Blockchain: Research and Applications 2 (2021) 100018

Contents lists available at ScienceDirect

BLOCKCHAIN

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications

Model-driven engineering for multi-party business processes on R)

Check for

multiple blockchains

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta , Andrea Polini, Barbara Re,
Emanuele Scala, Francesco Tiezzi

Universita degli Studi di Camerino, Camerino, 62032, Italy

ARTICLE INFO ABSTRACT

Keywords: As a disruptive technology, the blockchain is continuously finding novel application contexts, bringing new op-
Blockchain portunities and radical changes. In this paper, we use blockchain as a communication infrastructure to support
Model-driven multi-party business processes. In particular, through smart contracts specifically generated by the mentioned
Multi-party business process, it is possible to derive a trustable infrastructure enabling the interaction among parties.
Choreography

Moreover, the emergence of different blockchain technologies, satisfying different characteristics, gives the
possibility to support the same business process dealing with different non-functional needs. In this paper, we
propose a novel engineering methodology supported by a practical framework called Multi-Chain. It permits to
derive, using a model-driven strategy, a blockchain-based infrastructure, that can be deployed over a specific
blockchain technology (e.g., Ethereum or Hyperledger Fabric). The objective is to permit the single definition and
multiple deployments of the business process, to deliver the same functionalities, but satisfying different non-
functional needs. In such a way, organisations willing to cooperate can select the multi-party business process
and the blockchain technology they would like to use to satisfy their needs. Using Multi-Chain, they will be able to
automatically derive from a Business Process Modelling Notation (BPMN) choreography diagram a blockchain
infrastructure ready to be used. This overcomes the need to get acquainted with many details of the specific
technology.

1. Introduction scenarios: introducing a central authority, usually called orchestrator, or

coordinating the involved parties in a distributed manner. In a business

Blockchain technologies have been recently recognised as an effective
means for the decentralised execution of multi-party business processes
in the Business Process Management discipline [1]. The main charac-
teristic that favoured their adoption refers to the possibility of guaran-
teeing the integrity and the immutability of exchanged messages,
without relying on a central authority [2,3]. Roughly, a multi-party
business process establishes the rules that different organisations
should follow to enable their interaction/integration, making it possible
that their informative systems can collaborate to reach a shared goal. So
far, implementing such business processes considers two possible

* Corresponding author.

context where transactions generally have an economic relevance, the
parties not necessarily trust each other and then the centralised approach
could be unsatisfactory. Indeed the orchestrator constitutes a central-
isation point that could take actions to favour one of the parties. On the
other hand, the purely distributed approach does not permit each party to
fully observe the interactions performed by the other participants to
check if they abide by the specified rules. It results that blockchain
adoption enables the development of new forms of multi-party business
processes. All participants, without relying on a central authority, can
have a clear view of the ongoing system execution and can have tangible

E-mail addresses: flavio.corradini@unicam.it (F. Corradini), alessand.marcelletti@unicam.it (A. Marcelletti), andrea.morichetta@unicam.it (A. Morichetta), andrea.
polini@unicam.it (A. Polini), barbara.re@unicam.it (B. Re), emanuele.scala@unicam.it (E. Scala), francesco.tiezzi@unicam.it (F. Tiezzi).

g8

EI;gEVIE}; Production and Hosting by Elsevier on behalf of KeAi

https://doi.org/10.1016/j.bcra.2021.100018

Received 31 December 2020; Received in revised form 10 May 2021; Accepted 7 June 2021
2096-7209/© 2021 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University Press. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:flavio.corradini@unicam.it
mailto:alessand.marcelletti@unicam.it
mailto:andrea.morichetta@unicam.it
mailto:andrea.polini@unicam.it
mailto:andrea.polini@unicam.it
mailto:barbara.re@unicam.it
mailto:emanuele.scala@unicam.it
mailto:francesco.tiezzi@unicam.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2021.100018&domain=pdf
www.sciencedirect.com/science/journal/20967209
www.journals.elsevier.com/blockchain-research-and-applications
https://doi.org/10.1016/j.bcra.2021.100018
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.bcra.2021.100018

F. Corradini et al.

proofs of the actions performed by all participants.

Moreover, focusing on blockchain technologies, it is possible to
distinguish between two broad categories. The first one refers to per-
missionless blockchains, like Ethereum [4], that consists of a public
network without any restrictions regarding access to the recorded
transactions or the identity of the participants that can join the block-
chain. These categories of blockchain suits in completely trustless envi-
ronments, where privacy and sensible data [5] are not so many relevant
aspects to hinder the adoption of this technology. The second category
should be adopted when access to the stored data and the access of
participants is restricted. Such kinds of blockchain are referred to as
permissioned blockchains, like Hyperledger Fabric [6]. The two different
technologies lead to different scenarios about the engineering of
multi-party business processes we targeted. Indeed, there are situations
where process execution best suits in a permissionless scenario, for
instance, with participants that can dynamically join. On the other hand,
there are also scenarios where a multi-party business process execution
best fits with a permissioned scenario with pre-defined participants and
restricted access to data.

Being aware of Business Process Modelling Notation (BPMN) [7]
emerging as a modelling language to describe and also to support the
engineering multi-party business processes [8,9], in this paper, we focus
on the BPMN choreography diagram. It permits to describe the messages
that have to be exchanged among the involved participants from a global
perspective, without exposing any internal behaviour of the participants.

By relying on BPMN, we provide a model-driven methodology that
permits to derive a run-time blockchain-based infrastructure enabling the
execution of a multi-party business process. Specifically, starting from a
BPMN choreography specification, we support the generation and
deployment of proper infrastructure, based on smart contracts, that will
enable the execution of the multi-party business process on Ethereum or
Hyperledger Fabric, according to different non-functional characteristics
as detailed in the next section. The proposed methodology is supported
by a practical framework, named Multi-Chain, that allows the adoption of
blockchain technologies easier.

Summing up, the contribution of the paper is twofold.

@® A model-driven methodology for the generation of different block-
chain infrastructures from the same model of a multi-party business
process, that is a choreography diagram specification.

@ The implementation of the methodology in a practical framework to
enable the deployment on both Ethereum and Hyperledger Fabric.

The work presented here takes advantage of the results reported in
the conference paper [10], where the ChorChain framework is intro-
duced. In particular, in Ref. [10] we illustrate how smart contracts can be
used to enable the adoption of the Ethereum blockchain to support a
multi-party business process. The ChorChain framework, however, has
been designed to fit only a single blockchain implementation, i.e.
Ethereum, assuming specific needs. Here, we have revised, generalised,
and extended that approach in order to fit different requirements and
multiple blockchain technologies. This results in a more abstract engi-
neering methodology, supported by a practical framework called
Multi-Chain. Starting from the same high-level specification, it permits
generating the low-level code specific for different blockchain platforms
(at the time being, Ethereum and Hyperledger Fabric). This characteristic
of the extended approach makes it reusable in a broader range of
application scenarios.

The rest of the paper is organised as follows. Section 2 clarifies the
motivations behind our work and introduces the running example we
used. Section 3 includes a general presentation of the BPMN notation.
Successively, Section 4 introduces the proposed methodology, Section 5
provides an overview of the smart contract generation, and Section 6
illustrates the Multi-Chain practical framework focusing on specific
implementation details. Section 7 discusses performances, limitations,
and open challenges. Finally, Section 8 reviews relevant related works,

Blockchain: Research and Applications 2 (2021) 100018

and Section 9 concludes the paper by touching upon directions for future
work.

2. Motivations
2.1. Blockchain technologies

In a distributed setting, usually, the parties can not have any guar-
antee about the performed interactions due to the untrusted nature of the
participants. Blockchain technologies seem to provide an effective solu-
tion. Through the specification of suitable smart contracts, the distrib-
uted parties could interact in a safe and trusted way through the
blockchain. Indeed, all the interactions will be immutably stored and
made available for successive scrutiny. In such a way, the trust problem,
inherent within a multi-party distributed system, is clearly mitigated. The
blockchain can therefore open interesting scenarios in the context of
multi-party business processes execution. Indeed, this new technology
allows overcoming the limits of current solutions for business processes
execution (such as, e.g., the workflow engines Camunda' and Flowable?)
given by the use of a third-party authority to interact with unknown
parties. Also, they do not allow to realise a real distributed imple-
mentation, but rely on a centralised approach that may result in potential
failure issues. This aspect is particularly relevant in an inter-
organisational scenario.

Nonetheless, the adoption of blockchain introduces a further degree
of complexity for those not familiar with such a technology. The current
trend towards introducing different blockchain technologies, with
different characteristics, makes the situations even worse, with a prolif-
eration of technologies to be acquired and learned.

For our purpose, it is possible to distinguish among the following
characterisations.

@ Permissionless vs Permissioned: a permissionless blockchain is an
open network where participants can join, and leave the network
without the need of any authorisation. A permissioned blockchain
runs a ledger among a set of previously identified and authorised
peers.

@ Auditability vs Confidentiality: an auditable blockchain has an
immutable and transparent nature, and it natively allows indepen-
dent auditing over the stored data. On the contrary, a permissioned
blockchain introduces confidentiality so that stored data are not
visible to anyone. Moreover, it restricts the distribution of informa-
tion only to authorised nodes.

@ High decentralisation vs Performance and scalability: the usage
of strong consensus algorithms allows to trust nodes previously un-
known or not trusted, in a decentralised context. On the contrary, the
introduction of access control mechanisms leads to a trusted network
with higher scalability and transaction throughput

@ Anonymity vs Identity: a blockchain technology could permit
anyone to join the network without putting in place any access con-
trol mechanism. Trust over the stored data will be in any case guar-
anteed by the consensus algorithm. On the other hand, access to a
blockchain can be restricted to authorised users by introducing spe-
cific mechanisms. Consequently, it will be possible to associate
identities with participants, and cryptographic credentials can be is-
sued to new members. All communications can also be made use of
authentication mechanisms.

