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Abstract: We investigate single-particle excitation properties in the normal state of a two-band
superconductor or superfluid throughout the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein-
condensation (BEC) crossover, within the many-body T-matrix approximation for multichannel
pairing fluctuations. We address the single-particle density of states and the spectral functions
consisting of two contributions associated with a weakly interacting deep band and a strongly
interacting shallow band, relevant for iron-based multiband superconductors and multicomponent
fermionic superfluids. We show how the pseudogap state in the shallow band is hidden by the
deep band contribution throughout the two-band BCS-BEC crossover. Our results could explain the
missing pseudogap in recent scanning tunneling microscopy experiments in FeSe superconductors.

Keywords: BCS-BEC crossover; pseudogap; spectral function; multiband superconductor; multicom-
ponent superfluids

1. Introduction

Recently, the Bardeen–Cooper–Schrieffer to Bose–Einstein-condensation (BCS-BEC)
crossover, where a weakly-interacting BCS state continuously changes to BEC of tightly
bound molecules with increasing the attractive interaction [1–4], has gathered much at-
tention due to its realization in ultracold Fermi gases [5,6]. Moreover, such a crossover
phenomenon has been confirmed experimentally in multiband iron-based superconductors,
such as the iron-chalcogenides family FeSe [7–11].

Thanks to these experimental progress, the two-band BCS-BEC crossover theory has
been of particular interest in condensed matter and ultracold atomic physics [12–22]. In
particular, the FeSe superconductors involve a multiband configuration which plays a
crucial role for the BCS-BEC crossover. Moreover, the most fundamental two-band model
for multichannel pairing proposed by Suhl, Matthias and Walker [23] has been realized in
Yb ultracold Fermi gases near an orbital Feshbach resonance [24–26].

One of the exciting topics in the two-band BCS-BEC crossover is the existence of
pseudogaps in the single-particle excitation in the normal state (for reviews discussing the
pseudogap, see [27–29]). While several experiments for FeSe report signals of pseudogaps
and preformed Cooper pairs [30–33], a recent scanning tunneling spectroscopy (STS)
measurement did not observe a pseudogap behavior even in the crossover regime of the
BCS-BEC crossover [34]. In addition, a torque magnetometry experiment in the same
system indicates weak pairing fluctuations [35]. Theoretically, the screening of pairing
fluctuations originating from the two-band configuration with different pairing strengths
has been reported [36–40], but the perfect screening observed in the experiment [34] may
require a further mechanism for suppressing the pseudogap.

In this article, we resolve this complicated phenomenology by calculating the single-
particle density of states and spectral function throughout the two-band BCS-BEC crossover.
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We adopt the many-body T-matrix approximation (TMA) for multichannel pairing fluctua-
tions in the normal state. We show that the pseudogap occurring in the strongly coupled
shallow band is masked by the contribution from the deep band in the total (i.e., summed
over the bands) density of state, which is measured in the STS experiment. This masking
effect becomes remarkable in the strong-coupling regime for the shallow band due to the
overlap of spectral weights in each band. On the other hand, we show that the total spectral
function relevant for the angular-resolved-photoemission spectroscopy (ARPES) clearly
reflects the pseudogap features in the strongly coupled shallow band.

2. Formalism

We consider a three-dimensional two-band model for attractive fermions described by

H = ∑
k,σ,j

ξkjc†
kσjckσj + ∑

j1,j2
∑
q

Vj1 j2 b†
qj1 bqj2 , (1)

where ckσj is the annihilation operator of a fermion with the momentum k, spin σ =↑, ↓
and the band index j (where j = 1 and j = 2 denote the indices of deep and shallow
bands, respectively) and ξkj = k2/(2mj)− µ + E0δj,2 is the single-particle dispersion in the
j-band, measured from the chemical potential µ with the energy separation E0 between
the two bands. For simplicity, we take the same effective mass m = m1 = m2 in each band.
Hereafter, we take h̄ = kB = 1 and the unit volume. We define a pair-annihilation operator

bqj = ∑
k

c−k+q/2↓jck+q/2↑j. (2)

