarized in Table 5.1. 
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Table 5-1. A summary of the methods developed for deriving fragility curves. 

reference aim Methodology and outcomes 
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9
) Evaluating seismic fragility of 

low-rise unreinforced masonry 

buildings 

A simplified spring model was presented for simulating the highly 

nonlinear dynamic behaviour of URM buildings. 
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Developing a methodology for 

driving fragility curves of 

masonry buildings 

Mechanical properties were considered as random variables with a 

reasonable value. The input variables were extracted through Monte 

Carlo method from the distributions. The probability distribution of the 

damage states was defined by pushover analysis. Novelty: unlike other 

studies, results of nonlinear stochastic analyses of a prototype building is 

used while simplified models of buildings and approximate analysis are 

generally considered by researchers. 
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Driving Fragility curves of RC 

buildings through a hybrid 

approach 

In HAZUS, fragility curves are developed using inelastic static analysis, 

in this study, however, fragility parameters are obtained by a hybrid 

method. Median values are predicted by comprehensive loss assessment 

analysis and dispersion values are evaluated according to the results of 

accurate inelastic dynamic analysis.  
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) Proposing a new methodology for 

driving fragility curves with less 

computational efforts and time 

A novel record selection criterion and a fragility curve tolerance factor 

are provided for developing rigorous (refined) and less-demanding 

fragility relations for RC high-rise buildings.  
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Developing a mechanics-based 

fragility model for Italian 

residential URM buildings 

A database including 500 building information was used to proposed a 

fragility model which was based on the classification of the buildings in 

terms of age and story numbers. The verification was made by simulating 

2009 L'Aquila earthquake, proved the acceptable reliability of the model. 
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Proposing a hybrid method for 

driving fragility curves of 

masonry buildings 

The innovative method is a combination of: (i) an expert judgment by 

classifying buildings in the viewpoint of construction age, structural 

typology, seismic behaviour and damage of buildings caused by the 

earthquakes, and (ii) numerical analysis results.  
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Developing out-of-plane fragility 

functions using probabilistic 

analysis and Monte Carlo 

simulation 

The study novelty was that, unlike other studies which consider demand, 

this study used the uncertainties in the capacity namely aspect ratio, level 

of In-Plane damage, position of the infill walls and type of masonry (solid 

or hollow units).  

C
a

rd
o
n

e 
et

 
a

l.
 

(C
a

rd
o
n

e,
 

P
er

ro
n

e 

et
 a

l.
 2

0
1

9
) 

 Generating collapse fragility 

curves for base-isolated RC 

buildings  

Fragility curves of RC building with either low- or high-seismic 

resistance systems retrofitted by different isolation systems are obtained.  
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The main aim of the recently developed models is to ease the process of deriving fragility 

curves by (i) proposing building simulation assumptions (Park, Towashiraporn et al. 2009, 

Rota, Penna et al. 2010), (ii) proposing simpler methods by combining simpler techniques 

(Cardone, Rossino et al. 2018, Sandoli, Lignola et al. 2021), (iii) using the assets of building 

classification in terms of age, structural typology, story numbers and seismic behaviour (Donà, 

Carpanese et al. 2021, Sandoli, Lignola et al. 2021), (iv) presenting novel earthquake record 

selection (Alwaeli, Mwafy et al. 2020) and (v) considering the uncertainties of capacity rather 

than those of demand (Beilic, Casotto et al. 2017). Fragility curves of buildings with novel 

resisting systems (e.g., seismic isolators) have also been presented and discussed by researchers 

(Cardone, Perrone et al. 2019).  

5.1.4 Review on the application of ML-based techniques for generating fragility curves 

Due to complicated and time-consuming analysis required for IDA and fragility assessment, 

there has been an increasing interest in the implementation of quicker and less-complicated 

models for deriving fragility curves. Artificial Intelligence (AI) and Machine Learning (ML) 

have been increasingly applied by researchers in various fields (Faramarzi, Javadi et al. 2013, 

Alani and Faramarzi 2014, Faramarzi, Alani et al. 2014) as well as structural and earthquake 

engineering (Salehi and Burgueño 2018, Sun, Burton et al. 2021, Dabiri, Kioumarsi et al. 2022, 

Dabiri, Rahimzadeh et al. 2022). 

During the last years, a few attempts have been made to apply ML-based techniques in the 

process of emerging fragility curves. A summary of the relevant studies is given in Table 5.2. 

The main objective of the studies listed in Table 5.2 is to boost the process of generating 

fragility curves by either making the process quicker (Kiani, Camp et al. 2019) or reducing the 

uncertainty degrees of different parameters (Mitropoulou and Papadrakakis 2011, Jia and Wu 

2021). As an example, maximum story drift was estimated through ML-based methods in the 

models proposed by Kiani et al (Kiani, Camp et al. 2019) and Hwang et al. (Hwang, 

Mangalathu et al. 2021). Jia and Wu (Jia and Wu 2021) have also developed a novel model for 

predicting a dimensionless parameter which was used for obtaining failure probability. The 

most remarkable conclusion of the studies is that the results of the prediction models developed 

based on ML or Neural Network (NN) are in line with the results of the conventional method 

with an acceptable level of accuracy. More specifically, their evaluations have clarified that 

tree-based approaches (e.g., Decision Tree, DT or Random Forest, RF) led to more accurate 

outcomes compared to other ML-based approaches (e.g., ANN) (Hwang, Mangalathu et al. 

