Model theory of Steiner triple systems

Silvia Barbina, Enrique Casanovas *

November 6, 2019

Abstract

A Steiner triple system is a set S together with a collection \mathcal{B} of subsets of S of size 3 such that any two elements of S belong to exactly one element of \mathcal{B}. It is well known that the class of finite Steiner triple systems has a Fraissé limit M_{F}. Here we show that the theory T_{Sq}^{*} of M_{F} is the model completion of the theory of Steiner triple systems. We also prove that T_{Sq}^{*} is not small and it has quantifier elimination, $\mathrm{TP}_{2}, \mathrm{NSOP}_{1}$, elimination of hyperimaginaries and weak elimination of imaginaries.

1 Introduction and preliminaries

A Steiner triple system (STS) is a set A together with a set \mathcal{B} of subsets of A of size 3 , called blocks, such that every two elements of A belong to exactly one element of \mathcal{B}. When the set A is finite, we say that the STS is finite; an STS is infinite otherwise. It is well known that a necessary and sufficient condition for the existence of an STS of finite cardinality n is that $n \equiv 1$ or $3(\bmod 6)$.

The literature on finite Steiner triple systems is vast; [13] gives an encyclopedic account of themes and results in the area. On the other hand, far fewer results have been obtained on infinite STSs. Until recently, the interest arose in response to questions about automorphism group actions, or in order to construct examples with combinatorial properties that are hard to obtain in the finite case - for instance, [4] gives an orbit theorem for infinite STSs; [21] proves that if S is an infinite STS in which any triangle (a set of three points not in a block) is contained in a finite subsystem, and the automorphism group of S acts transitively on triangles, then S is a projective space over $\operatorname{GF}(2)$ or an affine space over $\operatorname{GF}(3)$; 12 gives a construction of 2^{ω} non-isomorphic countable STSs that are uniform and r-sparse for $r \geq 4$; in [6], uncountably many non-isomorphic perfect countable STSs are constructed.

The results in this paper are motivated by a model theoretic viewpoint on the countable universal homogeneous locally finite Steiner quasigroup M_{F}, whose existence was first noted in [21], and which is the Fraïssé limit of the class of finite Steiner quasigroups. The interest in [21] is permutation-group theoretic: no model theoretic treatment of this Fraïssé limit has appeared in the literature so far.

[^0]From the point of view of model theory, STSs can be viewed both as relational and as functional structures, in the sense of Definitions 1.1 and 1.2 below. In this paper we distinguish between Steiner triple systems (relational) and Steiner quasigroups (functional). We prove that the theory of M_{F} is in fact the model completion of the theory of Steiner triple systems, viewed as functional structures, and we describe several of its properties.

In Section 2 we give an axiomatisation of the class of existentially closed Steiner quasigroups, and we show that the resulting theory T_{Sq}^{*} is complete, has quantifier elimination, and it is the model completion of the theory of all Steiner quasigroups. In Section 3 we show that T_{Sq}^{*} is not small, and in Section 4 we show that the Fraïssé limit of the class of finite Steiner quasigroups is a prime model of T_{Sq}^{*}. We then give a characterisation of algebraic closure and we prove that $T_{\text {Sq }}^{*}$ eliminates the quantifier $\exists ⿻$. In Section 6 we prove certain results concerning amalgamation and joint consistency of formulas. These results are used in Section 7 to classify T_{Sq}^{*} in terms of the dividing lines of first order theories: T_{Sq}^{*} is a new example of a theory with TP_{2} and NSOP_{1}. In Section 8 we use the approach developed in [14] to show that T_{Sq}^{*} has elimination of hyperimaginaries and weak elimination of imaginaries.

As an incidence structure whose theory is TP_{2} and NSOP_{1}, the structure M_{F} in this paper is an interesting counterpart to the existentially closed incidence structures omitting the complete incidence structure $K_{m, n}$ in [15]. Rather like T_{Sq}^{*}, the theories $T_{m, n}$ in [15] are also TP_{2} and properly NSOP_{1} when $m, n \geq 2$, and they do not have a countable saturated model. A notable difference is that the existence of a prime model for $T_{m, n}$ is unknown, and shown in [15] to be a necessary condition for a positive answer to the open problem of whether every finite model of $T_{m, n}^{p}$ embeds in a finite model of $T_{m, n}^{c}$. The analogous property for STSs is well known and it ensures the joint embedding and amalgamation properties for the class of finite STSs, and hence the existence of the Fraïssé limit M_{F}, which turns out to be a prime model of its theory.

Steiner triple systems are a subclass of the class of Steiner systems, which are defined similarly: in a Steiner system $S(t, k, n)$, the underlying set has size n, blocks are subsets of size k and each t-element subset (for $t<k$) is contained in exactly one block. In a recent preprint [2], Baldwin and Paolini use a version of an amalgamation technique due to Hrushovski to construct $2^{\aleph_{0}}$ strongly minimal Steiner systems with blocks of size k for every integer k. These provide counterexamples to Zilber's trichotomy conjecture with a natural combinatorial characterization that is independent of the conjecture. By contrast, standard Fraïssé amalgamation gives a structure, our M_{F}, that is a foremost example to consider model-theoretically, and sits at the opposite end of the model theoretic spectrum from its counterparts in [2]. Another striking difference is that in T_{Sq}^{*} algebraic closure coincides with definable closure. We refer the reader to [2], Remark 6.1 for a full comparison between the strongly miminal theories in [2] and T_{Sq}^{*}.

As mentioned, Steiner triple systems can be described both as relational and as functional structures. The choice of language determines substructures, and so, in particular, it is relevant to amalgamation.

Definition 1.1. A Steiner triple system (STS) is a relational structure (A, R) where R is a ternary relation on a set A such that

1. if $R(a, b, c)$ then $R(\sigma(a), \sigma(b), \sigma(c))$ for every permutation σ of $\{a, b, c\}$;
2. $R(a, a, b)$ iff $a=b$;
3. for every two different $a, b \in A$ there is a unique c such that $R(a, b, c)$.

A structure (A, R) is a partial Steiner triple system if instead of 3 we require that for every two different $a, b \in A$ there is at most one $c \in A$ such that $R(a, b, c)$.