We employ a contact-type interaction. In Equation (1), the second term represents the
pair-scattering process between j1 and j2 bands. Specifically, the intraband couplings V11
and V22 are expressed in terms of the corresponding scattering lengths a11 and a22 as [13]

m
4πajj

=
1

Vjj
+
|k|≤k0

∑
k

m
k2 , (3)

where the momentum cutoff k0 is taken much larger than all other momentum scales.
Superconducting pair-fluctuation effects are incorporated by the two-channel T-

matrix [39,40](
T11(q, iν`) T12(q, iν`)
T21(q, iν`) T22(q, iν`)

)
=

(
V11 V12
V21 V22

)
+

(
V11 V12
V21 V22

)(
χ11(q, iν`) 0

0 χ22(q, iν`)

)
×
(

T11(q, iν`) T12(q, iν`)
T21(q, iν`) T22(q, iν`)

)
, (4)

where

χjj(q, iν`) = ∑
k

1− f
(

ξk+q/2↑j

)
− f

(
ξ−k+q/2↓j

)
iν` − ξk+q/2↑j − ξ−k+q/2↓j

(5)

is the lowest order particle–particle correlation function in the j-band. ν` = 2`πT is the

bosonic Matsubara frequency. In Equation (5), f (x) =
(

ex/T + 1
)−1

is the Fermi–Dirac
distribution function. The diagonal components read

Tjj(q, iν`) =
Vjj

[
1−Vj̄ j̄χ j̄ j̄(q, iν`)

]
+ V12V21χ j̄ j̄(q, iν`)[

1−Vjjχjj(q, iν`)
][

1−Vj̄ j̄χ j̄ j̄(q, iν`)
]
−V12V21χ j̄ j̄(q, iν`)χjj(q, iν`)

, (6)
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where j̄ denotes the other band with respect to band j. In the two-channel T-matrix
approach, the fermionic self-energy is of the form

Σj(k, iωs) = T ∑
q

∑
`

Tjj(q, iν`)G
(0)
j (q− k, iν` − iωn), (7)

where G(0)
j (k, iωs) =

(
iωs − ξkj

)−1 is the bare electron propagator with the fermionic
Matsubara frequency ωs = (2s + 1)πT. We note that the off-diagonal components of the
two-band T-matrix T12(q, iν`) and T21(q, iν`) are not involved in the self-energy since the
band indices are conserved in the external lines. The dressed propagator Gj(k, iωs) obeys
the Dyson’s equation

Gj(k, iωs) = G(0)
j (k, iωs) + G(0)

j (k, iωs)Σj(k, iωs)Gj(k, iωs). (8)

In the absence of Σj(k, iωs), the single-particle spectrum is free-fermion-like and
exhibits two quadratic bands. On the other hand, this self-energy correction leads to the
pseudogap opening around the Fermi energy [40].

In the STS experiment, one observes the tunneling current I occurring via the tunneling
Hamiltonian [41]

HT = ∑
j

∑
k,k′

∑
σ,σ′

[
tjc†

kσjck′σ′0 + h.c.
]
, (9)

where ck′σ′0 denotes the annihilation operator of an electron in the weakly-coupled normal
metal connected to the sample. For simplicity, we consider the momentum-, spin-, and
band-independent tunneling amplitudes t = t1 = t2. The tunneling current is obtained as

I = 2πe
∫

dω[ f (ω− eV)− f (ω)]∑
j

∑
k,k′
|t|2 Aj(k, ω− eV)Ar(k′, ω), (10)

where V is the bias voltage and e is an electron charge. In Equation (10), Aj(k, ω) is the
spectral function given by

Aj(k, ω) = − 1
π

ImGj(k, iωs → ω + iδ), (11)

where δ is an infinitesimal small positive number to generate the retarded Green’s function
for real frequencies. Ar(k′, ω) is the spectral function in the reference normal metal. At
sufficiently low temperature, we obtain the differential conductance

dI
dV

= 2πe|t|2Nr(0)N(eV), (12)

where

N(ω) = ∑
j

∑
k

Aj(k, ω) (13)

is the total density of states. Nr(0) is the density of states at the Fermi level in the reference
metal in the normal state. In this way, one can observe if a pseudogap opens in the total
density of states.