2021, Jia and Wu 2021).  
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The notable issue with the proposed models, on the other hand, is their limitations including (i) 

being capable only for a specific building. In other words, the prediction models are developed 

based on the results obtained for the buildings with specified number of stories or construction 

material, as also reported in the last column of Table 5-2. As an example, the prediction model 

developed by Kiani et al (2019) could be used for a 8-stody steel frame.  Furthermore, (ii) Some 

effective parameters (e.g., construction material, soil type, building’s location, etc.) are not 

considered in the prediction models. Accordingly, further studies are definitely required to 

provide a more generalized model for emerging fragility curves.  
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Table 5-2. Literature review on the application of ML-based models for obtaining fragility curves. 

reference aim methodology conclusions 
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5.2 Significance, novelty and methodology of the study 

Obtaining fragility curves is an inevitable key step in seismic risk assessment in the 

performance-based earthquake engineering which accounts for the uncertainties of risk due to 

seismic events. Deriving fragility curves, however, is generally time-consuming due to a huge 

amount of analytical analysis performed for IDA. Moreover, it needs powerful operating 

systems, particularly in the case of studying tall and complex buildings.  

Although a few innovative models have been developed so far (Table 5.2) (Mitropoulou and 

Papadrakakis 2011, Kiani, Camp et al. 2019, Hwang, Mangalathu et al. 2021, Jia and Wu 

2021), they suffer from shortcomings which were mentioned in the previous section. More 

importantly, the models do not estimate fragility curves directly. Otherwise noted, they could 

be used for predicting neither IM or EDP. This means that the time-consuming analysis still 

needs to be performed even if the prediction models are applied.  

The main objective of this research, therefore, is to propose a prediction model for deriving 

fragility curves using regression- and ML-based techniques. The remarkable novelty of this 

study is proposing models which output fragility curves’ parameters (β and µ) directly. In other 

words, the time-consuming IDA is eliminated and consequently the fragility curves could be 

obtained quickly by defining the inputs. Furthermore, the main parameters which are proved 

to have a strong effect on fragility curves are considered. More importantly, the proposed 

models are not limited to a specific building and could be utilized for a large class of reinforced 

concrete (RC), steel or masonry buildings. 

Overall, the benefits of the proposed prediction models are: (i) predicting µ and β directly, (ii) 

eliminating time-consuming IDA, (iii) considering the main effective parameters and (iv) being 

generalized and therefore applicable for a huge number of buildings. 

To this aim, a comprehensive database is gathered and various ML-based methods including 

nonlinear regression (NLR), Decision Tree (DT), Random Forest (RF), K-nearest Neighbours 

(KNN) and Artificial Neural Network (ANN) are used to develop models for deriving fragility 

curves. The accuracy of the models is assessed through Taylor diagram and performance 

metrics and the most accurate model is introduced. Eventually, a parametric study is conducted 

to investigate the effect of input variables on the output parameters and prediction equations 

are provided accordingly. 
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5.3 Data collection  

A database including 214 results of the fragility assessment of buildings was collected from 

peer-reviewed international publications on either empirical data or numerical analysis (Kirçil 

and Polat 2006, Park, Towashiraporn et al. 2009, Rota, Penna et al. 2010, Özel and Güneyisi 

2011, Abo-El-Ezz, Nollet et al. 2013, Frankie, Gencturk et al. 2013, Saruddin and Nazri 2015, 

Pejovic and Jankovic 2016, Prieto, Journeay et al. 2018, Zucconi, Ferlito et al. 2018, Del 

Gaudio, De Martino et al. 2019, Kumar and Samanta 2020, Aljawhari, Gentile et al. 2021, 

Karafagka, Fotopoulou et al. 2021, Suzuki and Iervolino 2021). Otherwise noted, in the above-

mentioned studies fragility curves of various building were obtained using numerical analysis 

or experimental investigation and their final outcome are used in this research. It is worth 

mentioning that the reliability of the collected database was improved by removing outliers (a 

value which differs from the rest of the data significantly) and incomplete datasets. It should 

be also explained that during the data collection, special attention was given to consider the 

parameters which affect fragility parameters significantly based on the literature results. As an 

example, Gaudio et al. (Del Gaudio, De Martino et al. 2019) have proved that buildings’ height 

has a significant influence on its fragility while influence of its construction age could be 

neglected.  

Accordingly, the parameters considered as inputs for the prediction models are: construction 

materials (i. e., RC, steel and masonry), buildings’ plan area (m2), buildings’ height (m), lateral 

resisting system (i. e., shear wall, bearing masonry wall, bracing system or moment resisting 

frame-MRF), buildings’ location (the country in which the building is located: Turkey, Malaya, 

Italy, Quebec, the US), damage state, buildings’ period, soil classification (e. g., rock). In terms 

of period, it should be explained that the building’s period is obtained either by the numerical 

analysis or the available equations in design codes. The output, on the other hand, are the 

fragility parameters: median value of the ground motion index at which the building reaches 

the defined damage state threshold (in this study PGA expressed by µ) and dispersion of the 

natural logarithmic of ground motion index of damage level (β). One of the parameters which 

could reveal if the input variables are defined appropriately is Pearson correlation coefficient 

and is defined as the ratio of x, y covariance, cov (x, y), to the production of their standard 

deviation (σxσy) as given in Eq. 5.3 (Nettleton 2014, Berman 2018): 

ρx,y =
cov (X, Y)

σxσy
=

∑(xi − x̅)(yi − y̅)

√∑(xi − x̅)
2 √∑(yi − y̅)

2

              (5.3) 
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Pearson coefficient of two parameters could be calculated for quantitative values only and is a 

value in the range of (0,1). ρ≈1 reflects almost perfect linear dependency of the parameters on 

each other while ρ≈0 stands for no linear dependency of the parameters. It should be explained 

that Pearson correlation represent only linear relationship between parameters, which means 

that ρ≈0 does not necessarily represent complete indecency of variables and they might have 

nonlinear dependency (Berman 2016, Profillidis and Botzoris 2019). Pearson correlation 

coefficients of the quantitative input variables, and β and µ are reported in Table 5.3 and Table 

5.4, respectively. 