In particular, in this paper, we consider two main blockchain tech-
nologies: Ethereum and Hyperledger Fabric. The two technologies pre-
sent rather orthogonal characteristics and have been conceived for
different application domains. Table 1 compares Ethereum and

! https://camunda.com/.
2 https://flowable.com/.

https://camunda.com/
https://flowable.com/

F. Corradini et al.

Table 1
Blockchain characterisations.

Ethereum implementation Hyperledger Fabric implementation

Permissionless Permissioned

Auditability Confidentiality

High Decentralisation Performance and Scalability
Anonymity Identity

Hyperledger Fabric with respect to the list of properties presented above,
as confirmed in Refs. [11,12,13,14].The permissionless characteristic of
blockchain, like Ethereum, guarantees a trusted and verifiable commu-
nication between untrusted and unknown organisations. At the same
time, Ethereum lacks privacy, performance, and access controls. Per-
missioned blockchains, like Hyperledger Fabric, cover these aspects,
leaving more freedom to the users in the network's organisation. In
particular, this suits well when partial trust relationships between parties
can be assumed.

In most cases, the right selection of the underlining blockchain
technology for a given choreography scenario does not depend only on
the system's behaviour. It is also influenced by the context in which the
system will have to operate. This means that the same choreography
model could be deployed in different situations within different block-
chain technologies, depending on the level of trust required by the
considered scenarios. The model-driven approach we propose brings
clear benefits in such a context, permitting to alleviate the developer
from deriving a codebase for each different technology.

2.2. Running example

To clarify our paper's objectives, we consider a simple scenario con-
sisting of a multi-party business process that allows a customer to buy
goods from a retailer. In the proposed example, we refer to warehousing
management, and in particular, the considered policy aims at reducing
the warehousing costs. The retailer does not keep in the warehouse a high
volume of goods and generally starts the acquisition process as soon as it
receives a specific request. It is also possible that the customer's request
indicates a specific producer to involve in the provisioning.

This example highlights an interaction scenario in which the re-
quirements of trust and privacy change according to the contexts in
which the system operates. Indeed, in a situation in which parties can
trade freely without limits, the goods that are sold are easily reproduc-
ible, and prices are changed according to a standard agreement, there
would not be issues related to the sharing of the information. In this
scenario, at the same time, the traceability of products could be a very
important requirement for the customers to continuously check that the
standard agreement is satisfied. In other contexts, the parties could
operate in a close environment where, for business purposes, the par-
ticipants are more interested in keeping private most of the information
related to the products. In the following, we describe these two business
contexts to make clearer the different properties needed by the resulting
systems.

In the context where the participants are involved in “traditional”
business operations, the retailer and the producers are generally inter-
ested in keeping confidential the quotations they agree on about a spe-
cific selling. In particular, a producer may want to keep secret the
quotation applied to a specific retailer. The retailer may want to make a
private offer to a particular customer without showing the price for the
same goods.

The second business context we consider pertains to a “fair trade”
business model. In this case, it is probably of interest for all the partici-
pants to keep a certain level of transparency over the transactions they
perform. In particular, a retailer operating in such a context should be
interested in making publicly accessible the origin, and the price of the
goods s/he sells. In this way, the customer can see exactly who the
producer is, and if the price s/he is going to pay is somehow fair, and

Blockchain: Research and Applications 2 (2021) 100018

related to a reasonable treatment of the producer. In particular, the
public nature of the information stored in the blockchain permits to
analyse the items of the retailer's specific goods, and the prices applied
over time for the product, independently from the fact that the corre-
sponding transactions belong to the specific choreography. This trans-
parency will increase the retailer's reliability from the customer
perspective in the specific business model context.

The retailing scenario provides an example of a multi-party business
process that, when different operative domains are considered, does not
differ much with the operative aspects, and the interactions put in place
to reach specific objectives. Instead, the operative domains result in
rather diverging needs when modalities of such interactions, and capa-
bilities of successive analysis, are considered.

3. Multi-party business processes in BPMN

In BPMN a multi-party business process can be represented using the
choreography diagram. Such a diagram permits to express the in-
teractions among different parties without revealing their internal
behaviour. In a distributed environment, organisations wishing to
collaborate can refer to specific choreographies that describe in detail
how the different parties should interact to achieve common objectives.
The integration of processes in this way leads to a more peer-to-peer
collaboration, shifting responsibility for each execution step of the
collaborative process to the individual nodes. Consequently, in a chore-
ography approach, each participant is responsible for partial orchestra-
tion, based on its individual rules without a central coordinator, and the
final behaviour is specified as a family of permitted message exchange
sequences.

The most relevant elements used in choreography diagrams are
depicted in Fig. 1. On the left, are represented the elements used for the
business process's control flow, while on the right, are the elements used
for communication purposes. In general, a choreography model is
composed of four different types of elements: events, gateways, sequence
flow and tasks. Events can be a start event, representing the starting
point of the process, and an end event, raised when the process termi-
nates. Gateways act as either join nodes (merging incoming edges) or
split nodes (forking into outgoing edges). We can have different types of
gateways. A parallel gateway (AND) in join mode has to wait to be
reached by all its incoming edges to be activated, and subsequently, in
the split case, all the outgoing edges are initiated simultaneously. An
exclusive gateway (XOR) represents choices; it is initiated each time the
gateway is reached in join mode, and it activates exactly one outgoing
edge in split mode. For the event-based gateway, the outgoing branches
activation depends on the reception of a message; these message events
are in a race condition, where the first one that is triggered activates the
branch and disables the other ones. The Sequence Flows are edges used
to connect all the choreography elements, permitting to specify the
execution flow of the process. Tasks are used to define the message ex-
changes between two or more participants. They are represented as
rectangles divided into three bands: the central one contains the task's
name, while the others refer to the involved participants (the white band
is the initiator, the grey one is the recipient). Messages can be sent either
by one participant (One-Way tasks) or by both participants (Two-Way
tasks).

3.1. Running example

The choreography reported in Fig. 2 represents the communications
that should take place among the participants for the scenario described
in the running example paragraph in Section 2. The model starts with the
request by the customer for a quotation of goods. In case the goods are
available, the customer proceeds with the payment, and the retailer
commits to delivering the goods. In the other case, the retailer has to buy
goods from the producer that the customer could have indicated, which
then proposes a quotation. This quotation will be followed by the

F. Corradini et al.

['Evems I | Gateways
[[
O
| StartEvent | | Exclusive Parallel Event-Based
i I I Gateway Gateway Gateway
| | .
| O | | Flow
: End Event I ! Sequence Flow
I E—
[, N

Blockchain: Research and Applications 2 (2021) 100018

Fig. 1. BPMN choreography elements.

retail_quotation(string good,
uint amount)

Retail

|
Message Message I
name name !
.

. H |
(Initiator N Initiator h H
|
Task Name Task Name I
(One-Way) (Two-Way) |
p— s = |
_ Recnpnent J RecnPuem Y, |
. i
Message |
name |

ship_address(string

payment1() customerAddress)

Customer Customer

Retail

Retail payment

quotation = shipment
2
& Retailer Retailer
ﬁ quotation(string pr)oduct, hship_inio(zt;ing) : :
H uint quantity; payment0() shipment_address) E E
T retail_order(string retail_ship(string
retail_response(int price, : : : orderDetail) customersgipment)
bool av) Retailer Retailer Retailer
::';tg:t?g: » Pay goods » Ship goods
Producer Producer Producer
& =
response(bool availability, order_info(string shipment(string
uint cost) orderID) shiplnfo)

Fig. 2. Retail process.

payment and the shipment of goods to the retailer that can close the
customer's order with the final shipment.

4. The Multi-Chain methodology

This section presents the proposed methodology supported by the
Multi-Chain practical framework. The main steps of the methodology and
the involved actors and framework components are depicted in Fig. 3,
here briefly described.

The main steps of the methodology for a multi-party business process
are as follows:

. Modelling: the BPMN choreography model of the multi-party busi-
ness process is produced by means of an appropriate modelling tool.

. Publishing: the choreography model is stored in the models
repository.

Choreography

) Models
Modelling :
Tool Repository

Publishing Instantiation

Sy

&

(@
(@

T,

3. Instantiation: the choreography model is retrieved, the blockchain

platform where deploying it is selected, and a corresponding chore-

ography instance is created and uploaded into the pending instances
repository.

. Subscription: choreography participants subscribe to the instance to
cover the required roles.

. Deployment: when all roles are covered, a smart contract is auto-
matically generated from the instance and deployed on the block-
chain platform selected at step 3.

. Execution: the subscribed participants interact via the blockchain in
order to execute the choreography according to the behaviour spec-
ified in step 1.

. Auditing: the logged choreography activities are inspected in order
to check in a non-repudiable manner functional and quality-related
aspects of the choreography execution.

The actors involved in the above methodological steps are as follows:

Pending
Choreography
Instances

Blockchain
Platform

Repository

Auditing /7
1P
aVal
Auditor

¢

=)

Deployment

—

&,

O

Modelling Searching & Searching & AV
Blockchain Subscription Execution
selection .0
5 X 5 X L
Modeller Initiator Participants

Fig. 3. Multi-Chain supported methodology.

EN

F. Corradini et al.

@ Choreography modeller: the choreography modeller creates a cho-
reography model so that interested participants can engage in multi-
party business processes to reach specific objectives. The modeller
can use any BPMN modelling tool supporting the design of choreog-
raphy diagrams, and specific extensions needed to add the informa-
tion required to deploy the choreography within a blockchain. Once
the modelling activity terminates, the modeller can publish the model
within a choreography model repository.