In this article, we examine N(ω) at the superconducting (or superfluid) critical tem-
perature Tc identified by the Thouless criterion given by

[1 + V11χ11(0, 0)][1 + V22χ22(0, 0)]−V12V21χ11(0, 0)χ22(0, 0) = 0. (14)
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The chemical potential µ is determined by the density equation

n = 2T ∑
j

∑
k

∑
s

Gj(k, iωs). (15)

Note that one obtains n = n1 + n2 with nj =
k3

F,j
3π2 in the absence of interactions at

T = 0, where kF,1 =
√

2mEF,1 and kF,2 =
√

2mEF,2 ≡
√

2m(EF,1 − E0) are the band Fermi
momenta (EF,j is the band Fermi energy). We take E0 = 3

5 EF,1 such that the two deep and
shallow (occupied) bands are overlapped. We choose the dimensionless coupling parameter
in the deep band in the weak-coupling regime as (kF,1a11)

−1 = −2, while the coupling
parameter in the shallow band (kF,2a22)

−1 is tuned throughout the BCS-BEC crossover
(−1 <∼ (kF,2a22)

−1 <∼ 1). We note that our two-channel T-matrix formalism can be applied
also in the case of strong intraband coupling in the deep band. The dimensionless interband
pair-exchange coupling is given by Ṽ12 = Ṽ21 = U12(k0/kF)

2n/EF where kF = (3πn)1/3

and EF = k2
F/(2 m) are the Fermi wave-vector and the Fermi energy for the total density n.

We take k0 = 100 kF which is a sufficiently large wave-vector cutoff compared to all other
momentum scales.

It should be noted that in this work we have considered the simplest isotropic disper-
sions of two electron-type bands with same effective masses, while realistic compensated
semimetals FeSe contain more complicated electronic band structures and effective pairing
interactions, including cross-band pairing terms in competition with intraband pairings.
A mean-field analysis of the interplay between cross-band and intraband pairing, with
applications to iron-based superconductors, has been recently reported in Ref. [42], while
the effects of fluctuations and pseudogaps in this complex configuration is still an open and
computational demanding problem. However, the shallow Fermi surface pocket coupled
to the deep band in these materials, corresponding to the band 2 in this paper, indeed
plays a significant role for the realization of the two-band BCS-BEC crossover in FeSe su-
perconductors [7]. We only retain this two-band configuration with isotropic wave-vector
dispersions to focus on pairing fluctuation effects along the BCS-BEC crossover. Indeed,
the isotropic and quadratic band dispersion was employed in Ref. [10] to understand
qualitative features of the BCS-BEC crossover in Fe1+ySexTe1−x. In addition, this isotropic
two-band system is equivalent to the model describing Yb Fermi gases with an orbital
Feshbach resonance [24], allowing to trace conclusions on the two-band BCS-BEC crossover
having universal character, of interest for multicomponent ultracold atomic superfluids
and solid state superconductors.

3. Results

First, in Figure 1 we show the evolution of the critical temperature Tc across the BCS-
BEC crossover with increasing (kF,2a22)

−1 for three cases Ṽ12 = 0, Ṽ12 = 1, and Ṽ12 = 2. In

the weak-coupling BCS side (kF,2a22)
−1 <∼ 0, Tc exponentially increases as ∼ exp

(
π

2kF,2a22

)
.

The finite pair-exchange coupling Ṽ12 gives an enhancement of Tc. In the strong-coupling
BEC side (kF,2a22)

−1 >∼ 0, Tc approaches the Bose–Einstein condensation temperature TBEC
of tightly bound molecules given by [28,29]

TBEC =
π

m

(
n

ζ(3/2)

) 2
3

' 0.218TF, (16)

where ζ(3/2) ' 2.612 is the Riemann zeta function. This indicates that all the particles
in both bands form molecular condensates in the strong-coupling limit. Although the
nonzero pair-exchange coupling Ṽ12 does not give qualitative effects on Tc in this regime
[(kF,2a22)

−1 >∼ 1], the coexistence of large Cooper pairs and small molecules has been dis-
cussed within the mean-field [21], NSR [38], and TMA [39,40] approaches. With increasing



Condens. Matter 2021, 6, 8 5 of 9

V12, the two-band system undergoes the BCS-BEC crossover even in the case of weak
intraband couplings [(kF,2a22)

−1 <∼ 1]. In this way, one can find that the BCS-BEC crossover
is realized by increasing the interaction strength in the shallow band (kF,2a22)

−1 in the
present two-band model.