Table 5-3. Pearson correlation coefficients between input variables and β. 

 Plan area (m2) Building height (m) Building period (s) β 

Plan area (m2) 1.00    

Building height (m) 0.57 1.00   

Building period (s) 0.31 0.82 1.00  

β 0.34 0.17 0.10 1.00 

 

Table 5-4. Pearson correlation coefficients between input variables and µ. 

 Plan area (m2) Building height (m) Building period (s) μ 

Plan area (m2) 1.00    

Building height (m) 0.57 1.00   

Building period (s) 0.31 0.82 1.00  

μ 0.53 0.34 0.27 1.00 

 

According to Tables 5.3 and 5.4, it could be claimed that plan area has the highest linear 

influence on both β and µ compared to other quantitative input variables. It is also noteworthy 

that, building height has a considerable influence on building period, as given in Table 5-3 and 

5-4. The equations proposed in design codes which obtain the building period based on its 

heigh proves their high relationship. Moreover, the coefficients reported in Table 5-3 and 5-4 

clarifies that by increasing either building area or height, μ increases.  

Distribution of the input variable and output parameter(s) influence the applicability and 

generalization of prediction models; the broader range of input values is, the more general the 

model will be. On that account, it is tried to include the datasets which lead to a high range of 

values for each input. Distribution of the input parameters and outputs is demonstrated in Fig. 

5.2. The statistical characteristics including minimum, maximum, median, variance and 

standard deviation of the data are also given in Table 5.5. 
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Table 5-5. Statistical properties of the quantitative input and output parameters. 

 Minimum Maximum Mean Median 
Standard 

deviation 

Plan area (m2) 53.129 1296.00 596.61 276.75 486.22 

Building height (m) 1.35 30.00 15.38 18.00 7.56 

Building period (s) .08 2.60 0.72 0.48 0.73 

Dispersion (β) 0.16 0.84 0.47 0.45 0.16 

Median (µ, log(PGA) -3.25 1.43 -0.24 0.07 0.91 

 

 

   

   

  

 

Figure 5-2. Distribution of the input and output parameters. 

The database was divided into two sub-databases namely training (85%) and testing (15%). 

The former is used for training the models the relationship between the inputs and outputs and 

the latter is used for assessing the accuracy of the predicted values. Otherwise mentioned, the 

testing datasets are not used for training purpose while they are utilized for validity of the 

prediction models. It is also noteworthy that no specific portions have been stated for dividing 

training and testing databases so far and the similar values are typically used for developing 

ML-based prediction models.  
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5.4 Prediction models 

The prediction models are developed in two parts in this study. In the first part models are 

presented to predict dispersion while median is estimated in the second part. Various 

techniques including NLR, DT, RF, KNN and ANN were used for proposing prediction 

models. An extensive definition of the methods could be found in the literature; therefore, they 

are introduced here briefly for the sake of shortness. 

5.4.1 Nonlinear regression (NLR) 

Simply stated, a regression-based model is a model which fits an equation to a set of data. The 

equation refers to a line which processes the least difference between the mean and each data. 

The obtained regression equation is known as linear and nonlinear when the fit line is a straight 

line and a curve, respectively. In the sense of mathematic, a regression model could be 

expressed as Eq. 5.4. When f is linear in θ, y will be linear while when f is nonlinear in θ, y will 

be a nonlinear regression model (Huang, Hsiao et al. 2010, Dabiri, Kioumarsi et al. 2022, 

Dabiri, Rahimzadeh et al. 2022).  

y = f(xi: θ) + ε                  (5.4) 

where f is the function showing the relationship between inputs and outputs, xi are the inputs, 

θ are the parameters and ε is a random variable error with mean=0 and standard deviation=σ. 

NLR generally yields more accurate predicted values than linear regression since it can fit a 

much wider range of curves (nonlinear relationship) between its variables (Hasanuzzaman and 

Abd Rahim 2019, Wood and Cai 2021, Dabiri, Rahimzadeh et al. 2022). Moreover, NLR finds 

the most reliable fit by minimizing the sum of squares of the distance between the actual and 

model prediction values (RSS), as given in Eq. 5.5 (Sanft and Walter 2020): 

RSS (P1, … , Pm) = ∑ ei
2n

i=1 ,         ei = zi − g(ti, P1, … , Pm)             (5.5) 

where zi is the prediction values, g are the actual values and Pi are the parameters.  

5.4.2 Decision Tree (DT) 

A decision tree is a method which uses a tree-shape graph for moving a dataset sample to the 

most accurate target output based on its characteristics. DT could be used for solving both 

classification (finite set of values) and regression (continues values) problems (Liu, McGree et 

al. 2015, Bellini 2019). The process of predicting a value is schematically depicted in Fig. 5.3. 