@ Choreography initiator: the choreography initiator can be a person
or an organisation that is interested in activating a choreography
within a selected blockchain platform. The initiator searches and
selects a choreography model among the ones stored in the repository
to reach the objective. Once a model has been selected, the initiator
will have to select the deployment blockchain environment according
to his specific needs (see Section 2 for a discussion about the char-
acteristics supported by different blockchain platforms). As a result,
the initiator will publish on a separate repository the instantiated
choreography, so that interested participants can subscribe to one of
the foreseen roles.

@ Choreography participant: a choreography participant is generally
constituted by an organisation that is interested in taking part in a
choreography execution to reach specific objectives. To do so, it
searches for pending choreography instances and subscribes to those
in which it can fruitfully play a role. Once all the mandatory roles
result to be covered, the choreography is deployed within the selected
blockchain infrastructure by defining suitable smart contracts. Suc-
cessively, all the participants will interact to perform the business
process defined by the choreography.

@ Choreography auditor: an auditor accesses the blockchain to anal-
yse the stored data and to check that the transactions corresponding
to a specific choreography execution are in line with the expected
ones. In some cases, the auditor can be impersonated by any partic-
ipant, depending on the adopted blockchain technology [15].

The relevant software components that form the tool-chain support-
ing the methodology are as follows:

@ Modelling tool: a modelling tool makes it possible to represent a
choreography diagram and augment it with specific blockchain-
related information (e.g., the structure of messages).

@ Choreography models repository: it permits the storage of chore-
ography models and their retrieval. A specific component provides an
interface to the initiators to search choreographies and select the
blockchain platform. This component will also take care of properly
instantiating the choreography and uploading it into a repository
where choreography instances in a pending state are stored.

@ Pending choreography instances repository: it stores pending in-
stances and allows choreography participants to subscribe to them.
This can be a separate repository or a partition of the previous one.

@ Translator: a transformer is needed to automatically derive smart
contracts from a choreography instance for the selected blockchain
infrastructure.

@ Blockchain platform: a blockchain platform is needed to support the
choreography's execution and possible related auditing activities.

It is worth noticing that some of the steps described above can be
implemented with different levels of complexity and automatic support.
In particular, search mechanisms made available by the repository can go
from simple pattern matching on specific choreography metadata to
more semantically related aspects. The selection of participants who take
part in a choreography can go from a closed list strategy where the
initiator selects “off-line” the participants, and gives them a reference to
the pending instance to join, to more complex mechanisms where re-
quests for participation are issued through the system itself. Notably, a
choreography model can include two different kinds of roles. Mandatory
roles for which at least one participant has to subscribe, and optional

Blockchain: Research and Applications 2 (2021) 100018

roles for which a participant can join after the choreography has already
started. Multi-Chain covers all the functionality presented here, except
for auditing, for which it resorts to the mechanisms made available by
each specific blockchain technology. Simultaneously, the focus has been
put on the smart contract's derivation using a model-driven engineering
approach, whose details will be provided in the next section. In contrast,
automation for the other activities has been kept at a basic level.

4.1. Running example

Considering the retailing scenario, we can imagine that a modeller
inserts the model reported in Fig. 2 on a repository. At this point, the
initiator's role can be probably played by the customer that willing to buy
a given good selects a choreography that permits him to reach such a
goal. As part of the process, the customer also defines the characteristics
of the process s/he would like to be involved in. As a result, this will lead
to selecting a specific blockchain infrastructure, satisfying the specified
properties. Then either the customer directly invites a retailer, or the
platform notifies a possible retailer, anyway when s/he will join the
choreography can be activated generating and deploying the needed
smart contracts on the selected blockchain technology. During the
execution phase, it will be possible that the retailer will invite a producer
to join the choreography so as to proceed to the provisioning. Depending
on the selected infrastructure, different levels of transparency and
auditing mechanisms can be accessed by any participant to check the
choreography status and the contents of the exchanged messages. At the
same time, the correct order will be guaranteed by the blockchain itself.

5. Multi-Chain: blockchain infrastructures generation

In this section, we describe how the blockchain infrastructures are
derived by means of the Multi-Chain model-driven approach. We focus in
particular on the translation from model to code, i.e., the contracts
creation.

5.1. Ethereum vs Hyperledger Fabric infrastructures

Ethereum and Hyperledger Fabric have been conceived with rather
different objectives and usage scenarios. Therefore, it is not surprising
that the transformation from a choreography diagram to the blockchain
infrastructure to be deployed over the specific technology is different. In
particular, in Ethereum the instantiation of a choreography diagram
leads to the generation of a single smart contract to be deployed on the
public network. This contract explicitly includes the users’ addresses that
subscribed to the roles in the previous phase. In such a way once
deployed the smart contract can be used only by the subscribed users, and
every functionality is then enforced both considering the order of the
operations and the roles, as specified in the choreography model.

In Fabric, the situation is rather different since there is no global
network and so, for each deployment, it is necessary to create not only
the smart contract (chaincode) but also the network infrastructure. In
particular, in our approach, any choreography instance is represented by
a Hyperledger channel, and each role is associated with a unique Fabric
organisation. At this point, any user subscribed to a specific role becomes
a member of the organisation representing that role in a specific model.
Technically, the user will be associated with the organisation through an
identity released exploiting cryptographic artefacts. Each channel is
composed of (i) the chaincode representing the choreography instance
behaviour and (ii) organisations, representing instance participants,
communicating through a channel. To identify specific users, an
attribute-based access control strategy is adopted. This encodes an
attribute representing each user member's identity in the organisation,
and this will be used to restrict the visibility of data on the deployed
chaincode. This mechanism guarantees the privacy of exchanged infor-
mation between different users covering the same role on two different
instances that are both included in the same organisation. This

F. Corradini et al.

guarantees that each user can see only data related to the contracts in
which s/he is directly involved.

The methodology introduced in Section 4 is practically realised in the
Multi-Chain framework by relying on the two blockchain platforms dis-
cussed above. Once the modeller has created a choreography model and
published it in the Multi-Chain repository, an automatic procedure in-
stantiates, following the model specification, the consortium and the
organisations involved in the Fabric network. Then, the initiator user
creates an instance choosing between Ethereum or Fabric according to
her/his needs. In the Fabric case, every time a participant user subscribes
to a role, the corresponding identity is created and added to the private
network. When all the roles of the instance are fully covered, the
deployment phase can start. Here the translator, according to the
instance type (Ethereum or Fabric), generates the specific smart contract
and deploys it on the respective network. Finally, the execution of the
instance can start, allowing the participant users to interact with the
blockchain, thus advancing the state of the contract.

5.2. Multi-Chain translator

We describe here the technical differences between creating an
Ethereum contract and a Fabric one by showing the relative examples
using the Retail process scenario described in Section 2. We then describe
how a model-driven approach permits to support the methodology
described in Section 4. The smart contract generation is an automatic
phase where the choreography instance is translated into code. The
generation of the code starts after the parsing of the choreography model,
performed using the Camunda library®, properly extended by us to deal
with the choreography diagrams syntax as defined in the standard. We
describe the generated code both for Ethereum and Fabric, using
respectively Solidity and JavaScript. The logic behind the code genera-
tion for the control flow elements is similar for both technologies. In
particular, a generated smart contract permits the participants to interact
according to the corresponding choreography protocol. To do so, the
generation foresees the introduction of specific methods for each mes-
sage exchange to be performed and the introduction of mechanisms to
track the status of the protocol so as to enable the various message ex-
changes in line with the specification. Instead, differences are introduced
concerning the derivation of supporting mechanisms for the properties
listed in Section 2. In particular, in Fabric, the introduction of mecha-
nisms to support confidentiality that are not present in Ethereum, asks to
derive a complex transformation procedure for the definition of specific
users' rights and their control, and the introduction of a public and pri-
vate state for the transactions.

Listing 1 and Listing 2 show the template for the header respectively
for the smart contract in Ethereum, written in Solidity, and the header of
the chaincode for Hyperledger Fabric (ChoreographyPrivateDataCon-
tract), in JavaScript. In the last case, it can be noted the introduction of
two utility classes: (1) ChorographyState and (ii)
ChoreographyPrivateState.

In Solidity (Listing 1), a contract keeps track of the choreography
instance state through the list of elements choreographyElements
(line 13) and the structure of variables currentMemory (line 14) con-
taining all the information influencing the state of the contract. Each
element of the former list is a structure of type Element (line 4) rep-
resenting the information related to that model element (i.e., its identi-
fier and current status), while the current memory has type
StateMemory (line 5) and it contains all the global variables appearing
in the model. The states of an element, defined by the enumeration
State (line 3), are as follows: DISABLED is used when the element has
never been called and is waiting for being enabled, ENABLED when is
waiting for being executed, and DONE once it has completed the execu-
tion. The event functionDone (line 11) is emitted for each completed

3 https://docs.camunda.org/javadoc/camunda-bpm-platform/7.11/.

Blockchain: Research and Applications 2 (2021) 100018

element, and it permits to retrieve the transactions of the contract
directly, so to improve the performance of the auditing phase. Also, the
function is used to notify the partners about a possible contract state
change. The header also includes the choreography elements list, with
their identifiers elementsID (line 17), and the list roleList and
optionalList of the mandatory and the optional roles involved in the
choreography (lines 22-23).