0

0.05

0.1

0.15

0.2

0.25

-1 -0.5 0 0.5 1 1.5 2

T
c/
T

F

(kF,2a22)
-1

V12 = 0

V12 = 1

~

~

V12 = 2
~

BCS                             BEC
Figure 1. The superconducting (superfluid) critical temperature Tc throughout the two-band BCS-
BEC crossover at (kF,1a11)

−1 = −2 with two cases of vanishing and finite pair-exchange couplings
Ṽ12 = 0, Ṽ12 = 1, and Ṽ12 = 2. TF = k2

F/(2m) is the Fermi temperature for the total number density
n. A pictorial sketch of the two kind of Cooper pairs is given for illustration in the top part of the
figure: the Cooper pairs in the shallow band (light red circles) undergo the BCS-BEC crossover, while
Cooper pairs in the deep band (light blue circles) remains large, in the BCS regime.

In Figure 2a we show the evolution of the total density of states N(ω) throughout the
two-band BCS-BEC crossover with vanishing pair-exchange coupling at T = Tc. In the
weak-coupling side for the shallow band (e.g., (kF,2a22)

−1 ≤ −0.4 in Figure 2a), one can
see the pseudogap around the Fermi level ω = 0, which is small but with a relatively sharp
dip structure. On the other hand, at unitarity (crossover regime, (kF,2a22)

−1 = 0) in the
shallow band, the pseudogap is somehow hidden. Moreover, in the strong-coupling side of
the BCS-BEC crossover (e.g., (kF,2a22)

−1 ≥ 0.4 in Figure 2a), N(ω) shows a nonmonotonic
structure but not the fully gapped density of states which can be found in the single-band
counterpart. To understand these behaviors, we examine the band-selective density of
states given by

Nj(ω) = ∑
k

Aj(k, ω). (17)

In the inset of Figure 2, Nj(ω) for each band is plotted at (kF,2a22)
−1 = 0, correspond-

ing to the crossover regime in the shallow band. N2(ω) clearly exhibits the pseudogap
behavior (dip structure around ω = 0) in the shallow band (j = 2) due to the strong pairing
fluctuations associated with V22. However, the deep band (j = 1) shows the square-root be-
havior N1(ω) ∝

√
(ω + µ) without the pseudogap signature in the case of Ṽ12 = 0 because

the intraband coupling is kept weak. In this regard, the pseudogap structure in the total
N(ω) originating from N2(ω) is hidden by the square-root contribution of N1(ω). Such a
situation occurs for larger intraband coupling in the shallow band (e.g., (kF,2a22)

−1 = 0.4
and 0.8 in Figure 2a). On the other hand, in the case of a finite interband pair-exchange
coupling Ṽ12 = 1, shown in Figure 2b, one can find a small pseudogap around ω = 0 in
N(ω) even in the strong-coupling regime. Furthermore, N(ω) exhibits a large flattened
region around the Fermi level (ω = 0). These features can also be understood from the
partial density of states Ni(ω) as shown in the inset for (kF,2a22)

−1 = 0. The pair-exchange
process associated with finite V12 induces the pseudogap even in the weakly interacting
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deep band (j = 1). Hence, one can find two pseudogaps with different sizes in the two
bands. The resulting total density of states N(ω) exhibits the small pseudogap originating
from N1(ω) throughout the BCS-BEC crossover. On the other hand, the large pseudogap in
N2(ω) is hidden by the contribution of the sizable spectral weight of N1(ω). We note that
at higher temperature these pseudogaps disappear at the so-called pseudogap temperature
T∗1,2 [40].

0

1

2

3

4

-2 -1 0 1 2 -1 0 1 2

0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.5

1

1.5

2

-2 -1 0 1 2

(kF,2a22)
-1 = -0.8

 = -0.4

 = 0

(kF,2a22)
-1 = 0.4

 = 0.8

band 1

band 2

/EF

N
(

)/
N

0

Ni( )/N0 (a) V12 = 0
~

(b) V12 = 1
~

band 1

band 2

Ni( )/N0

Figure 2. Total density of states N(ω) relevant for the scanning tunneling spectroscopy in the two-
band BCS-BEC crossover superconductor at T = Tc [(a) Ṽ12 = 0, (b) Ṽ12 = 1].The inset shows the
band-selective density of states Ni(ω) at (kF,2a22)

−1 = 0. N0 = mk2
F/(2π2) is the noninteracting

density of states associated with the total number density n at T = 0.