The most assets of DT technique are: (i) being simple for understanding and interpreting, (ii) 
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being independent of the nonlinear relation between parameters, and (iii) being flexible to be 

adopted to new scenarios (Kotu and Deshpande 2018, Shobha and Rangaswamy 2018).  

 

 

Figure 5-3. Schematic illustration of a DT prediction model. 

5.4.3 Random Forest (RF) 

In the simplest concept, RF consists of many decision trees and target output is predicted by 

considering either the average of the DTs’ predicted values or the most voted value. To explain 

more precisely, RF is basically the combination of Bagging and Random selection of features 

by creating various decision trees. The most notable point about RF is that selecting training 

dataset for each tree is done through Bootstrap sampling and the feature which is chosen as the 

decision node is a random subset of the main dataset (Mao and Wang 2012, Paul and Bhatia 

2020, Williams, Halloin et al. 2020). The above-mentioned explanations are simply 

demonstrated in Fig. 5.4.  

 

Figure 5-4. A simplified illustration of a RF model. 

In order to find out the most efficient number of trees in our RF model, R2-score of various 

RFs with different numbers of trees was obtained (Fig. 5.5). As could be observed in Fig. 5.5, 
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62 and 144 trees led to the highest accuracy of the RF models developed for predicting β and 

µ, respectively. 

 

  

(a) (b) 

Figure 5-5. The most efficient number of trees in the RF models developed for predicting (a) β and (b) µ. 

5.4.4 K-Nearest Neighbours 

K-nearest Neighbours (KNN) is recognized as a non-parametric prediction method which 

means that the prediction process is not influenced by the relationship between input and output 

parameters (Chanal, Steiner et al. 2021). Therefore, KNN is known as the simplest 

classification approach by data scientists. In this method, the data are plotted in a multi-

dimensional space where the axis are the data’s features. When a new data is added to the space 

according to its characteristics, the average of its “K” nearest neighbours defines the target 

output (Richman 2011, Subasi, Khateeb et al. 2020). As a result, the most effective parameter 

which could enhance the accuracy of predicted values is the number of nearest neighbours 

defined as “K”. Although some researchers have claimed that square root of the total number 

of datasets could be the most accurate K (Subasi, Khateeb et al. 2020), it is generally obtained 

by trial-and-error process. The best K values obtained for predicting β and µ are 3 and 1, 

respectively, as depicted in Fig. 5.6. 
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(a) (b) 

Figure 5-6. Finding the most accurate K for the KNN models for predicting (a) β and (b) µ. 

 

5.4.5 Artificial Neural Network  

ANN is basically a combination of computation and mathematics which is inspired from the 

human brain by simulating the performance of the brain’s nervous system (Richman 2011, 

Malekian and Chitsaz 2021). The architecture of an ANN model consists of (i) input layers: 

the number of the nodes in this layer is equal to the number of model inputs, (ii) hidden layer(s) 

which might be considered to enhance the model accuracy, and (iii) output layers: like input 

layer, the number of nodes is determined based on the number of target outputs. The nodes are 

connected to each other by weights which are updated in each iteration in order to reach an 

acceptable estimated output (Sadiq, Rodriguez et al. 2019, Malekian and Chitsaz 2021). Other 

optional components which might be considered in an ANN model are: (iv) bias values which 

could be defined for hidden and output layers and (v) activation functions which might be 

added to the weights in order to allow the ANN to account for nonlinear behaviour in the 

training dataset. Otherwise noted, an Ann model without an activation function can perform 

linearly with unreliable accuracy (Walczak and Cerpa 1999, Sadiq, Rodriguez et al. 2019). An 

ANN model could be formulized as below: 

( )j ij iO f w I b= +        (5.5) 

Where Oj is the model output, wij is the associated weight which is updated in each epoch, Ii is 

input data and b is bias (Dabiri, Rahimzadeh et al. 2022).  

Based on the above-mentioned definitions, number of hidden layers, number of nodes in each 

hidden layer and type of the activation function are the main factors which affect the 

performance of an ANN model significantly. These parameters are typically obtained through 

a trial-and-error process. The architecture of the ANN model developed for presenting β and µ 



Chapter 5 Page 128 of 152 

Fragility curves of buildings; a critical review and a machine learning-based study 

 

 

is displayed in Fig. 5.7. It should be noted that Rectified Linear activation function or ReLu 

function was defined as the activation function in the models. 

 

Figure 5-7. The architecture of the ANN models developed in this study for predicting β and µ. 

 

5.5 Results 

The prediction models were developed by adjusting their characteristics using training sub-

databases. Then, the target outputs of both training and testing datasets were predicted by the 

models. The correlation between the predicted and actual values is shown in Fig. 5.8 and Fig. 

5.9 respectively for β and µ. The green solid line shows the ideal line (predicted = actual) while 

the read dotted lines illustrate 80% upper and lower values of the ideal line.  