In Fabric (Listing 2), the contract is defined through the Chor-
eographyPrivateDataContract class. Like Ethereum, the class
keeps tracking each element of the choreography within an associative
object. Also, in this case, the element life-cycle is composed of three
states, listed in the Status object (line 3). The chorElements (line 4)
object maps choreography elements to their individual state, and it is
included in the ledger state. Additional information like the contract
name and the id of the choreography are reported in lines 1-2. The roles
declared in line 5 map choreography roles to the Fabric Membership
Service Providers belonging to the related organisations to guarantee
confidentiality. In line 6, the definition of the private collections is done
coupling all the different roles of the model inside the collection-
sPrivate object. Also, in line 7 the roles are associated with the sub-
scribed users, which identities were previously created inside the
organisations.

In the two contracts just after the header, an access control function is
introduced to define the participants to a message exchange. In the
Ethereum cases this is done using the modifier statement, and in the
Hyperledger cases using an identity check.

In particular, Listing 3 reports the modifiers checkMand (lines
24-27) and checkOpt (lines 28-31). They check if the mandatory/
optional role of the sender in that particular function corresponds to the
role for which the same account was subscribed. These constructs are
used to enforce, from the contract side, the right identity of the sender
according to what expressly defined in the choreography instance.

The same control is quite different in Fabric (Listing 4), indeed two
main controls are necessary before executing a message. One controls the
organisation and one the user's attribute. The first part of the control
checks if the caller is a member of the organisation having the rights to
execute the function. This is done by checking the MSP of the transaction
creator, respect to the roles list defined in the contract header. The
identity of the caller is then checked through the encoded attribute
defined in the identity certificate. The identity certificate allows dis-
tinguishing not only the organisations corresponding to the right role but
also the specific user, previously associated with a single role. In this way,
the caller attribute is first retrieved and then compared to the id of the
right role inside the subscriptions object.

The smart contracts generation continues by appending the functions
corresponding to the translation of the elements included in the chore-
ography model for both technologies. The concept of choreography task
is concealed in favour of the connected messages. In particular, a one-
way choreography task is represented by its message, and similarly, the
two-way task is represented by its two messages. Thus, the choreography
elements appearing in the contract can be divided into two main cate-
gories: messages, representing the interactions between participants, and
control flow elements representing the logic of execution.

In Ethereum, the translation generates a public function for each
message and a private function for each element of the choreography
control flow. In Hyperledger Fabric instead, both messages and control
flow elements are represented with an async function.

Listing 5 shows the Solidity public function depicting a message
exchanged between two participants in a choreography task. The func-
tion name in the contract is represented by the message identifier
inherited from the model, while the parameters are from the name of the
message.

The modifier checkMand is called with the assigned role (line 33).
Once the right identity of the caller inside the function is ascertained, a
second check on the enabled status of the task is performed (lines 35-36).
After that, in the body of the function, the shipment_address

https://docs.camunda.org/javadoc/camunda-bpm-platform/7.11/

F. Corradini et al.

contract RetailProcess{

struct
struct
string

Element{string ID;
StateMemory {

good ;

uint amount;

uint price;

string shipment address;

o - I SR R

o e e
w 0 = O

Element [| choreographyElements;
StateMemory currentMemory ;

o e
RIS

mapping (string=>uint) position;
string [|
ExclusiveGateway_042aut8",

17

18
19
20
21
22
23

mapping(string=>address payable)

roleList = |

string []
string []

"Retailer",
optionalList = ["Producer"

event functionDone(string eventID);

elementsID = ["StartEvent_102vawy",
"Message_ID", A,A]

Blockchain: Research and Applications 2 (2021) 100018

enum State {DISABLED, ENABLED, DONE} State s;
State status;}

Customer

"Message_0b917rc", "

roles;

mapping(string=>address payable) optionalRoles;

" |.
3

I

Listing 1. Ethereum: Contract header.

1 const chorlD =

’68e81c58-2ca9-4a92-b438-76f06f358fa3”’

2 const contractName = ’contracte3158a2b-40b7-43b0-9ae2-d19dacb39839°
3 const Status = { DISABLED: ’disabled’, ENABLED: ’enabled’, DONE: ’done’
;

4 const chorElements = ["StartEvent_102vawy", "ExclusiveGateway_042aut8",
"Message_0b917rc", .

5 const roles = { Customer: ’0rgiMSP5felcdac280183175ccb152e’, Retailer:
Org2MsP5felcdac280183175ccb152e’, Producer: °
Grg3MSP5fe1cdac280183175ccb152e’}

6 const collectionsPrivate = {CustomerRetailer: ’collection’ + roles.
Customer + roles.Retailer, 2}

7 const subscriptions = { Customer: ’5fe0b72a2801833b2c91a2d3’, Retailer:
’5fe0b82£2801833b2c91a2e1’, Producer: ’5felce56280183175ccb153a’}

8

9 class ChoreographyPrivateDataContract extends Contract {

10 constructor () {

11 super (contractName)

12 }

13

14}

Listing 2. Hyperledger: ChoreographyPrivateDataContract class.

24 modifier checkMand(string memory role) {

25 require (msg.sender = roles[role]);

26 e

27

28 modifier checkOpt(string memory role) {

29 require (msg.sender — optionalRoles[role]);

30 _B

31}

Listing 3. Ethereum: Modifiers.

32 function Message lwrru53(string shipment address) public

33 checkMand (roleList [0]) {

34 //checking the status of the current element that is the invoked

message

35 require (elements [position ["Message_1lwrru53"]]. status

36 —State .ENABLED) ;

37 currentMemory . shipment _address=shipment_address;

38 done ("Message_lwrrub3");

39 //it enables the next element, in this case another message

40 enable ("Message_1tq0g6g");

41

Listing 4. Hyperledger: Enforcing controls.

parameter is stored in the memory of the contract (line 37). At this point,
the status of the current element is changed to DONE (line 38) and the
successive one is set to ENABLED (line 40).

Listing 6 shows the implementation of a message in Fabric. In line 17
the actual public state of the choreography is retrieved from the external
utility class ChoreographyState and it is used for the next operations.

Line 18 reports the controls performed before allowing the execution of
the message. In the condition of the conditional statement, we have the
check of the status of the actual message, identified by its Message_id.
This permits to enforce the execution of the right sequence of functions.
The other two expressions in the condition are related to the check of the
right user and organisation as described in Listing 4. If the user is the

F. Corradini et al.

Blockchain: Research and Applications 2 (2021) 100018

32 function Message lwrrub3(string shipment_address) public

33 checkMand (roleList [0]) {

34 //checking the status of the current element that is the invoked
message

35 require(elements|position ["Message_1lwrru53"|]|. status

36 —State .ENABLED) ;

37 currentMemory . shipment address=shipment address;

38 done ("Message_1lwrrub3");

39 //it enables the next element, in this case another message

40 enable ("Message_1tq0g6g");

a1}

Listing 5. Ethereum: A message function.

16 async Message 0b917rc(ctx) {

17 const choreography = await ChoreographyState.getState (ctx, chorID)

18 if (choreography.elements.Message 0b917rc
ctx.stub.getCreator () .mspid && ctx.clientIdentity .

. Customer

Status .ENABLED && roles

assertAttributeValue(’role’, subscriptions.Customer)) {

19 const choreographyPrivate await ChoreographyPrivateState.
getPrivateState (ctx, collectionsPrivate.CustomerRetailer,
chorlID)

20 choreography .setDone(’Message_0b917rc’)

21 choreography .setEnable (’Message_1xxdwx2’)

22 await choreographyPrivate.updatePrivateState (ctx,
collectionsPrivate . CustomerRetailer)

23 await choreography.updateState (ctx)

24 return { choreography, choreographyPrivate }

25 } else {

26 throw new Error(’Element Message_Ob917rc is not ENABLED or

submitter not allowed,

transaction?)
27 }

28}

only the Customer can send this

Listing 6. Hyperledger: Message Function.

42 function ExclusiveGateway 042aut8() private {

43 require (elements [position ["ExclusiveGateway_042aut8"]]. status
44 —State .ENABLED) ;

45 if (currentMemory . availability—false){

46 enable ("Message_1h3ew61");

47 Next_Element_ID () ;

48 }else if(currentMemory.availability=—true){

49 enable ("ExclusiveGateway_1johog7");

50 }

51 done("ExclusiveGateway_042aut8");

52}

Listing 7. Ethereum: Exclusive Gateway Function.

right one, the private state associated with him is recovered (line 19),
calling the external class ChoreographyPrivateState. This state
concerns the participants’ interaction in which only the information
changed between them is stored. In particular, to get the private state
some information must be passed: (i) the Fabric ctx, (ii) the private
collection between the sender and the receiver of the message, and (iii)
the id of the choreography, automatically set by the translator in the
generation phase. Like in Ethereum, the actual message is set as Done and
the next one is enabled (lines 20-21). Finally, the public and the private
state of the choreography are updated (lines 22-23). In particular, these
operations are done without passing directly the information inserted by
the user, but exploiting information stored in the context object (ctx).
Indeed, the ctx encapsulates the transient data that are then extracted in
the invoked functions, in this way, are not explicitly visible in these
operations.

Also, in the case of gateways, we have a similar implementation. Here
below, we only show the exclusive gateway implementation for both
technologies. As it can be imagined for all the other gateways, we have a
similar structure. The logic of the gateway for the Ethereum case is
depicted in Listing 7. Here, the next element is enabled only after the
evaluation of a condition that discriminates which element to enable. The
condition managing the choice in the conditional statement (line 45) is
inherited directly from the outgoing sequence flows of the exclusive

gateway represented in the Choreography model. The if-else control
(lines 45-50) in the smart contract guarantees the mutual exclusion in
the evolution of the control flow, limiting the execution to the first
satisfied condition.