Definition 1.2. A Steiner quasigroup is a structure (A, \cdot) where \cdot is a binary operation on A such that

1. $a \cdot b=b \cdot a$
2. $a \cdot a=a$
3. $a \cdot(a \cdot b)=b$.

Thus, in a Steiner triple system (A, R) three distinct points a, b and c form a block if and only if $R(a, b, c)$ holds; in a Steiner quasigroup three distinct points form a block if and only if each of them is the product of the other two.

Steiner triple systems and Steiner quasigroups are essentially the same objects in the following sense.

- Let (A, R) be a Steiner triple system and define a binary operation - on A as follows: $a \cdot b$ is the unique $c \in A$ such that $R(a, b, c)$. Then (A, \cdot) is a Steiner quasigroup.
- Let (A, \cdot) be a Steiner quasigroup and let R be the graph of the operation \cdot, that is, $R(a, b, c)$ iff $a \cdot b=c$. Then (A, R) is a Steiner triple system.

The correspondence between STSs and Steiner quasigroups means that, in practice, we often switch from relational to functional terminology when convenient, and we sometimes refer to the product of two elements in a Steiner triple system.

Definition 1.3. Let (A, R) be a partial $S T S$, and let $a, b \in A$. We say that $a, b \in A$ have a defined product in A if there is $c \in A$ such that $R(a, b, c)$. When this is the case, c is said to be the product of a and b.

It is well known that a finite partial STS can always be embedded in a finite STS (where embeddings are understood in the model theoretic sense, so the blocks in the image of a partial STS under an embedding are the images of the blocks in the original partial STS). This can be done in a number of different ways - see, for example, [22], [1] and [19]. For the purposes of this paper, the specific constructions are not relevant and it is enough to state the general result below.

Fact 1.4. 1. Every partial Steiner triple system of infinite cardinality κ can be embedded in a Steiner triple system of cardinality κ.
2. Every partial finite Steiner triple system can be embedded in a finite Steiner triple system.

Proof 1. Suppose κ is an infinite cardinal, and let (A, R) be a partial STS of cardinality κ. We define a chain $\left\{\left(A_{i}, R_{i}\right) \mid i<\omega\right\}$ of partial STSs, where $\left(A_{0}, R_{0}\right)=(A, R)$, and $\left(A_{i+1}, R_{i+1}\right)$ is obtained as follows: for every (unordered) pair $\{a, b\}$ of elements of A_{i} that do not have a defined product in A_{i}, if $a \neq b$ add a new element $a \cdot b \notin A_{i}$ and put $R_{i+1}(a, b, a \cdot b)$. Define R_{i+1} consistently on all permutations of $\{a, b, a \cdot b\}$. If $a=b$, put $R_{i+1}(a, a, a)$. Let $(B, S)=\left(\bigcup_{i \in \omega} A_{i}, \bigcup_{i \in \omega} R_{i}\right)$. It is easy to see that (B, S) is an STS.
2. See, for example, Theorem 1 in [1].

The next lemma is an immediate consequence of Fact 1.4. It is stated for Steiner quasigroups, rather than for Steiner systems, because a substructure (in the model theoretic sense) of an STS is a partial STS, and amalgamation of STSs over a common partial STS is not possible in general.

Lemma 1.5. The class of all Steiner quasigroups has the amalgamation property (AP) and the joint embedding property (JEP). Likewise, the class of all finite Steiner quasigroups has $A P$ and $J E P$.

Proof For JEP, use the fact that the disjoint union of two Steiner quasigroups, described in a relational language, is a partial STS, and Fact 1.4 .

For AP, use the fact that the union of two Steiner quasigroups over a common subquasigroup, described in a relational language, is a partial STS, and Fact 1.4.

2 Model completion

The class of all Steiner quasigroups is elementary: its theory, which we denote by T_{Sq}, has the three universal sentences in Definition 1.2 as its axioms. In this section we show that the class of existentially closed Steiner quasigroups is elementary. The resulting theory is complete, has quantifier elimination, and it is the model companion of T_{Sq}.

As we have observed, in general the disjoint union of two STSs over a common substructure is not a partial STS, because pairs may arise with more than one product. The next definition specifies conditions on a common substructure which ensure that the disjoint union over that substructure is a partial STS.

Definition 2.1. Let (B, R) be a partial STS. We say that $A \subseteq B$ is relatively closed in (B, R) if for every $a, b \in A$ and $c \in B$, if $R(a, b, c)$, then $c \in A$. In other words, when two elements of A have a product in B, the product belongs to A.

Let (A, R) and (B, S) be partial STSs and let $C \subseteq A \cap B$. We say that (A, R) is compatible with (B, S) on C if whenever $a, b \in C$ have a defined product c in (A, R), then either they have the same product in (B, S) or they do not have a defined product in (B, S).

Clearly, if (A, R) is compatible with (B, S) on $C \subseteq A \cap B$, then (B, S) is compatible with (A, R) on C, and we simply say that (A, R) and (B, S) are compatible on C.

The next lemma describes cases where the union of two partial STSs is a partial STS.
Notation 2.2. If (B, S) is a partial STS and $A \subseteq B$, then S^{A} denotes the restriction of the relation S to A.

Lemma 2.3. 1. Let (A, R) and (B, S) be partial STSs that are compatible on $A \cap B$. Then $(A \cup B, R \cup S)$ is a partial STS. If, moreover, $S^{A \cap B} \subseteq R^{A \cap B}$, then $(A, R) \subseteq(A \cup B, R \cup S)$.
2. Assume (B, R) and (C, S) are partial STS and $A=B \cap C$ is relatively closed in (B, R). If $\left(A, R^{A}\right)$ and (C, S) are compatible on A, then also (B, R) and (C, S) are compatible on A, and therefore $(B \cup C, R \cup S)$ is a partial STS.