To see the detailed structure of the pseudogaps, we discuss our results for the total
spectral function A(k, ω) defined as the sum of the two single-band contributions

A(k, ω) = ∑
j

Aj(k, ω). (18)

This is the quantity measured by ARPES experiments. Figure 3 shows A(k, ω) with
Ṽ12 = 1, where (a) (kF,2a22)

−1 = −0.4, (b) (kF,2a22)
−1 = 0, and (c) (kF,2a22)

−1 = 0.4. Since
the deep band is in the weak-coupling regime, the dispersion originating from the deep
band is close to the noninteracting counterpart given by ω = ξk,1. The pseudogap feature
associated to the particle-hole mixing around ω = 0 is found to be weak in the deep band.
On the other hand, the shallow band exhibits the so-called Bogoliubov-like dispersion,
showing the characteristic back-bending of the dispersion for large wave-vectors, given by

ω = ±
√

ξ2
k2

+ ∆2
pg,2 (19)

where ∆pg,2 is the pseudogap energy scale induced by strong pairing fluctuations. The back-
bending curve in the large wave-vector region (k >∼ kF) is one of the characteristic features
for the pseudogap in the angular resolved photoemission spectroscopy of ultracold Fermi
gases and strongly coupled superconductors [43–46]. Since this curve is not hidden by the
contribution from the deep band, it can be regarded as the signature of the pseudogap even
in the present two-band system. For the case of strong intraband coupling (kF,2a22)

−1 = 0.4,
the pseudogap size becomes large and the lower branch of the Bogoliubov dispersion
overlaps with the deep band dispersion. This result indicates that the tightly bound
molecules in the shallow band starts dominating the system even in the presence of the
cold deep band due to the very strong intraband coupling in the shallow band.
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-2
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0

1

2
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k/kF
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/E
F
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A(k, )EF
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Figure 3. The total spectral function A(k, ω), which is relevant for spectroscopic measurements, at (a)(kF,2a22) = −0.4,
(b) (kF,2a22)

−1 = 0 and (c) (kF,2a22)
−1 = 0.4. In these panels, we use Ṽ12 = 1.

As a final remark, we emphasize that it is necessary to solve numerically the number
Equation (15) with respect to µ in a self-consistent way, to take into account the transfer
of particles between the two bands, which is of key importance in the interplay between
pseudogap opening and masking effect throughout the two-band BCS-BEC crossover.
Moreover, the masking effect is easily overwhelmed by strong pairing fluctuations when
Ṽ12 is large. These nontrivial features have never been discussed in the context of the two-
band BCS-BEC crossover [38–40]. Since the two-band model employed in this paper can
be realized in Yb Fermi gases with an orbital Feshbach resonance [24] and the differential
conductance corresponding to the STS will be accessible in cold atom systems [47], our
prediction based on the simplified model adopted in this work will be tested experimentally
in the near future.

4. Conclusions

We have investigated single-particle excitation spectra in a two-band superfluid/
superconductor throughout the BCS-BEC crossover and made connections with recent
experiments reporting unexpected behavior of the pseudogap in multiband iron-based
superconductors. Within a two-channel T-matix approach for pairing fluctuations, we have
evaluated the spectral functions and the density of states for different coupling parameters,
corresponding to strong pairing in the shallow band and weak paring in the deep band and
different pair-exchange amplitudes. We have obtained that the pseudogap in the strongly
interacting regime for the shallow band is hidden by the contribution of the weakly inter-
acting deep band in the total density of states, which is the quantity measured by the recent
STS experiments in FeSe superconductors. On the other hand, the single-particle spectral
function consisting of contributions from the two bands, which is relevant to the ARPES
measurement, clearly exhibits the signature of the pseudogaps, that is, the Bogoliubov
back-bending dispersions. We emphasize that these nontrivial features for the pseudogaps
are unique of a two-band fermionic system in which pair-fluctuations interfere in a complex
manner, originating screening or amplification phenomena of superfluid/superconductor
fluctuations which are absent in the single-band counterpart.

Future development of this work will aim at including a realistic band structure and
effective pairing interaction suitable to describe the complex phenomenology of FeSe or
other iron-based superconductors. The multiband BCS-BEC crossover and the pseudogaps
will be investigated by a multichannel T-matrix approach to superconducting fluctuations
in which bands of electrons and of holes and both intraband and cross-band pairing
interactions will be taken into consideration.
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