A similar structure is used in the Fabric contract (Listing 8). Firstly,
the status of the actually invoked gateway identified by Gateway_id is
checked (line 30). Then its status is set to done (line 31), and the eval-
uation of the variable is performed. Depending on its value, the function
enables the next element to be a message or a gateway, identified by its
id. At this point, if the next element is a message, the public state is
updated calling the external function updateState that will insert the
new status of the elements (line 34); otherwise, it is directly called (line
37), and the public state is updated in the next functions.

6. Implementation of Multi-Chain practical framework

In this section, we describe the implementation of the Multi-Chain
tool that reflects the concrete implementation of the steps described in
our methodology. The reader can practically experiment with the
framework deployed at http://virtualpros.unicam.it:8080/MultiChain/.

http://virtualpros.unicam.it:8080/MultiChain/

F. Corradini et al.

Blockchain: Research and Applications 2 (2021) 100018

20 async ExclusiveGateway 042aut8(ctx, choreography, choreographyPrivate) {

30 if (choreography.elements. ExclusiveGateway 042aut8 Status .ENABLED
) 1

31 choreography .setDone(’ExclusiveGateway_042aut8’)

32 if (choreographyPrivate .av—false) {

33 choreography .setEnable (’Message_1h3ew61’)

34 await choreography.updateState(ctx)

35 } else if(choreographyPrivate.av=—true) {

36 choreography .setEnable(’ExclusiveGateway_1johog7’)

37 await this.ExclusiveGateway 1johog7(ctx, choreography ,

choreographyPrivate)

39 } else {

40 throw new Error(’ExclusiveGateway_042aut8 not ENABLED’)
41 }

42 }

Listing 8. Hyperledger: Exclusivegateway implementation.

This has been implemented using the Rinkeby-Ethereum Testnet", which
is a sandbox copy of the Ethereum blockchain. For Fabric instead, the
network is created dynamically during the deployment phase according
to the process structure described in Fig. 3.

6.1. Modelling

The modelling phase is the starting point of the choreography life-
cycle. To support it, we have integrated a modelling environment into
the framework as shown in Fig. 4. The modelling area offers several
functionalities, such as the creation, the import, the export, and the
saving of a model in the Multi-Chain repository. This choice permits
avoiding the common interoperability issue affecting BPMN modelling
environments, thus guaranteeing the produced choreography's full
compatibility with all the features provided by the rest of the framework.

Due to its intended abstraction level, a choreography model does not
include enough details to enable an automatic generation of code
directly. For this reason, we extended the modelling environment so to
ask the modeller for additional data about (i) messages and (ii) guards.
These data are needed to permit the deployment in a blockchain infra-
structure. However, they are included without differentiating Ethereum
from Fabric.

Therefore, during this phase, the modeller has to annotate each
choreography task's message(s) with the parameters needed to perform
the underlying function call in the generated smart contract. To facilitate
this procedure, the specification of a task is supported by an intuitive
panel that requires the insertion of the following information:

@ the participant names

@ the names of the exchanged messages

@ the parameters

@ a specific indication if the message includes a payment (supported
only by Ethereum, and ignored for the case of Fabric).

The result of this procedure is the addition of a list of parameters after
the message name in the form of: msgName (paramType; paramName;y, ...,
paramType, paramNamey,).

The Ethereum blockchain natively supports financial transactions
among the interacting partners for exchanging specific amounts of
cryptocurrency. Therefore, the modeller has the possibility to include
messages in a choreography that can produce financial transactions. In
case the payment checkbox is selected for a given choreography message,
the corresponding function is created, and the message is automatically
filled with no parameters. The name assigned to the message is of the
form payment n (), where n corresponds to a counter that is incremented
for each new payment function added to the model, to obtain unique
names. The lack of any parameters is justified because the only

*# https://www.rinkeby.io/.

information required by the payment function refers to the involved
participants, which can be directly and automatically retrieved from the
task description. The amount to be paid will be indicated by the sender
during the choreography execution, exploiting the dedicated page. The
resulting transaction will transfer the amount in Ether from the sender to
the receiver wallet. To notice, the payment functionality is enabled only
on Ethereum, due to the absence of a native cryptocurrency in Fabric.

Another fundamental aspect to consider when executing a choreog-
raphy is related to the guards of the involved exclusive gateways. Each
sequence flow outgoing from an exclusive gateway must refer to a
boolean expression that indicates the path to be triggered. This expres-
sion could be written using the standard comparison operators for
boolean, numeric, and string variables. After a model is created, it is
possible to save it by storing the choreography file inside the repository.
This operation will also generate new unique organisations associated
with the participants that can be used later in the Fabric subscription and
the deployment phase.

6.2. Publishing, instantiation and subscription

Here we describe the multiple blockchains support for publishing and
instantiating a choreography specification. In particular, after the
instantiation phase, the distinction between the two resulting artefacts to
be deployed on a specific blockchain is evident, while till the publishing
phase, the model is unique.

Once a choreography is published into the Multi-Chain repository, it
can be accessed via an intuitive user interface. However, to interact with
the repository, it is necessary to register and login into the platform.
These operations require a name and a password to create the user's
identity inside the platform. However these are only preliminary high-
level credentials; for identifying the user inside the blockchain pro-
cesses, an Ethereum address or a Fabric organisation will be assigned
later. After the login, the user is redirected to the homepage depicted in
Fig. 5, which shows the uploaded and instantiated Retail process
example.

On the left side of the web page, the user has the possibility to publish
anew model, by uploading the corresponding file. Alternatively, s/he can
search for an existing one.

The searching phase is an important aspect of the framework as it
enables reusability and facilitates the meeting between supply and de-
mand of services. Once logged in, any registered user can search for a
particular choreography, and the framework proposes the list of all
models matching the searched topic. These are listed below the search
form.

The information about the selected choreography is shown on the
right side of the homepage, depending on the instance topology (Ether-
eum or Fabric) the platform shows different information. In particular,
common information like the model owner, the maximum number of
involved participants and the required roles are shown. Also, the preview
of the graphical representation and the possibility of creating a new

https://www.rinkeby.io/

F. Corradini et al.

Message top

retail_quotation
string ¢ | good

uint # | amount

Check this box if the message is a payment function
Participant top

Customer

Task name

Retail Quotation

Participant bottom

Retailer

Message bottom
retail_repsponse
uint s | price

boolean ¢ | availability

Add param

Check this box if the message is a payment function

Blockchain: Research and Applications 2 (2021) 100018

Invia

Fig. 4. Multi-Chain modeller.

Multi-chain Home Page

RetailProcess.bpmn
Uploaded by: Usera
All roles: Retailer - Producer - Customer

Model Fle List

i BikeRental.bpmn

n° Sfcded5cd8f46d196c21bd49

Modeler

Ethereum Page Fabric Page

o [Hyperledger Subscribe erledaer deplo

Fig. 5. Tool homepage with focus on the Fabric instances.

choreography contract are available.

A model instantiation results are two choreography instances created
for the two implementations, one for Ethereum and one for Fabric. They
are kept in a “suspended” state while waiting that all the mandatory roles
are subscribed. Fig. 5 shows the home page with the retail process
instantiated, in particular, the fabric instance is highlighted.

Before deploying one of the two possible instances, the choreography
participants must be filled by the users during the subscription phase. For
Ethereum, when the user subscribes to a role, it's necessary to associate
her/his Ethereum address through the Metamask browser plugin that
manages blockchain accounts. At this point, the role is considered
covered and it will be associated in the blockchain and the Solidity
contract to the user address. For Fabric, the procedure is quite different
since the user's identity is directly created after the subscription. Indeed,
as described in Section 4, roles are associated with Fabric organisations.
These automatically generate later the artefacts for the user's identity
that become a member of the organisation covering that role in that
specific instance. Thus, the interface is necessary only to select the
desired role, without the need for additional operations.

When one of the two choreography instances has no more vacant
mandatory roles, the partnership is complete, and the smart contracts
generation phase can start, deploying it on the chosen blockchain. For
Ethereum, if the contract has some optional roles, the subscription form
remains enabled on the homepage with only the optional roles, also after
its deployment. In case a user selects an optional role, the correlated
subscription function will be triggered directly on the already deployed

10

smart contract. This operation generates a standard transaction that
needs to be accepted via the Metamask plugin. The details regarding the
smart contract generation were described in Section 5.

6.3. Deployment

Once the contract has been generated, the framework automatically
deploys it into the selected blockchain. Depending on the chosen tech-
nology, the deployment operation will be different. For Ethereum, the
server will generate a transaction that deploys the generated Solidity
contract on the blockchain. For Fabric the procedure is more complicated
since, for each new instance, a new channel must be created. This hap-
pens in the back-end, where the system automatically generates the ar-
tefacts related to organisations, orderers, channels, and chaincodes. In
particular, organisations artefacts are produced after the model pub-
lishing, users’ identities in the subscription phase, chaincode, and the
channels in the deployment.

6.4. Execution

Once a new contract is deployed into the blockchain, the execution
phase takes place, and the participants can collaborate using the func-
tions exposed by the contract. To facilitate these interactions, there are
two execution pages accessible by each participant. These pages enable
interaction with Ethereum contracts or with the Fabric ones.