Proof 1. We must show that for $a, b \in A \cup B$ there is at most one $c \in A \cup B$ such that $R(a, b, c)$ or $S(a, b, c)$. The nontrivial case is when a and b are both in $A \cap B$. Since (A, R) is compatible with (B, S) on $A \cap B$, if a and b have a defined product in (A, R), then they have the same defined product in (B, S) and hence in $(A \cup B, R \cup S)$, or they do not have a defined product in (B, S).
2. Suppose that $a, b \in A$ have a defined product c in (B, R). Since A is relatively closed in (B, R), we have $c \in A$. Since $\left(A, R^{A}\right)$ and (C, S) are compatible on A, we have that $R(a, b, c)$ implies $S(a, b, c)$ and therefore a and b have the same defined product in (B, R) and in (C, S).

The proof of the next lemma is similar in flavour to that of Lemma 2.3 and it is left to the reader.

Lemma 2.4. 1. Let $\left\{\left(A_{i}, R_{i}\right) \mid i \in I\right\}$ be a family of partial STS. If $\left(A_{i} \cup A_{j}, R_{i} \cup R_{j}\right)$ is a partial STS for every $i, j \in I$, then $\left(\bigcup_{i \in I} A_{i}, \bigcup_{i \in I} R_{i}\right)$ is a partial STS. If $j \in I$ and $\left(A_{j}, R_{j}\right) \subseteq\left(A_{i} \cup A_{j}, R_{i} \cup R_{j}\right)$ for every $i \in I$, then $\left(A_{j}, R_{j}\right) \subseteq\left(\bigcup_{i \in I} A_{i}, \bigcup_{i \in I} R_{i}\right)$.
2. Let $\left\{\left(A_{i}, R_{i}\right) \mid i \in I\right\}$ be a family of partial $S T S$ with common intersection $A=A_{i} \cap A_{j}$ for every two different $i, j \in I$. Assume that A is relatively closed in every $\left(A_{i}, R_{i}\right)$. Then $\left(\bigcup_{i \in I} A_{i}, \bigcup_{i \in I} R_{i}\right)$ is a partial STS.

We can now define the formulas that we use to axiomatise the class of existentially closed Steiner quasigroups.

Definition 2.5. Let (A, R) be a finite partial STS, let $n=|A|$, and let $A=\left\{a_{1}, \ldots, a_{n}\right\}$. We define $\delta_{(A, R)}\left(x_{1}, \ldots, x_{n}\right)$ to be the conjunction of $\bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}$ with the positive diagram of (A, R) (with x_{i} corresponding to a_{i}) written in the product language $L=\{\cdot\}$ of quasigroups, that is, the conjunction of all formulas of the form $x_{i} \cdot x_{j}=x_{k}$ such that $R\left(a_{i}, a_{j}, a_{k}\right)$.

Now let (B, S) be a finite partial $S T S$ such that $B \supseteq A$ and A is relatively closed in (B, S). Let $n+m=|B|$ and $B=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$, and consider the formula

$$
\delta_{(B, S)}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

as defined above, for (B, S), where x_{i} corresponds to a_{i} and y_{i} to b_{i}. To the pair $((B, S), A)$ we associate the L-sentence

$$
\forall x_{1} \ldots x_{n}\left(\delta_{\left(A, S^{A}\right)}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists y_{1} \ldots y_{m} \delta_{(B, S)}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right)
$$

and we define Δ as the set of all sentences of this form as $((B, S), A)$ ranges over all pairs where (B, S) is a finite partial $S T S s$ and A is a relatively closed subset of B.

Proposition 2.6. A Steiner quasigroup is existentially closed in the class of all Steiner quasigroups if and only if it is a model of Δ.

Proof Let (M, \cdot) be an existentially closed Steiner quasigroup. We check that all the sentences in Δ hold in (M, \cdot). Let (B, S) be a partial STS and A a relatively closed subset, with $|A|=n, A=\left\{a_{1}, \ldots, a_{n}\right\},|B|=n+m$ and $B=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$. Assume $(M, \cdot) \models \delta_{(A, R)}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, where $R=S^{A}$. Define R^{\prime} on $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ in such a way that the mapping $a_{i} \mapsto a_{i}^{\prime}$ is an isomorphism of partial STSs. Choose $b_{1}^{\prime}, \ldots, b_{m}^{\prime} \notin M$ and a corresponding relation S^{\prime} on $B^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ so that the mapping defined by $a_{1} \mapsto a_{i}^{\prime}$ and $b_{j} \mapsto b_{j}^{\prime}$ is an isomorphism of partial STSs. Then A^{\prime} is relatively
closed in $\left(B^{\prime}, S^{\prime}\right)$. Let (M, P) be the STS associated to (M, \cdot) - that is, P is the graph of the product in M. By Lemma [2.3, we have that (M, P) and $\left(B^{\prime}, S^{\prime}\right)$ are compatible on $A^{\prime}=M \cap B^{\prime}$. Then $\left(M \cup B^{\prime}, P \cup S^{\prime}\right)$ is a partial STS and so it can be extended to a Steiner triple system $\left(N, P^{\prime}\right)$. The associated Steiner quasigroup (N, \cdot) is an extension of (M, \cdot), and $(N, \cdot) \models \delta_{(B, S)}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$. Since (M, \cdot) is existentially closed in (N, \cdot), we have $(M, \cdot) \models \exists y_{1} \ldots y_{m} \delta_{(B, S)}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}, y_{1}, \ldots, y_{m}\right)$, as required.

Now assume that $(M, \cdot) \subseteq(N, \cdot)$ are Steiner quasigroups and that $(M, \cdot) \models \Delta$, and let us check that (M, \cdot) is existentially closed in (N, \cdot). Let $\varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ be a quantifier-free formula and let $a_{1}, \ldots, a_{n} \in M$. Assume that

$$
(N, \cdot) \models \exists y_{1} \ldots y_{m} \varphi\left(a_{1}, \ldots, a_{n}, y_{1}, \ldots, y_{m}\right) .
$$

We want to find $b_{1}, \ldots, b_{m} \in M$ such that $(M, \cdot) \models \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$. We may assume that φ is a conjunction of equalities and inequalities between terms of the form $t\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$. It is easy to find a formula $\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{k}\right)$ which is a conjunction of equalities of the form $u \cdot v=w$ and inequalities of the form $u \neq v$ for variables u, v, w, and such that $\varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is logically equivalent to

$$
\exists z_{1} \ldots z_{k} \psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{k}\right)
$$