In order to figure out the accuracy of the models more precisely, each predicted value of β and 

µ is compared with its corresponding actual value as displayed in Fig. 5.10 and Fig. 5.11, 

respectively. 
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Training dataset Testing dataset 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 5-8. Correlation between actual and predicted values of β: (a) NLR, (b) DT, (c) RF, (d) KNN, (e) ANN. 
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Training dataset Testing dataset 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

Figure 5-9. Correlation between actual and predicted values of µ (log (PGA)): (a) NLR, (b) DT, (c) RF, (d) 

KNN, (e) ANN. 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
 

 
Figure 5-10. Comparing the predicted and actual values of β (a) NLR, (b) DT, (c) RF, (d) KNN, (e) ANN. 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 
 

 
(d) 

 
 

 
(e) 

 
 

 
Figure 5-11. Comparing the predicted and actual values of µ (log (PGA)) (a) NLR, (b) DT, (c) RF, (d) KNN, (e) 

ANN. 
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At the first glance on figures 5.7-5.10, it could be claimed that almost all the methods exhibited 

the ability to learn the relationship between input variables and two target outputs. More 

specifically, DT showed good correlation between actual and predicted values of both β and μ 

in Figures 5. 10(b) and 5.11(a). However, the models need to be assessed more precisely as 

presented in the next section. 

5.6 Accuracy assessment 

The accuracy of the prediction models proposed in this study is assessed through common 

performance metrics and Taylor diagram.  

5.6.1 Performance metrics 

The performance metrics which are commonly used for assessing accuracy of a model are Root 

of Mean Square Error (RMSE), Mean Absolut Error (MAE), Mean Absolute Percentage Error 

(MAPE) and R2-score. These parameters are calculated using Eq. (5.6-5.9).  

RMSE = (
1

n
∑(ŷi − yi)

2

n

i=1

)

0,5

 (5.6) 

MAE =
1

n
∑|ŷi − yi| 

n

i=1

 (5.7) 

MAPE =
1

n
∑ |

ŷi − yi

yi
|

n

i=1

 (5.8) 

R2 = 1 −
∑ (i ŷi − yi)

2

∑ (i yi − y̅i)2
 (5.9) 

 

where y is the actual output, ŷ is the predicted output, n is the number of data records and y̅ is 

the mean of the dataset. The higher R2-score and the lower RMSE, MAE and MAPE are, the 

more accurate the model will be. Table 5.6 compares the performance metrics of all the models 

for estimating β and µ quantitatively. 

Table 5-6. Performance metrics of the developed models. 

 Dispersion (β) prediction models Median (μ, log (PGA)) prediction models 

 R2 RMSE MAE MAPE R2 RMSE MAE MAPE 

Nonlinear 0.80 0.07 0.05 12.08 0.96 0.19 0.15 104.69 

DT 0.93 0.04 0.02 3.91 0.99 0.10 0.04 32.71 

RF 0.84 0.06 0.04 9.57 0.98 0.12 0.08 41.99 

KNN 0.80 0.07 0.05 44.81 0.98 0.13 0.05 669.15 

ANN 0.75 0.08 0.06 13.29 0.91 0.28 0.15 51.71 
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Regarding the values reported for the proposed models, it could be observed that the DT 

model processes the highest R2-score (93% and 99% for estimating β and μ, respectively) and 

hence is introduced as the most accurate model.  

It is worth mentioning that almost all the proposed models have an acceptable level of ability 

to learn the relationship between the inputs and outputs which reflect the high reliability of the 

ML-based methods for predicting fragility curves of buildings. 

5.6.2 Taylor diagram 

In order to compare the accuracy of the models more easily, they are compared in Taylor 

diagram shown in Fig. 5.12. It should be explained that Taylor diagram consists of three main 

parts: (i) horizontal and vertical axis which reflects standard deviation, (ii) circular curves 

centred at actual values which reflect RSME, and (iii) radial line which reflects R2-score. In 

other words, each model is plotted in a Taylor diagram by its standard deviation, RMSE and 

R2-score. The closest model to the actual value is known as the most accurate model (Shariati, 

Mafipour et al. 2020, Dabiri, Rahimzadeh et al. 2022, Wadoux, Walvoort et al. 2022).  

  

(a) (b) 

Figure 5-12. Using Taylor diagram for comparing the models developed for predicting (a) β and (b) µ 

(log(PGA)). 

Considering Diagrams illustrated in Fig. 5.12, and the above-mentioned explanations, the DT 

models are the closest models to the star point (actual values) and thus are introduced in as the 

most accurate models for predicting both β and µ, as concluded in the previous section.  

5.7 Sensitivity analysis 

In this section, the influence of buildings properties namely construction material (i.e., RC, 

steel and masonry), plan area, building height and period, and soil type on the fragility 

parameters is assessed. A two-story (6.20m height) masonry building located on soil type C 

(according to (Eurocode 8 2004) soil classification) in L’Aquila, Italy is selected from the 

literature (Suzuki and Iervolino 2021) and considered as the reference dataset. Then, the above-
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mentioned characteristics are varied to generate a series of 26 datasets, as reported in Table 

5.10. The first row of Table 5.10 represents the reference building which is used for assessing 

the influence of parameters’ variation on both β and µ. The material of the second and third 

building is changed to reinforced concrete and steel, respectively. Then, the plan area of the 

reference building is varied in the range of 100-1000 m2 by the step of 100. The building height 

is also increased from 3m to 30 m by the step of 3. It should be noted that building period is 

influenced by its height and therefore the variation of either β or μ by changing building’s 

period is almost the same as that of changing building’s height. However, to figure out the 

effect of building period on the fragility parameters, it is varied according to height variation. 