Fig. 6 shows the Fabric page concerning the deployed Retail process

F. Corradini et al.

etail_quotation(s
tring good. uint

Customer

av==true

Blockchain: Research and Applications 2 (2021) 100018

ship_address(str
in

g
cusm@fgs\,

Customer

payment1()

 Cosomar.)
Customer

O— = Retai quotation

Retailer

- =

(uint price, bool
ar)

quotation(string

product, uint payment()

Retai payment |——{ Retail shipment

Retailer Retailer

ship_info(string

shipment_addre H :
veh@m
™ retail_GTaeTsring il
H orderDetail) customerShipme

Retailer Retailer

Retailer nt}

Askgoods

jort i Pay goods

Ship goods

Producer Producer

Producer

n(demn osting

orderD)

resj ol
availabiity, uint
cost)

Start

You are subscribed as Retailer

Retail_response(uint price, bool av) vObject

shiplnfo)

amount

Fig. 6. Fabric execution page.

example. However, this execution page has some common characteristics
with the Ethereum one. On the left-hand side, the interface reports a list
of all contracts to which the participant is subscribed. On the right-hand
side, a preview of the model is shown: in green, the messages completed
are indicated, and the ones actually active. For these, the window also
includes the forms that are dynamically constructed by the tool. Each
form contains many information, like the name of the message, the role
of the participant, the space for inserting all the required parameters, and
the submit button. Notably, the submission form is visible only to the
participant in charge of sending the enabled message.

By double-clicking on a completed message, a little panel with the
exchanged values is shown. However, for Ethereum all data will be
visible. In Fabric instead, since the main requirement is the privacy of
exchanged information, there will be visible only to the participants.
When an Ethereum message is sent, the transaction has to be confirmed
using the Metamask pop-up. It contains the gas price plus the total
amount of Ether to spend for the transaction. As soon as the transaction is
included in a block (i.e., it is mined), the related event is emitted. The
front-end uses this event to update the interfaces of all participants
involved in the choreography with the new contract status, thus enabling
the next admitted message(s). In Fabric instead, a function execution
does not require the payment of any fee, making the transaction process
faster. It is worth noticing that the choreography is executed in a
distributed manner, since the participants interact via the front-end
directly with the blockchain, without referring anymore to the back-
end component.

7. Discussion

In this work, we presented a multiple blockchain technologies
implementation supporting the full life-cycle of choreography diagrams.
In particular, the model-driven approach allows specifying the high-level
behaviour of distributed systems, just focusing on their messages ex-
change. These models are then deployed and executed inside the
blockchain, guaranteeing a trusted communication also in untrusted
contexts, with an immutable proof of the executed communication. In
particular, we chose to adopt both the permissionless Ethereum and the
permissioned Hyperledger Fabric blockchains. Indeed, their different
nature allows covering a large set of properties as highlighted in Section
2.

It is worth mentioning that in a permissionless blockchain, it is
possible to use encryption to obtain privacy restrictions, and have similar

11

benefits concerning the ones provided by a permissioned blockchain.
However, in a permissionless blockchain, the encrypted data are saved in
each node of the network. Then this information can be used by a ma-
licious node that with enough time and computational resources could be
able to break the encryption and get access to sensible data. Instead, in a
permissioned blockchain like Fabric, this situation is prevented by the
technology that limits the distribution of confidential data exclusively to
authorised nodes via channels and private data collections. However,
once considered relevant, a specific profile to support encryption on a
permissionless blockchain could be added as an additional option to the
Multi-Chain infrastructure.

An example of data confidentiality in Multi-Chain is reported in Fig. 7
where the execution of the Retail process (described in Section 2) is
performed. The figure shows the Producer perspective inside the Fabric
execution page. Here is possible to notice that the currently active mes-
sage is the retail response so this means that the previous one was already
sent with its information. However, the current user is the Producer so s/
he is not allowed to see what the Customer and the Retailer are sending.
Indeed, the Producer visibility is restricted since in this case the in-
teractions are private, so a participant will have visibility only on data
directly sent or received.

In Ethereum instead, the same deployed process provides a trans-
parent view of the messages. Fig. 8 shows always the Producer partici-
pant but this time s/he can see the request made by all other participants.

A similar discussion could arise considering the identity of the par-
ticipants in a private blockchain. Indeed creating a private Ethereum
network is possible to have restricted visibility of information shared
only within the participants of the private network. From one side, this
could partially solve the data confidentiality, but from the other side, it is
a really rigid structure not adequate for dynamic systems since a dedi-
cated network should be created from scratch. In Hyperledger Fabric the
network is completely configurable and composed of elements able to
manage the identities (certification authority) and control the access
policies (membership service provider) in an automatic way. This per-
mits having a dynamic network, that is configurable both at design time
and run-time. In the Multi-Chain approach, the Fabric network is dy-
namic and updated instantaneously each time that a choreography
instance is created.

Another aspect to consider in this discussion is related to the choice of
the best blockchain implementation to use in the Multi-Chain approach.
We discerned the two approaches highlighting mainly the privacy and
confidentiality aspects without considering too much the different

F. Corradini et al.

retail_quotation(s

Blockchain: Research and Applications 2 (2021) 100018

ship_address(str
in

fing good, uint payment1() 9
cuslomﬁes}
Customer Customer Customer
av==true
Retai quotation X Retail payment [——| Retail shipment
Retailer Retailer Retailer
- quotation(string ship_info(string : —
m product, uint payment0() shipment addre : H
. = | "
TS:::' ice. bﬁ? retail_orderstring g
p'a_” H H orderDetai) customerShipme
Retaler Retaller Retaier)
av==taise | Askgoods]
qoiion [—>| Pavooods Ship goods
Producer)} Producer Producer
S, & &
v A order_mTo[sting shipmentstring
b arderiD) shiphfo)
Start
You are subscribed as Producer
Waiting for the message of Retailer vObject
chorID: "

Fig. 7. Execution of the retail process over the Fabric blockchain.

Model File List RetailProcess.bpmn

RetailProcess.bpmn <0

retal_quotationis
E

ship_address(sti

Retaler

Rotai_Tocoonse(u
ntprice bool a;

Retai payment

ota ,ga' rsting

ordorDatal)

Retas snpmen

snip_intostrng

paymentdl) shioment_address

e ing
customerShiomen
)

Contract deployed: 0xd01bd058d29b0ebbs3afcf2a73b3950560805¢1 visible at:

Retail_response(uint price, bool av) Retailer

e

(eaw T)
etail_quotation(string good, uint
amount)

SfteERabled string good : product1

retail_quetation(string good, uint
amount)

uint 2mount : 20

Fig. 8. Execution of the retail process over the Ethereum blockchain.

throughput between permissioned and permissionless blockchain. Fabric
is more recommended in scenarios where a high number of transactions
per second (TPS) are required since it can reach the moment we are
writing 20,000 TPS and instead Ethereum just 20 TPS. At the same time,
Fabric is not able to guarantee audibility on the large since the
communication between participants is restricted using channels. For
solving such contrasting requirements, we planned to improve Multi-
Chain including in the model-driven the possibility to specify the policies
governing confidentiality and privacy of data. This will permit Multi-
Chain to customise the network during the generation phase according to
the user requirements.

7.1. Performance analysis

We report here the results of the experiments we made on Multi-
Chain to assess its performances and the costs of the approach concerning
the translation, deployment, transaction execution, and, for Fabric only,
the network creation. Fig. 9 compares the times that the translator needs
to generate ten smart contracts, for each of the two blockchains, derived
from the running example model. The average time for the translation is
22 ms for creating Ethereum contracts and 24 ms for creating the Fabric
ones. The differences are minimal and the two platforms can be consid-
ered equivalent during this phase.Fig. 10 represents, instead, the times
taken for the deployment of the same contracts previously created. For
Ethereum, the trend is not constant, but on average it takes around 17 s.

12

40

35

30

25

20

Translation time (ms)

Contracts

— Ethereum e Fabric Eth average =~ — —Fab average

Fig. 9. Translation time of 10 running example choreography instances.

For Fabric instead, the trend is more uniform, but the requested time is
higher, as it takes 79 s on average. This degradation of performance is
motivated by the necessity for Fabric to approve and verify a sequence of
stages in each peer of the network. In Fig. 11 we compare the average
time required for executing a specific transaction of the running example.
Each transaction was executed 10 times for each blockchain technology
using the different smart contracts derived from the running example

F. Corradini et al.

Deploy time (s)

v A > S
& & & & S & & (el 3
N & & & & & & & g
& & & & & & S & & &
(¢) ¢) () (@) (¢
Contracts
Ethereum Fabric Eth average = — —Fab average

Fig. 10. Deploy time of 10 running example choreography instances.

60

IS
S
-

Execution time
s 3 8 8
@H-
b—l-"
|
I !

——
|

-=-1
[|
—L—l
I |

-—-4
-

L > o o > Q&
o & ' & & & & & 5 & & g\‘\Q
£ L S & S e
N & N & N O 2 %
& S e R o L) Q &F <
& &
Transaction number
mmmmm Ethereum Fabric == —Ethaverage — — Fab average

Fig. 11. Average transactions execution time for the running example.

model. Here the differences between the two technologies are more
evident. In Ethereum, the time necessary for processing a transaction
fluctuates between 14 s and 38 s on average, with a significant standard
deviation moving between 4 s and 19 s. However, on average a generic
transaction is executed in 23 s for a single execution; this result is in line
with the standard performance of the Rinkeby network for the inclusion
of a transaction. In Fabric, such a trend is much more regular and we do
not have significant differences between distinct transactions. In general,
the average time necessary corresponds to 2 s with a standard deviation
that is not relevant.Finally, in Fig. 12 we report the performance for the
network creation. This measure is reported only for Fabric since there is

25

20

Network creation (s)

Contracts

e FabriC ==« Average

Fig. 12. Time required for creating a Fabric network.