So we may assume that φ is a formula with this property and forget ψ. Choose $b_{1}, \ldots, b_{m} \in N$ such that $(N, \cdot) \models \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$. Without loss of generality, $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ are pairwise different and $b_{1}, \ldots, b_{m} \notin M$. Let S be the graph of the product - of N and let $B=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$. Then $\left(B, S^{B}\right)$ is a finite partial STS and $A=\left\{a_{1}, \ldots, a_{n}\right\}$ is relatively closed in $\left(B, S^{B}\right)$, and we have a corresponding axiom in Δ, which holds in ($M, \cdot \cdot$). Notice that $(M, \cdot) \models \delta_{\left(A, S^{A}\right)}\left(a_{1}, \ldots, a_{n}\right)$, so

$$
(M, \cdot) \models \exists y_{1} \ldots y_{m} \delta_{\left(B, S^{B}\right)}\left(a_{1}, \ldots, a_{n}, y_{1}, \ldots, y_{m}\right),
$$

and we may choose $b_{1}^{\prime}, \ldots, b_{m}^{\prime} \in M$ such that $(M, \cdot) \models \delta_{\left(B, S^{B}\right)}\left(a_{1}, \ldots, a_{n}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$. If φ contains an equality of the form $x_{i} \cdot y_{j}=y_{k}$, then $a_{i} \cdot b_{j}=b_{k}$, and then $S\left(a_{i}, b_{j}, b_{k}\right)$ and the equation $x_{i} \cdot y_{j}=y_{k}$ belongs to $\delta_{\left(B, S^{B}\right)}$. Similarly for other kinds of equalities in φ. Hence $(M, \cdot) \models \varphi\left(a_{1}, \ldots, a_{n}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$.
Proposition 2.7. The class K_{Sq}^{*} of existentially closed Steiner quasigroups is elementary. An axiomatization of its theory T_{Sq}^{*} is obtained by adding to Δ the three axioms of the theory T_{Sq} of all Steiner quasigroups. T_{Sq}^{*} is a complete theory with elimination of quantifiers, and it is the model completion of the theory T_{Sq} of all Steiner quasigroups.

Proof The first claim is Proposition [2.6. Since the axioms of T_{Sq} are universal, every Steiner quasigroup can be extended to an existentially closed Steiner quasigroup. Hence T_{Sq}^{*} is the model companion of T_{Sq}. Since T_{Sq} has the JEP, K_{Sq}^{*} has JEP too and, by modelcompleteness, T_{Sq}^{*} is a complete theory. Since T_{Sq} has AP, T_{Sq}^{*} is the model completion of T_{Sq} and has quantifier elimination. See [8], Propositions 3.5.11, 3.5.18 and 3.5.19, for details.

Since T_{Sq}^{*} is a complete theory, it has a monster model. As usual, the models of T_{Sq}^{*} will be identified with small elementary submodels of the monster.
Notation 2.8. In the rest of the paper, the monster model of T_{Sq}^{*} will be denoted by $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot \cdot\right)$, and \mathbb{P} will denote the graph of the product in $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$.
Remark 2.9. (i) Every partial STS of cardinality at most $\left|\mathbb{M}_{\text {Sq }}\right|$ can be embedded in $\left(\mathbb{M}_{\mathrm{Sq}}, \mathbb{P}\right)$.
(ii) Let $A \subseteq \mathbb{M}_{\text {Sq }}$ be the universe of a small substructure, and let $R=\mathbb{P}^{A}$ be the graph of the product on A. If (B, S) is a partial STS such that $|B| \leq\left|\mathbb{M}_{\mathrm{Sq}}\right|$ and $(A, R) \subseteq(B, S)$, then there is an embedding of (B, S) into $\left(\mathbb{M}_{\mathrm{Sq}}, \mathbb{P}\right)$ over A.

3 Smallness

We show how to construct a finitely generated countable Steiner quasigroup M that embeds every member of a given family of finite Steiner quasigroups. We do this in such a way that the only finite quasigroups that embed in M are the members of the family and their substructures. This construction is used to show that T_{Sq}^{*} is not a small theory.

Proposition 3.1. Let $\left\{\left(A_{i}, \cdot\right) \mid i<\omega\right\}$ be a family of finite Steiner quasigroups such that $\left|A_{i}\right| \geq 3$ for at least one $i \in \omega$. Then there is a countable infinite quasigroup (M, \cdot) such that:

1. M is generated by three elements;
2. every $\left(A_{i}, \cdot\right)$ embeds in (M, \cdot);
3. if a finite quasigroup embeds in (M, \cdot), it embeds in some $\left(A_{i}, \cdot\right)$.

Proof M is the result of a free construction which is carried out inductively over $\left\{A_{i} \mid i<\omega\right\}$. We may assume that the quasigroups A_{i} are pairwise disjoint. Let R_{i} be the graph of the product on A_{i}, so $\left(A_{i}, R_{i}\right)$ is a finite STS. We construct an ascending chain $\left\{\left(B_{i}, S_{i}\right) \mid i<\omega\right\}$ of finite partial STS (B_{i}, S_{i}) such that

1. B_{0} has three elements (not in a block);
2. every two $a, b \in B_{i}$ have a defined product in (B_{i+1}, S_{i+1});
3. $\left(A_{i}, R_{i}\right)$ is a substructure of $\left(B_{i+1}, S_{i+1}\right)$;
4. every $a \in B_{i+1}$ can be written as a product of elements of B_{i};
5. if a finite STS (A, R) embeds in $\left(B_{i+1}, S_{i+1}\right)$, then it embeds in some $\left(A_{j}, R_{j}\right)$ with $j \leq i$.

Then we take $M=\bigcup_{i<\omega} B_{i}$ and $S=\bigcup_{i<\omega} S_{i}$. It follows from 2 that (M, S) is an STS. If (M, \cdot) is the corresponding Steiner quasigroup, then M is generated by the three elements of B_{0} and it has the required properties.