Eventually, three soil classifications including A (rock), B (stiff) and C (soft) are taken into 

account. Fragility parameters, β and µ, of the generated database are estimated by the prediction 

model developed using the Decision Tree model. It is worth explaining that the DT model is 

used for prediction because it showed the highest accuracy for predicting both β and µ. The 

predicted values and their differences compared to the reference case is provided in Table 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 Page 136 of 152 

Fragility curves of buildings; a critical review and a machine learning-based study 

 

 

Table 5-7. Variation of β and µ by changing building’s properties and soil type. 

 Material Area (m2) Height (m) Period Soil type β (βi-β0)/β0 µ (µi-µ0)/µ0 

1 Masonry 220.00 6.20 0.12 C (soft) 0.38 0.00 -0.08 0.00 

2 RC 220.00 6.20 0.12 C (soft) 0.74 0.95 -0.07 -13.11 

3 Steel 220.00 6.20 0.12 C (soft) 0.72 0.88 0.47 -652.91 

4 Masonry 100.00 6.20 0.12 C (soft) 0.62 0.63 -0.07 -13.20 

5 Masonry 200.00 6.20 0.12 C (soft) 0.36 -0.07 -0.07 -13.20 

6 Masonry 300.00 6.20 0.12 C (soft) 0.37 -0.03 -0.07 -13.20 

7 Masonry 400.00 6.20 0.12 C (soft) 0.37 -0.03 -0.09 4.58 

8 Masonry 500.00 6.20 0.12 C (soft) 0.37 -0.03 -0.09 4.58 

9 Masonry 600.00 6.20 0.12 C (soft) 0.37 -0.03 -0.09 4.58 

10 Masonry 700.00 6.20 0.12 C (soft) 0.37 -0.03 0.96 -1238.88 

11 Masonry 800.00 6.20 0.12 C (soft) 0.37 -0.03 0.96 -1238.88 

12 Masonry 900.00 6.20 0.12 C (soft) 0.37 -0.03 0.96 -1238.88 

13 Masonry 1000.00 6.20 0.12 C (soft) 0.37 -0.03 0.96 -1238.88 

14 Masonry 220.00 3.00 0.13 C (soft) 0.36 -0.07 -0.07 -13.20 

15 Masonry 220.00 6.00 0.21 C (soft) 0.42 0.11 -0.07 -13.20 

16 Masonry 220.00 9.00 0.29 C (soft) 0.24 -0.38 -0.09 6.18 

17 Masonry 220.00 12.00 0.35 C (soft) 0.18 -0.54 -0.09 6.18 

18 Masonry 220.00 15.00 0.42 C (soft) 0.18 -0.54 -0.09 6.18 

19 Masonry 220.00 18.00 0.48 C (soft) 0.18 -0.54 -0.09 6.18 

20 Masonry 220.00 21.00 0.54 C (soft) 0.18 -0.54 -0.09 6.18 

21 Masonry 220.00 24.00 0.60 C (soft) 0.18 -0.54 -0.09 6.18 

22 Masonry 220.00 27.00 0.65 C (soft) 0.18 -0.54 -0.09 6.18 

23 Masonry 220.00 30.00 0.71 C (soft) 0.18 -0.54 -0.09 6.18 

24 Masonry 220.00 6.20 0.12 A (rock) 0.45 0.18 0.02 -124.61 

25 Masonry 220.00 6.20 0.12 B (stiff) 0.45 0.18 -0.07 -13.20 

26 Masonry 220.00 6.20 0.12 C (soft) 0.36 -0.07 -0.07 -13.20 

 

5.7.1 Influence of soil type and building properties on β  

Figure 5.13 displays the variation of β when soil type or building parameters change. In terms 

of construction material (Fig. 5.13a), it could be claimed that RC and steel structures with 

similar response, exhibited considerably higher dispersion than that of masonry buildings. As 

far as building geometry is concerned, it could be realized that by increasing both plan area and 

height of a building, dispersion alters notably. Fig. 5.13b, reveals that dispersion drops when 

building area is increased and then, it remains almost constant for larger areas (in this case 

study 200 m2 with the height to area ratio of 3.1%). Roughly the same variation could be figured 

out that for building’s height variation according to Fig. 5.13c. More clearly, when the height 

increases from 3 (low-rise) to 6 (mid-rise), dispersion increases by 27.61%. Then, a sharp 

decrease is observed for higher buildings with 6-12 m (high-rise) height. Dispersion of tall 
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buildings (more than 12 m height in this study), however, remains approximately unchanged. 

Fig. 5.13d shows that the relationship between building’s period and dispersion is the same as 

that of building’s height, since period is directly affected by the building’s height as explained 

previously. Using the dispersion values predicted by the developed DT model and the 

quantitative building properties namely plan area (A, m2), height (H, m) and period (T, s), 

fitting curves are drawn as depicted by black dotted lines in Fig. 5.13 b-d. Accordingly, the 

following equations are suggested for obtaining dispersion: 

β = 0,05083 × 10−7A2 − 0,0007A + 0,5845 (5.10) 

β = 6 × 10−4H2 − 0,0283H + 0,4708 (5.11) 

β = 1,268T2 − 1,425T + 0,5615 (5.12) 

 

Fig. 5.13e illustrates how soil type could affect dispersion. Based on this figure, it could be 

claimed that dispersion of the buildings located on soft soil (type C) possess lower dispersion 

compared to those located on either rock (type A) or stiff soil (type B). The same results have 

been reported in similar studies evaluating the effect of soil type on fragility parameters of 

buildings (Pejovic and Jankovic 2016, Suzuki and Iervolino 2021). 