13

Blockchain: Research and Applications 2 (2021) 100018

355,00 90.141,60 90.169,40
s R 0115 St
Pl

90.060,20
77.310,00
109.568,60

= Contract deploy
= Retail quotation

Retail response
= Quotation

112.472,00 = Response

= Payment
Order info
Ship info
Shipment

= Payment
Retail order
Ship address

4.950.262,00 Retail ship

Fig. 13. Average gas consumption of a contract.

not the same need on Ethereum. Fabric is based on a private network and,
therefore, for each new choreography, it is necessary to create a new
preconfigured network considering the involved organisations and suc-
cessive participants' identities. In the experiments, we isolate 10 different
network instantiations and we observe, on average, a generation time of
20 s. This additional time should be considered one-time only during the
first instantiation of the choreography.

Another interesting analysis to evaluate the effectiveness of Multi-
Chain is the cost for the execution. In this respect, we report only the test
on the Ethereum technology, since it allows to measure the gas consumed
by the system. In Fabric, this measure is not applicable since there is no
such execution cost in a private network. Obviously, this does not mean
that the choice of Fabric is for free; indeed, the cost for the hardware
required to construct the network should be considered. These costs are
highly influenced by the dedicated hardware and the number of desired
nodes. Fig. 13 shows the gas consumed for the deployment and execution
of the retail process contract in the Ethereum blockchain. The total units
of gas used are 6,134.344,00 and it is clear that the deploy transaction is
the most expensive one, being around 80% of the total. The remaining
transactions are not very impacting and range from a minimum of 77.310
to a maximum of 120.935,00. Of course, the more transactions a contract
has, the more gas is consumed. Anyway, on average, we have that a
general transaction in the Multi-Chain tool, excluding the deployment,
consumes around 98.673 units of gas.

7.2. Limitations of the approach

Currently, the main limitations of the approach are given by the
blockchain cost to afford during the execution and by the flexibility of the
technology to deal with exceptions and unexpected events. Indeed, for
the former point, the use of Ethereum involves a known cost that the user
has to pay for each execution/transaction. For what concerns Fabric,
there are no fees to pay for the transactions, but it is necessary to host and
maintain the network, which surely corresponds to a cost. Moreover, the
complexity of the Fabric architecture could create obstacles for the
network creation. The latter point is strictly connected to the choice of
using blockchain technology, which does not make it possible to update
or change a running instance without a new deployment, thus entailing
the loss of the previous interactions.

8. Related works

In literature, blockchains have been used in many contexts and
application domains [16]. In this section, we start focusing mainly on
reviewing literature regarding model-driven approaches based on
choreography-based specifications. Then we focus on those works
combining BPMN and blockchain technology with a focus on business
process execution. Finally, we discuss the contributions focusing on

F. Corradini et al.

multiple blockchains.

The usage of choreography-based specifications to drive the devel-
opment of multi-party distributed systems has been extensively studied
and investigated [17]. Also, the EU commission financed various projects
specifically devoted to the topic (see, for instance, CHOReOS® and
CHOREVOLUTION®). Differently from this research strand, we focus on a
specific technology, the blockchain, for supporting the execution of the
choreography specifications.

The combination between BPMN and blockchain has been fostered by
other works before. In Ref. [18], the authors discuss the importance of a
model-driven approach to developing a smart contract for
blockchain-oriented software. BPMN has been recognised as the most
suitable notation for describing smart contracts' behaviour at a higher
level of abstraction since it provides facilities for specifying details that
help developers and engineers implement the contract interactions. In
our work, we use BPMN as well. However, our aim is not to use BPMN to
ease smart contracts development, but instead to describe multi-party
business processes that will be then implemented in terms of smart
contracts. So, despite the fact that the ingredients are the same, the aim of
our proposal is quite different.

Other works in the literature recognised blockchain as beneficial for
collaborative processes. In Ref. [1], the authors outline the potential of
blockchain technology to enable a shift in BPM research. They state that
large parts of the control flow and business logic of inter-organisational
business processes can be compiled from process models into smart
contracts, ensuring that the joint process is correctly executed. They
summarise technological challenges to address, also providing a smart
contract code snippet illustrating how it is generated from a BPMN
model, explaining that all state-changing messages have to be recorded in
the blockchain and can be accepted only if they are sent from the account
registered for the respective role in the process. Despite the novelty of the
topic, some concrete implementations of the approach envisioned above
can be found in the literature. For example, in Refs. [19,20] BPMN
collaboration diagrams are used to provide a framework permitting the
execution of decentralised processes exploiting blockchain-related tech-
nologies. As in our case, the lack of trust is the main driver for this work.
However, the usage of a collaboration model, with the need to provide
details for each participating process, constitutes one of the main dif-
ferences with our proposal. Indeed, we consider choreography diagrams,
which are more suitable in a multi-party context, where the internal
details of a single organisation are generally not made available. Apart
from a different kind of model used to represent the processes coopera-
tion, the approach in Ref. [19] introduces a generic factory smart con-
tract that will be reused for each process execution. This introduces a
centralisation point, resulting in a bottleneck mainly for reliability issues.
Differently, we generate a new contract for each choreography instance,
resulting in a clearer separation of concern and simpler management of
the information related to the execution of choreography instances. At
the same time, the generation of a new contract is distributed on the
whole blockchain infrastructure, reducing issues related to scalability
and reliability.

Along a similar direction, in Refs. [21,22] the Caterpillar tool is
proposed. This is one of the first attempts to support the combination of
business process management and blockchain technology. The tool takes
as an input a process model and transforms it into Solidity code. Again,
the use of different kinds of diagrams distinguishes this proposal from the
one we illustrate in this paper, and the same considerations reported
above apply here. Extensions of this tool are presented in Ref. [23],
where the authors propose a dynamic role binding model and a binding
policy language for supporting the collaborative business process. In
Ref. [24], instead, a list of components is provided for the update of
models and their smart contracts at run-time, to react to unexpected

5 https://cordis.europa.eu/project/rcn/96288/factsheet/en.
6 http://www.chorevolution.eu/bin/view,/Main/.

14

Blockchain: Research and Applications 2 (2021) 100018

situations during the execution. With a similar structure, Lorikeet tool is
presented in Ref. [25], which focuses more on the asset management and
business process interactions on the blockchain technology.

The works mentioned above use BPMN collaboration or process
models. In fact, BPMN choreographies are still less applied for the other
kinds of BMPN diagrams in executing blockchain-based scenarios.
However, recently, this kind of model has aroused research interest. In
Ref. [26], the authors present a model-driven approach based on BPMN
choreographies, whose target platform relies on a public permissioned
blockchain but without a concrete implementation. However, this kind of
blockchain still lacks some fundamental properties. Indeed, it is a union
of transparency and access control that could be very useful in certain
situations but does not fully cover the confidentiality of information and
communication. In our case, instead, we have implemented the proposed
model-driven approach by giving two possible solutions. Indeed, we
support both the public permissionless Ethereum blockchain and the
private permissioned Hyperledger Fabric one by taking advantage of
these blockchains' characteristics. This clear separation also avoids the
user to be insecure about the context in which s/he is operating. Another
use is reported in Ref. [27], where an extension of the BPMN choreog-
raphy is proposed to give more expressiveness to blockchain concepts
and implemented in an Ethereum-based proof-of-concept. The proposed
elements are related to data objects, sub and call choreographies, con-
dition expressions, and script tasks. Our approach is quite different, as
our work's main goal is to use already existing notation elements to
support the full life-cycle in the blockchain, without adding extension
elements to the language. The authors highlight also the need of privacy
and confidentiality that some business cases could require, pointing to
Hyperledger Fabric as a possible solution.

Concerning the works previously described, we note that they
generally overlook integration aspects related to the need of an infra-
structure to support the whole life-cycle of multi parties business pro-
cesses. Our work, instead, permits to derive a concrete implementation of
choreography models, by relying on the underlying blockchain technol-
ogies. Our methodology is encapsulated in a user-friendly framework
that allows the developer to deal with all the choreography life-cycle
phases, from the modelling to the deployment and execution. A web-
based interface, easily accessible support all these phases to users not
familiar with blockchain-related technologies.

Finally, the works mentioned above target only one type of block-
chain, in most cases, Ethereum. Instead, the distinctive characteristics of
our work are the capability of supporting multiple blockchains. In
practice, our model-driven framework is currently able to automatically
generate the code for a given multi-party business process, and deploy
and execute it, in both Ethereum and Hyperledger Fabric. The need to
consider multiple blockchain technologies has also been exploited in
Ref. [28], where the authors use choreography diagrams for coordinating
the communication between different blockchain technologies. To make
it possible, an architecture abstracting from a specific blockchain is
proposed. In this way, the communication does not rely on a single
technology, but it can integrate heterogeneous technologies, which al-
lows cross-chain communication. This work aims to generate a bridge
between different blockchains. Differently, we propose a methodology
and a practical framework for supporting distributed system scenarios on
different blockchains, selected based on the system requirements without
requesting their integration.

9. Conclusions and future work

This work proposes Multi-Chain, a model-driven methodology for
multi-party business process on multiple blockchains. It makes possible
the automatic generation of distributed systems over blockchain-based
technology. In particular, our methodology's starting point is the BPMN
standard, which makes it possible to model multi-party business pro-
cesses from a high-level perspective. Once created, the model system is
executed over the blockchain, taking advantage of distribution, trust and

https://cordis.europa.eu/project/rcn/96288/factsheet/en
http://www.chorevolution.eu/bin/view/Main/

F. Corradini et al.

immutability of data. This work's principal novelty concerns a flexible
framework supporting use cases from different contexts, thanks to the use
of both permissionless and permissioned blockchains. In practice, a sin-
gle blockchain can not suit every need; for example, a transparent public
blockchain will not provide privacy and confidentiality. For this reason,
the multiple blockchains approach using both Ethereum and the
Hyperledger Fabric blockchains, with their complementary properties,
allows the users to have complete coverage of their needs. In the pro-
posed tool, we have implemented a dynamic generator and deployer of
both networks. In Hyperledger Fabric's case, the framework automati-
cally constructs the appropriate network according to the organisations'
specifications.