Let $\left(B_{0}, S_{0}\right)$ be such that $\left|B_{0}\right|=3$ and $S_{0}=\{(b, b, b): b \in B\}$ (so B_{0} is the partial STS with three elements that do not form a block). Now assume that (B_{i}, S_{i}) has been constructed and that it contains three elements with no product defined among them. Assume (A_{i}, R_{i}) is generated by a_{1}, \ldots, a_{k}. We extend $\left(B_{i}, S_{i}\right)$ to a partial STS $\left(B_{i}^{(1)}, S_{i}^{(1)}\right)$ by adding a product $a \cdot b$ for each pair $\{a, b\}$ of elements of B_{i} whose product is not defined in $\left(B_{i}, S_{i}\right)$, in such a way that different pairs have different products. We iterate this procedure until we obtain a partial STS $\left(B_{i}^{(n)}, S_{i}^{(n)}\right)$, where n depends on i, that contains a subset of size $2 k+3$, say $\left\{b_{1}, \ldots, b_{2 k+3}\right\}$, with no product defined among its elements. We may assume that $A_{i} \cap B_{i}^{(n)}=\emptyset$. Define $\left(B_{i+1}, S_{i+1}\right)$ as the common extension of $\left(A_{i}, R_{i}\right)$ and $\left(B_{i}^{(n)}, S_{i}^{(n)}\right)$ with universe $B_{i+1}=B_{i}^{(n)} \cup A_{i}$ and where S_{i+1} is obtained by adding to $R_{i} \cup S_{i}^{(n)}$ the products corresponding to all triples of the form $\left\{b_{i}, b_{k+i}, a_{i}\right\}$ for $i=1, \ldots k$, as well as all the necessary triples of the form (a, a, a). Note that no product is defined among $b_{2 k+1}, b_{2 k+2}, b_{2 k+3}$ and that every element of A_{i} is now obtained as an iterated product of elements of B_{i}.

If (A, R) is a finite STS of cardinality ≤ 3, then (A, R) embeds in any $\left(A_{i}, R_{i}\right)$ such that $\left|A_{i}\right| \geq 3$. Let (A, R) be a finite STS which is a substructure of (B_{i+1}, S_{i+1}), assume that $|A|>3$ and suppose that A is not contained in any A_{j} with $j<i$. We may assume inductively that $A \nsubseteq B_{i}$. Suppose for a contradiction that $A \nsubseteq A_{i}$. If $A \cap A_{i} \neq \emptyset$, take $a \in A \cap A_{i}$ and $b \in A \backslash A_{i}$ (so $b \in B_{i}^{(n)}$). There is a defined product $a \cdot b$ in (A, R). Notice that $a \cdot b \in A \backslash A_{i}$
(so $a \cdot b \in B_{i}^{(n)}$). Then $b, a \cdot b \in B_{i+1}$ have a product $a=b \cdot(a \cdot b) \in A_{i}$. By construction, there is a list a_{1}, \ldots, a_{k} of generators of A_{i} and a list $b_{1}, \ldots, b_{2 k+3}$ of elements of $B_{i}^{(n)}$ without defined product in $B_{i}^{(n)}$ and there is some $j \leq k$ such that $a=a_{j}, b=b_{j}$ and $a \cdot b=b_{k+j}$. Since there is a unique element of A_{i} whose product with $b=b_{j}$ is defined in B_{i+1}, it follows that $A \cap A_{i}=\{a\}$. Since $|A|>3$, there is some $c \in A$ different from a, b and $a \cdot b$, hence with a defined product with a. Since in B_{i+1} the only defined products of a with elements not in A_{i} are the products with b and with $a \cdot b$, it follows that $c \in A_{i}$, contradicting $A \cap A_{i}=\{a\}$.

If $A \cap A_{i}=\emptyset$, then $A \subseteq B_{i}^{(n)}$ and there is some $a \in A$ such that $a \in B_{i}^{(n)} \backslash B_{i}$. The elements of $B_{i}^{(n)} \backslash B_{i}$ have been obtained iteratively as products of previous pairs in a free way. We may assume that $a \in B_{i}^{(n)} \backslash B_{i}^{(n-1)}$, that is, no element of A has been obtained after obtaining a. Since $|A|>3$, there are different $b, c \in A \backslash\{a\}$ with $c \neq a \cdot b$. By our choice of a, the elements b and $a \cdot b$ are in $B_{i}^{(n-1)}$, and a is the product of b and $a \cdot b$, a pair without a defined product in $B_{i}^{(n-1)}$. But, similarly, a is the product of c and $a \cdot c$, elements without a defined product in $B_{i}^{(n-1)}$. In this case, the pairs $\{b, a \cdot b\}$ and $\{c, a \cdot c\}$ coincide. But this is not possible, since $c \neq b$ and $c \neq a \cdot b$.

The following result by Doyen gives a countable family of finite Steiner quasigroups none of which embeds in another member of the family. Applying the construction of Proposition 3.1 to this family gives uncountably many complete 3 -types over \emptyset.

Lemma 3.2 (Doyen). For all $n \equiv 1,3(\bmod 6)$ there is an STS of cardinality n that does not embed any STS of cardinality m for $3<m<n$.

Proof 16.
Theorem 3.3. T_{Sq}^{*} is not small. In fact, there are 2^{ω} complete types over \emptyset in three variables.
Proof For $n \equiv 1,3(\bmod 6)$, let $\left(A_{n}, R_{n}\right)$ be the STS of cardinality n given by Lemma 3.2, so A_{n} does not embed any STS of cardinality m for $3<m<n$. Let ($\left.A_{n}, \cdot\right)$ be the corresponding Steiner quasigroup. Let I be the set of all natural numbers n such that $n \equiv 1,3(\bmod 6)$. For every infinite subset $X \subseteq I$, let ($\left.M_{X}, \cdot\right)$ be the countable Steiner quasigroup obtained from the family $\left\{\left(A_{n}, \cdot\right) \mid n \in X\right\}$ as in Proposition 3.1. Then M_{X} is generated by three elements and the only non-trivial finite Steiner quasigroups embeddable in ($M_{X}, \cdot \cdot$) are the quasigroups $\left(A_{n}, \cdot\right)$ with $n \in X$. Clearly, if $X \neq Y$, then $\left(M_{X}, \cdot\right)$ and ($\left.M_{Y}, \cdot\right)$ are not isomorphic. Since $\left(M_{X}, \cdot\right)$ embeds in the monster model $\left(\mathbb{M}_{\mathrm{Sq}}^{*}, \cdot\right)$ of T_{Sq}^{*}, we may assume that $M_{X} \subseteq \mathbb{M}_{\mathrm{Sq}}^{*}$. Choose three generators $a, b, c \in \mathbb{M}_{\mathrm{Sq}}^{*}$ of M_{X} and let $p_{X}(x, y, x)=\operatorname{tp}(a, b, c)$. Then $p_{X}(x, y, z) \neq$ $p_{Y}(x, y, z)$ if $X \neq Y$. This gives $2^{\omega} 3$-types over \emptyset.