5.7.2 In fluence of soil type and building properties on µ  

The effect of building properties and soil type on median is demonstrated in Fig. 5.14. It is 

noteworthy that μ is the logarithmic median of ln (PGA). Just like β, median values of RC and 

steel structures are higher than that of the masonry building (Fig. 5.14a). Furthermore, by 

increasing the building’s plan area, median value increases notably first. Then, it remains 

almost the same for larger areas (600 m2 in this study), as displayed in Fig. 5.14b. The buildings 

on soil types A have higher µ in comparison to those on soil type B or C as depicted in Fig. 

5.14e. By increasing the building’s height or period, like dispersion variation, median values 

reduce first (building height=9 m and height/area=4.09% in this study). Then after, it remains 

roughly constant for higher buildings representing mid- and high-rise buildings. The prediction 

equations suggested based on the estimated values and corresponding fitting curves are given 

in Eq. (5.13-5.15): 

μ = 2 × 10−6A2 − 0,0003A − 0,1404 (5.13) 

μ = 5 × 10−5H2 − 0,0023H − 0,0666 (5.14) 

μ = 0,1054T2 − 0,1129T − 0,0605 (5.15) 
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Figure 5-13. Influence of building properties and 

soil type on dispersion (β). 

 Figure 5-14. Influence of building properties 

and soil type on median (µ). 
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5.8 Summary and conclusion 

Fragility curves are one of the crucial means which should be obtained for risk assessment of 

buildings in the PEER framework. The process of deriving fragility curves, however, is time-

consuming and complicated. These issues might increase inaccuracy of the fragility curves. 

Therefore, proposing a quick and error-free alternative approach for generating fragility curves 

has become one of the main researchers’ concerns in the field of structural and earthquake 

engineering. In this study, an attempt has been made to develop ML-based models for 

predicting fragility parameters of buildings and hence deriving fragility curves. To this end, a 

dataset including 214 fragility curve parameters are collected from peer-reviewed publications. 

They were then divided into training (85%) and testing (15%) sub-databases. Parameters which 

are proven to have the highest effect on fragility parameters are considered as the inputs for 

predicting dispersion (β) and median (µ) of fragility curves. Various ML-based prediction 

models namely NLR, DT, RF, KNN and ANN were developed. The predicted values were 

compared with the actual values and the accuracy of the models were assessed through 

common performance metrics and Taylor diagram. Eventually, a parametric study conducted 

and equations were presented for calculating fragility parameters. The main conclusions are: 

• Almost all the ML-based techniques showed a high ability to learn the relationship 

between input and output parameters. They could be therefore considered as a quick 

and accurate model for estimating fragility curves instead of time-consuming and 

inaccurate analytical analysis. 

• All the developed models for predicting β exhibited high reliability with R2-score≥0.75. 

The DT model with R2-score=0.91, however, was the most accurate model. 

• Among the models proposed for estimating µ, DT possessed the highest R2-score 

compared to other models and hence is introduced as the most accurate model. 

• Based on the study results, DT is recommended for deriving fragility curves of 

buildings. 

• It is also worth mentioning that, unlike other studies carried out for developing models 

for obtaining fragility curves, the models of the present study have the following 

benefits: (i) generating fragility curves directly by estimating β and µ, (ii) considering 

significant parameters which influence fragility curves notably, and (iii) being 

generalized which means that they could be applied for RC, steel and masonry buildings 

with different heights and plan areas located on different soil types.  
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• The parametric study on a case study illustrated that, (i) β and µ of RC or steel buildings 

were higher than that of the masonry building, (ii) β of the buildings located on either 

rock or stiff soil were higher than those of the buildings located on soft soil, while µ of 

the buildings located on rock was higher than those located on either stiff and soft soil, 

(iii) by increasing building plan area, β reduced first (up to height/area ratio=3.1) and 

then remained almost constant; moreover, µ of the building with area equal or higher 

than 600-700 m2 are higher than other buildings considered in the sensitivity analysis 

and (iv) increasing building height led to initial reduction and increase respectively in 

β and µ, while fragility curve parameters of tall buildings remained unchanged. 
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6 Summary and conclusions  

 

 

 

This thesis was organized in four main sections. Summary and conclusions drawn in each 

section are presented briefly in this section. 

• Chapter 1: Research background, motivation, objectives and organization 

In the first chapter, research background is presented briefly by providing definitions 

and applications of the study subject matter. The needs for conducting this study, is 

stated and finally the main aims of the study are listed and discussed.  

• Chapter 2: a state-of-the-art review on time-dependent seismic hazard analysis 

The main aim of reviewing previous studies was to evaluate the recent researches 

conducted on the subject matter and use their remarkable conclusions. More 

specifically, the time-dependent hazard models developed to date were gathered and 

the most accurate one (BPT) was selected for our study. Moreover, the adjustable 

parameters (i.e., site-to-source distance, structural response dispersion and aperiodicity 

parameter in BPT) were assessed carefully in relevant studies.  

As the main conclusion, the research gap in the study area was recognized and the thesis 

was organized so that it could cover the existing gap and needs. From the literature 

review, it was concluded that time-dependent seismic hazard has not been implemented 

in structural design so far. As a results, this gap formed the main objective of this 

research and the results could be considered for further revisions of design codes which 

currently use time-independent seismic hazard in their provisions (e.g., Eurocode 8). 