The paper poses the basis for the fast development of multi-party
business processes over blockchain technologies, without requiring
much technical competence to the final users about blockchain-related
aspects. The approach currently includes the most known blockchain
technologies between the permissioned and permissionless ones. With
this work, we highlight the necessity to have different implementations
according to the context and the feasibility of the approach that has the
ability to deal with rather different technologies. As future work, we
intend to extend Multi-Chain to support an automatic selection of the
blockchain platform depending on the non-functional requirements of
the input choreography and its context of use. We also plan to extend
Multi-Chainto cover additional blockchain platforms.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] Mendling Jan, Ingo Weber, Wil Van Der Aalst, Jan Vom Brocke, Cristina Cabanillas,
Florian Daniel, Sgren Debois, Claudio Di Ciccio, Marlon Dumas, Schahram Dustdar,
et al., Blockchains for business process management-challenges and opportunities,
ACM Transactions on Management Information Systems (TMIS) 9 (1) (2018) 1-16.
Barbara Carminati, Elena Ferrari, Christian Rondanini, Blockchain as a platform for
secure inter-organizational business processes, in: Collaboration and Internet
Computing, IEEE, 2018, pp. 122-129.

Mads Frederik Madsen, Mikkel Gaub, Trondur Hggnason, Malthe Ettrup Kirkbro,
Tijs Slaats, Sgren Debois, Collaboration among adversaries: distributed workflow
execution on a blockchain, in: Symposium on Foundations and Applications of
Blockchain, 2018, pp. 1-8.

Chris Dannen, Introducing Ethereum and Solidity, vol. 1, Springer, 2017.
Archana Prashanth Joshi, Meng Han, Yan Wang, A survey on security and privacy
issues of blockchain technology, Mathematical foundations of computing 1 (2018)
121-147.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,

Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, et al., Hyperledger fabric: a distributed
operating system for permissioned blockchains, in: Proceedings of the Thirteenth
EuroSys Conference, ACM, 2018, pp. 1-15.

S. Mancarella. Business process modelling notation, OMG SOA Healthcare, SPARX
Systems, 2011.

Aitor Aldazabal, Baily Terry, Felix Nanclares, Andrey Sadovykh, Christian Hein,
Tom Ritter, Automated model driven development processes, in: Proceedings of the

[2

—

[3

—

[4]
[5]

[6

=

[71

[8

—

15

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Blockchain: Research and Applications 2 (2021) 100018

ECMDA Workshop on Model Driven Tool and Process Integration, 2008,

pp. 361-375.

Oscar Pastor, Model-driven development in practice: from requirements to code, in:
International Conference on Current Trends in Theory and Practice of Informatics,
10139 of LNCS, Springer, 2017, pp. 405-410.

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Andrea Polini,
Barbara Re, Francesco Tiezzi, Engineering trustable choreography-based systems
using blockchain, in: 35th ACM/SIGAPP Symposium on Applied Computing, ACM,
2020, pp. 1470-1479.

Julien Polge, Jérémy Robert, Yves Le Traon, Permissioned Blockchain Frameworks
in the Industry: A Comparison, ICT Express 7 (2) (2020) 229-233.

P. Sajana, M. Sindhu, M. Sethumadhavan, On blockchain applications: Hyperledger
fabric and ethereum, Int. J. Pure Appl. Math. 118 (18) (2018) 2965-2970.
Wattana Viriyasitavat, Danupol Hoonsopon, Blockchain characteristics and
consensus in modern business processes, Journal of Industrial Information
Integration 13 (2019) 32-39.

Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass,

Cesare Pautasso, Rimb Paul, A taxonomy of blockchain-based systems for
architecture design, in: International Conference on Software Architecture, IEEE,
2017, pp. 243-252.

Flavio Corradini, Fausto Marcantoni, Andrea Morichetta, Andrea Polini, Barbara Re,
Massimiliano Sampaolo, Enabling auditing of smart contracts through process
mining, in: From Software Engineering to Formal Methods and Tools, and Back,
11865 of LNCS, Springer, 2019, pp. 467-480.

Damiano Di Francesco Maesa, Paolo Mori, Blockchain 3.0 applications survey,

J. Parallel Distr. Comput. 138 (2020) 99-114.

Marco Autili, Paola Inverardi, Massimo Tivoli, Choreos: large scale choreographies
for the future internet, in: Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), IEEE, 2014,
pp. 391-394.

Henrique Rocha, Stéphane Ducasse, Preliminary steps towards modeling blockchain
oriented software, in: 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain, IEEE, 2018, pp. 52-57.

Christian Sturm, Szalanczi Jonas, Stefan Schonig, Stefan Jablonski, A lean
architecture for blockchain based decentralized process execution, in: BPM 2018:
Business Process Management Workshops, Springer, 2018, pp. 361-373.

Ingo Weber, Xiwei Xu, Régis Riveret, Governatori Guido, Alexander Ponomarev,
Mendling Jan, Untrusted business process monitoring and execution using
blockchain, in: BPM 2016: Business Process Management, Springer, 2016,

pp. 329-347.

Orlenys Lopez-Pintado, Luciano Garcia-Banuelos, Marlon Dumas, Ingo Weber,
Caterpillar: a blockchain-based business process management system, in: BPM
(Demos), Volume 1920 of CEUR Workshop Proceedings, CEUR-WS.org, 2017.
Orlenys Lépez-Pintado, Luciano Garcia-Banuelos, Marlon Dumas, Ingo Weber,
Alexander Ponomarev, Caterpillar: a business process execution engine on the
ethereum blockchain, Software Pract. Ex. 49 (7) (2019) 1162-1193.

Orlenys Lépez-Pintado, Marlon Dumas, Luciano Garcia-Banuelos, Ingo Weber,
Dynamic role binding in blockchain-based collaborative business processes, in:
Advanced Information Systems Engineering, 11483 of LNCS, Springer, 2019,

pp. 399-414.

Orlenys Lopez-Pintado, Marlon Dumas, Luciano Garcia-Banuelos, Ingo Weber,
Interpreted execution of business process models on blockchain, in: 23rd
International Enterprise Distributed Object Computing Conference, IEEE, 2019,
pp. 206-215.

An Binh Tran, Qinghua Lu, Ingo Weber, Lorikeet: a model-driven engineering tool
for blockchain-based business process execution and asset management, in: BPM
Dissertation Award, Demonstration, and Industrial Track, vol. 2196, CEUR-WS.org,
2018, pp. 56-60.

Marco Autili, Francesco Gallo, Paola Inverardi, Claudio Pompilio, Massimo Tivoli,
Introducing trust in service-oriented distributed systems through blockchain, in:
International Workshop on Governing Adaptive and Unplanned Systems of Systems,
2019, pp. 149-154.

Ladleif Jan, Weske Mathias, Ingo Weber, Modeling and enforcing blockchain-based
choreographies, in: BPM 2019: Business Process Management., Springer, 2019,
pp. 69-85.

Ladleif Jan, Christian Friedow, Weske Mathias, An architecture for multi-chain
business process choreographies, in: BIS 2020: Business Information Systems,
Springer, 2020, pp. 184-196.

http://refhub.elsevier.com/S2096-7209(21)00013-0/sref18
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref18
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref18
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref18
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref18
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref5
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref5
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref5
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref5
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref17
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref17
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref17
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref17
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref17
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref17
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref8
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref10
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref10
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref10
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref10
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref2
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref2
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref2
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref2
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref2
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref2
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref19
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref19
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref1
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref1
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref1
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref1
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref1
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref20
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref20
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref20
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref20
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref7
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref7
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref7
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref7
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref7
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref21
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref21
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref21
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref21
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref21
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref23
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref23
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref23
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref26
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref26
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref26
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref26
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref29
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref29
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref29
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref29
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref29
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref6
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref6
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref6
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref6
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref6
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref9
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref9
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref9
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref3
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref3
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref3
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref3
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref3
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref22
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref22
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref22
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref22
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref22
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref24
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref24
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref24
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref24
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref24
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref28
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref28
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref28
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref28
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref28
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref28
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref13
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref13
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref13
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref13
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref13
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref16
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref16
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref16
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref16
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref16
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref16
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref14
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref15
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref25
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref25
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref25
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref25
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref25
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref4
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref4
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref4
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref4
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref4
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref11
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref11
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref11
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref11
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref12
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref12
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref12
http://refhub.elsevier.com/S2096-7209(21)00013-0/sref12

	Model-driven engineering for multi-party business processes on multiple blockchains
	1. Introduction
	2. Motivations
	2.1. Blockchain technologies
	2.2. Running example

	3. Multi-party business processes in BPMN
	3.1. Running example

	4. The Multi-Chain methodology
	4.1. Running example

	5. Multi-Chain: blockchain infrastructures generation
	5.1. Ethereum vs Hyperledger Fabric infrastructures
	5.2. Multi-Chain translator

	6. Implementation of Multi-Chain practical framework
	6.1. Modelling
	6.2. Publishing, instantiation and subscription
	6.3. Deployment
	6.4. Execution

	7. Discussion
	7.1. Performance analysis
	7.2. Limitations of the approach

	8. Related works
	9. Conclusions and future work
	Declaration of competing interest
	References