4 The Fraïssé limit

The existence of the Fraïssé limit of all finite Steiner quasigroups is well known: the limit is the countably infinite homogeneous locally finite Steiner quasigroup [3, 21].

Fact 4.1. The class $\mathrm{K}_{\mathrm{Sq}}^{\mathrm{fin}}$ of all finite Steiner quasigroups has a Fraissé limit $\left(M_{\mathrm{F}}, \cdot\right)$, the unique (up to isomorphism) countable ultrahomogeneous Steiner quasigroup whose age is $K_{\mathrm{Sq}}^{\mathrm{fin}}$. Moreover, ($\left.M_{\mathrm{F}}, \cdot\right)$ is locally finite.

Proof By Fact [1.4, the class $K_{\mathrm{Sq}}^{\mathrm{fin}}$ has the amalgamation property and the joint embedding property. It is clear that $K_{\mathrm{Sq}}^{\mathrm{fin}}$ has the hereditary property and that it contains only countably many isomorphism types. Since $\left(M_{F}, \cdot\right)$ is the union of a countable ascending chain of finite structures, every finitely generated substructure of $\left(M_{\mathrm{F}}, \cdot\right)$ is finite.

The next corollary follows from the properties of the Fraïssé limit and from Fact 1.4 ,
Corollary 4.2. Let P_{F} be the graph of the product of the Fraïssé limit $\left(M_{\mathrm{F}}, \cdot\right)$.

1. Every finite partial $S T S$ can be embedded in $\left(M_{\mathrm{F}}, P_{\mathrm{F}}\right)$.
2. Assume that $A \subseteq M_{\mathrm{F}}$ is the universe of a finite substructure and $R=P_{\mathrm{F}}^{A}$ is the graph of the product on A. If (B, S) is a finite partial $S T S$ such that $(A, R) \subseteq(B, S)$, then there is an embedding of (B, S) into $\left(M_{\mathrm{F}}, P_{\mathrm{F}}\right)$ over A.

The next two propositions show that the Fraïssé limit M_{F} is existentially closed, and it is a prime model of T_{Sq}^{*}.

Proposition 4.3. The Fraïssé limit $\left(M_{\mathrm{F}}, \cdot\right)$ is a model of T_{Sq}^{*}, the model completion of the theory T_{Sq} of all Steiner quasigroups.

Proof We check that $\left(M_{\mathrm{F}}, \cdot\right)$ satisfies the axioms in Δ. Recall that P_{F} is the graph of the product of M_{F}. Let (B, S) be a finite partial STS and $A \subseteq B$ a relatively closed subset. Let $n=|A|, n+m=|B|, A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$ and $R=S^{A}$. Assume $\left(M_{\mathrm{F}}, \cdot\right) \models \delta_{(A, R)}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$. Define R^{\prime} on $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ in such a way that $a_{i} \mapsto a_{i}^{\prime}$ is an isomorphim of partial STSs. Choose $b_{1}^{\prime}, \ldots, b_{m}^{\prime} \notin M_{\mathrm{F}}$ and define S^{\prime} on $B^{\prime}=$ $\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ in such a way that the mapping defined by $a_{i} \mapsto a_{i}^{\prime}$ and $b_{i} \mapsto b_{i}^{\prime}$ is an isomorphism of partial STSs. Then $R^{\prime}=S^{\prime A^{\prime}}$ and A^{\prime} is relatively closed in $\left(B^{\prime}, S^{\prime}\right)$. Let $C \subseteq M_{\mathrm{F}}$ be the universe of the finite substructure generated by A^{\prime} in $\left(M_{\mathrm{F}}, \cdot\right)$ and let P be the graph of the product on C, so $P=P_{\mathrm{F}}^{C}$. Then (C, P) is a finite $\operatorname{STS}, A^{\prime}=C \cap B^{\prime}$ and (C, P) is compatible with $\left(B^{\prime}, S^{\prime}\right)$ on A^{\prime}. Therefore $\left(C \cup B^{\prime}, P \cup S^{\prime}\right)$ is a partial STS. Moreover, $R^{\prime} \subseteq P$ and, by Lemma 2.3, $(C, P) \subseteq\left(C \cup B^{\prime}, P \cup S^{\prime}\right)$. By Lemma 4.2, there is an embedding

$$
f:\left(C \cup B^{\prime}, P \cup S^{\prime}\right) \rightarrow\left(M_{\mathrm{F}}, P_{\mathrm{F}}\right)
$$

over C. Then

$$
\left(M_{\mathrm{F}}, \cdot\right) \models \delta_{(B, S)}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}, f\left(b_{1}^{\prime}\right), \ldots, f\left(b_{m}^{\prime}\right)\right)
$$

Proposition 4.4. The Fraïssé limit $\left(M_{\mathrm{F}}, \cdot\right)$ is a prime model of T_{Sq}^{*}.
Proof Let $a_{1}, \ldots, a_{n} \in M_{\mathrm{F}}$ and let us prove that $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$ is isolated. We may assume than the a_{i} are pairwise distinct. The substructure of $\left(M_{\mathrm{F}}, \cdot\right)$ generated by a_{1}, \ldots, a_{n} is finite, say of cardinality $n+m$, and we fix an enumeration a_{1}, \ldots, a_{n+m} of it.