• Chapter 3: Influence of time-dependent seismic hazard on structural design  

The second section aimed at evaluating the effect of time-dependent seismic hazard on 

structural capacity. Otherwise noted, the application of time-dependent seismic hazard 

in structural capacity, which is defined as the capacity required to provide a fixed 
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reliability level measured by the failure rate, was investigated for the first time. To this 

end, the analysis conducted on two main seismic sources: (i) a point source where the 

results of time-dependent seismic hazard was compared with the results of time-

dependent model, and (ii) a more realistic source combined of a time-dependent area 

source (generating low- to medium-magnitude earthquakes) and aa time-dependent line 

source (generating high-magnitude earthquakes). The results of the combined source 

were compared with the results of the area source which was considered as the reference 

source. It is worth explaining that in the second source, only the line source (causing 

high-magnitude earthquakes) was considered time-dependent because it has been 

proven that sources with the capability of producing great magnitude follow time-

dependent hazard models, while the sources with low- to medium- magnitude motions 

could be efficiently simulated by time-independent models (e.g., POI). Bothe the PSHA 

and fragility curves were implemented in our methodology to assess the influence of 

parameters namely site-to-source distance (source characteristics), dispersion of the 

structure response (structures’ property) and aperiodicity factor in BPT model (time-

dependent model) on seismic hazard and structural capacity.  

The results highlighted the significance of time-dependent seismic hazard on structural 

capacity. The main conclusions are: (i) In the both point and combined source, high 

variations in hazard rates do not translate into similar variations in the capacity (in the 

combined source variations are smaller), (ii) The time-dependent behavior can be 

neglected in the design when the time-dependent source is sufficiently far (30 km in the 

case study), (iii) The dispersion of the structural capacity plays an important role in all 

the considered cases, (iv) variations of α plays an opposite role on short-term and long 

term required capacity: reducing (increasing) α will lead to reduction (increment) of 

required capacity for small elapsed times, associated to a hazard rate lower than the 

constant Poisson value, (v) Variations due to α changes in the parametric analysis were 

generally limited (lower than 10%). 

• Chapter 4: Influence of GMPE selection, soil type and period on structural capacity 

in the case of time-dependent seismic hazard 

The effect of time-dependent hazard was deeper evaluated in the third section by taking 

soil classification, period and GMPE into consideration. To achieve the objective, the 

GMPE proposed by Ambraseys et al. was used in PSHA. The main asset of this GMPE 

is that it considers soil conditions and period. Accordingly, demand and structural 
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capacity for different soil classifications (soft or very soft, stiff soil and rock) and 

different periods (in the range of 0.1-2 s) were obtained and compared in different times 

elapsed since the last event (earthquake) using the methodology introduced in the 

second section. More importantly, the effect of the GMPE used in the analysis was 

assessed by comparing the obtained results of Ambraseys et al. with those obtained by 

implementing Sabetta and Puliese GMPE.  

The notable conclusions according to the results are: (i) The hazard due to combined 

source was affected mostly by area and line source in short and long periods, 

respectively for all soil types, (ii) The difference between demand and capacity for a 

site located on soil is larger than a site located on rock, (iii) Regardless of the soil type 

and GMPE, by elapsing time, both of demand and capacity increase. However, the 

capacity changes is slightly larger than demand changes, (iv) For very short periods 

(less than 0.2s) or very long periods, elapsing time does not affect neither capacity nor 

demand notably, (v) Elapsing time affect both of demand and capacity corresponding 

to moderate periods (0.4s in this study) significantly, and (vi) The GMPE used for the 

analysis affects the results remarkably, therefore the most appropriate GMPE for the 

region of the study should be used 

• Chapter 5: Fragility curves of buildings, a critical review and ML-based study 

In this section, an attempt was made to develop ML-based models for generating 

fragility curves of buildings. To this end a comprehensive database including 236 

analytical results published in peer-reviewed journals were collected. The database was 

then divided into two sub-databases: training and testing which were respectively used 

for training the relationship between inputs and outputs, and assessing the accuracy of 

the models. Nine input variables including plan area, height, period, construction 

material, lateral resisting system, soil classification of the building location, design code 

and damage state were defined to predict dispersion and median values which are 

known as fragility parameters. The prediction models were developed using techniques 

namely nonlinear regression, Decision Tree, Random Forest, K-nearest Neighbours and 

Artificial Neural Networks. The predicted values are compared with actual values and 

the accuracy of the models was assessed through performance metrics and Taylor 

diagram. The most accurate model was introduced and used for conducting a sensitivity 

analysis on the quantitative inputs. The results illustrated the high ability of ML-based 

methods for learning the relationship between the inputs and outputs properly. 
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Moreover, the models could be introduced as an acceptable quick alternative method 

for obtaining fragility curves instead of time-consuming and complicated conventional 

methods. The parametric study clarified the effect of each quantitative input variable 

on fragility of buildings. The proposed models could be used in further studies for 

predicting structures’ capacity during different times elapsed since the last earthquake. 

The main conclusions are: (i) All the proposed models could learn the relationship 

between the input variables and the output properly, (ii) The high accuracy of the 

predicted values proved the reliability of the ML-based prediction models, (iii) For 

predicting Beta: the Decision Tree model had the highest accuracy with R2=0.91, (iv) 

For predicting Median, the Decision Tree model exhibited the highest accuracy with 

R2=0.99, and (v) Therefore, Decision Tree method could be applied for estimating 

fragility curves of steel, RC and masonry buildings. 

 

 



 

 

 

 

 

 