Let $\varphi\left(x_{1}, \ldots, x_{n+m}\right)$ be the conjunction of $\bigwedge_{1 \leq i<j \leq n+m} x_{i} \neq x_{j}$ with all the equalities of the form $x_{i} \cdot x_{j}=x_{k}$ such that $a_{i} \cdot a_{j}=a_{j}$. We claim that the formula

$$
\exists x_{n+1} \ldots x_{n+m} \varphi\left(x_{1}, \ldots, x_{n+m}\right)
$$

isolates $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$. Clearly, the tuple a_{1}, \ldots, a_{n} satisfies this formula. Consider the monster model $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$, an elementary extension of $\left(M_{\mathrm{F}}, \cdot\right)$, and let b_{1}, \ldots, b_{n} in \mathbb{M}_{Sq} be a tuple such that

$$
\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \exists x_{n+1} \ldots x_{n+m} \varphi\left(b_{1}, \ldots, b_{n}, x_{n+1} \ldots, x_{n+m}\right) .
$$

Take $b_{n+1}, \ldots, b_{n+m} \in \mathbb{M}_{\text {Sq }}$ such that $\left(\mathbb{M}_{\text {Sq }}, \cdot\right) \models \varphi\left(b_{1}, \ldots, b_{n+m}\right)$. Then $\left\{b_{1}, \ldots, b_{n+m}\right\}$ is the universe of a substructure of $\left(\mathbb{M}_{\mathbf{S q}}, \cdot\right)$ and the mapping defined by $a_{i} \mapsto b_{i}$ is an isomorphism. By elimination of quantifiers, $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{tp}\left(b_{1}, \ldots, b_{n}\right)$.

Remark 4.5. By Theorem [3.3, there is no countable saturated model of $T_{\text {Sq }}^{*}$, and so in particular the Fraïssé limit ($\left.M_{\mathrm{F}}, \cdot\right)$ is not saturated. This can also be seen directly: for example, M_{F} does not realise the type of a finitely generated infinite Steiner quasigroup.

Remark 4.6. By Theorem 3.3, there are 2^{ω} non-isomorphic countable Steiner quasigroups generated by three elements. Therefore there are uncountably many isomorphism types of finitely generated Steiner quasigroups, and so the class of finitely generated Steiner quasigroups does not have a Fraïssé limit.

5 Algebraic closure and elimination of \exists^{∞}

In this section, all sets and tuples are chosen in \mathbb{M}_{Sq}, the monster model of T_{Sq}^{*}.
Definition 5.1. Let $t\left(x_{1}, \ldots, x_{n}\right)$ be a term in the language of Steiner quasigroups $L=\{\cdot\}$. The rank of t is $m+1$, where m is the number of occurrences of \cdot in t.

It follows from Definition 5.1 that the terms of rank 1 are the variables. Moreover, the rank of $t_{1} \cdot t_{2}$ equals the sum of the ranks of t_{1} and t_{2}.

Definition 5.2. Let A be a subset of $\mathbb{M}_{\text {Sq }}$. The universe of the substructure of $\mathbb{M}_{{ }_{S q}}$ generated by A will be denoted by $\langle A\rangle$. The set $\langle A\rangle_{k}$ is the subset of $\langle A\rangle$ consisting of the elements that can be written as $t\left(a_{1}, \ldots, a_{n}\right)$, where $t\left(x_{1}, \ldots, x_{n}\right)$ is a term of rank $\leq k$ with $a_{1}, \ldots, a_{n} \in A$. Hence, $\langle A\rangle_{1}=A$ and $\langle A\rangle=\bigcup_{k>1}\langle A\rangle_{k}$. If $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we sometimes use the notation $\langle A\rangle=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\langle A\rangle_{k}=\left\langle a_{1}, \ldots, a_{n}\right\rangle_{k}$.
Lemma 5.3. Let \mathbb{P} be the graph of the product in $\mathbb{M}_{\mathbf{S q}_{\mathrm{q}}}$, let $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle_{m}$ and let $B=$ $\left\langle b_{1}, \ldots, b_{n}\right\rangle_{m}$. If the mapping $a_{i} \mapsto b_{i}$ extends to an isomorphism between the partial STSs $\left(A, \mathbb{P}^{A}\right)$ and $\left(B, \mathbb{P}^{B}\right)$ and $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a quantifier-free formula all of whose terms have rank $\leq m$, then $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \varphi\left(b_{1}, \ldots, b_{n}\right)$.

Proof For every term $t\left(x_{1}, \ldots, x_{n}\right)$ of rank $\leq m$, the element $t\left(a_{1}, \ldots, a_{n}\right)$ is in A and it is sent to $t\left(b_{1}, \ldots, b_{n}\right) \in B$ by the isomorphism that extends $a_{i} \mapsto b_{i}$. Therefore a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} satisfy the same equalities between terms of rank $\leq m$.

Let $\varphi\left(y, a_{1}, \ldots a_{n}\right)$ be a quantifier-free formula that describes how an element y is related to a finite partial STS $A=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbb{M}_{\text {Sq }}$. We show that there is a number k, which depends on the rank of the terms in φ, such that whenever $\varphi\left(y, a_{1}, \ldots, a_{n}\right)$ is satisfied by an element that is algebraic over $\left(a_{1}, \ldots, a_{n}\right)$ but cannot be written as a term $t\left(a_{1}, \ldots, a_{n}\right)$ of rank at most k, there are arbitrarily many realizations. The idea is that a finite partial STS only determines the behaviour of iterated products of its elements up to a certain rank.

Proposition 5.4. Let $\varphi=\varphi\left(x, x_{1}, \ldots, x_{n}\right)$ be a quantifier-free formula in the language $L=$ $\{\cdot\}$, and let m be an upper bound for the rank of the terms occurring in φ. Let $\psi_{i}\left(x, x_{1}, \ldots, x_{n}\right)$ be the conjunction of all the inequalities of the form $x \neq t\left(x_{1}, \ldots, x_{n}\right)$ for terms t of rank $\leq i$. There is a number k, depending only on n and m, such that for every $r \in \omega$ the following sentence holds in \mathbb{M}_{Sq} :

$$
\forall x_{1} \ldots x_{n}\left(\exists x\left(\psi_{k}\left(x, x_{1}, \ldots, x_{n}\right) \wedge \varphi\left(x, x_{1}, \ldots, x_{n}\right)\right) \rightarrow \exists^{\geq r} x \varphi\left(x, x_{1}, \ldots, x_{n}\right)\right)
$$

Proof Let k_{0} be larger than the number of terms $t\left(x, x_{1}, \ldots, x_{n}\right)$ of rank $\leq m$, and let $k=2^{k_{0}} \cdot m$. Let $a, a_{1}, \ldots, a_{n} \in \mathbb{M}_{\text {Sq }}$ and assume $\mathbb{M}_{\mathrm{Sq}} \models \psi_{k}\left(a, a_{1}, \ldots, a_{n}\right) \wedge \varphi\left(a, a_{1}, \ldots, a_{n}\right)$. Note that $k_{0}>\left|\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m}\right|$. First we claim that there is a set X such that

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle_{m} \subseteq X \subseteq\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m} \cap\left\langle a_{1}, \ldots, a_{n}\right\rangle_{2^{k_{0} \cdot m}}
$$

and X is relatively closed in $\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m}$ (that is, if $b, c \in X$ and $b \cdot c \in\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m}$, then $b \cdot c \in X)$. In order to obtain X, we build a chain

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle_{m}=X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{i}=X \subseteq\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m} \cap\left\langle a_{1}, \ldots, a_{n}\right\rangle_{2^{k_{0} \cdot m}}
$$

where $X_{j} \subseteq\left\langle a_{1}, \ldots, a_{n}\right\rangle_{2^{j} \cdot m}$ for all $j \leq i$. The idea is as follows: if no product of elements of $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{m}$ belongs to $\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m} \backslash\left\langle a_{1}, \ldots, a_{n}\right\rangle_{m}$ we take $X=\left\langle a_{1}, \ldots, a_{n}\right\rangle_{m}$. Otherwise we form X_{1} by adding to X_{0} all such products (which are in $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{2 \cdot m}$). We ask again if any products of elements of X_{1} belong to $\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m} \backslash X_{1}$ and we continue in this way. Formally,

$$
X_{j+1}=X_{j} \cup\left\{b \cdot c \mid b, c \in X_{j} \text { and } b \cdot c \in\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m} \backslash X_{j}\right\}
$$

Let $D=\left\langle a, a_{1}, \ldots, a_{n}\right\rangle_{m}$. Since $|D|<k_{0}$ and $X_{j} \subseteq D$, there is $i \leq k_{0}$ such that $X_{i}=X_{i+1}$, and we can take $X=X_{i}$. By our choice of k, we have $a \notin X$. Choose pairwise disjoint sets B_{1}, \ldots, B_{r}, each disjoint from D and of the same cardinality as $D \backslash X$, and choose bijections $f_{j}: D \rightarrow X \cup B_{j}$ each of which is the identity on X. Define a relation R_{j} on each $X \cup B_{j}$ in such a way that f_{j} is an isomorphism of partial STS between $\left(D, \mathbb{P}^{D}\right)$ and $\left(X \cup B_{j}, R_{j}\right)$, where \mathbb{P} is the graph of the product in $\mathbb{M}_{\text {Sq }}$. Let $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Note that $A \cap\left(X \cup B_{j}\right)=X=\left(X \cup B_{j}\right) \cap\left(X \cup B_{l}\right)$ whenever $j \neq l$. We claim that

$$
\left(A \cup B_{1} \cup \ldots \cup B_{r}, \mathbb{P}^{A} \cup R_{1} \cup \ldots \cup R_{r}\right)
$$

is a partial STS that contains $\left(A, \mathbb{P}^{A}\right)$ as a substructure. The last point follows easily from the first one since $R_{j}^{X}=\mathbb{P}^{X}$ for every j. By Lemma 2.4, it is enough to check that $\left(A \cup B_{j}, \mathbb{P}^{A} \cup R_{j}\right)$ and $\left(X \cup B_{j} \cup B_{l}, R_{j} \cup R_{l}\right)$ are partial STSs for every j, l. Since X is relatively closed in every $\left(X \cup B_{i}, R_{i}\right)$, we have that $\left(X \cup B_{i} \cup B_{j}, R_{i} \cup R_{j}\right)$ is always a partial STS. Since $R_{j}^{X}=\mathbb{P}^{X}$, we have that $\left(A \cup B_{j}, \mathbb{P}^{A} \cup R_{j}\right)$ is a partial STS. By Remark 2.9, there is an embedding

$$
g:\left(A \cup B_{1} \cup \ldots \cup B_{r}, \mathbb{P}^{A} \cup R_{1} \cup \ldots \cup R_{r}\right) \rightarrow\left(\mathbb{M}_{\mathrm{Sq}}, \mathbb{P}\right)
$$

over A. Let $b_{j}=g\left(f_{j}(a)\right)$ for $j=1, \ldots, r$. Then b_{1}, \ldots, b_{r} are different elements of $\mathbb{M}_{\text {Sq }}$ and, by Lemma 5.3, each b_{j} realizes $\varphi\left(x, a_{1}, \ldots, a_{n}\right)$ in $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$.

Proposition 5.4 and quantifier elimination give a characterization of algebraic closure in $\mathbb{M}_{\text {Sq }}$.
Corollary 5.5. For any set $A \subseteq \mathbb{M}_{\text {Sq }}$, the algebraic closure of A is the universe of the substructure generated by A, that is, $\operatorname{acl}(A)=\langle A\rangle$.

Proof By elimination of quantifiers, Proposition 5.4 implies that if $a \notin\langle A\rangle$, then $a \notin \operatorname{acl}(A)$.

Corollary 5.6. T_{Sq}^{*} eliminates \exists^{∞}, that is, for each formula $\varphi\left(x, x_{1}, \ldots, x_{n}\right)$ there is a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$ defining the set of tuples $\left(a_{1}, \ldots, a_{n}\right)$ for which

$$
\left\{b \in \mathbb{M}_{\mathrm{Sq}} \mid\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \varphi\left(b, a_{1}, \ldots, a_{n}\right)\right\}
$$

is infinite.

Proof By quantifier elimination we may assume that φ is quantifier-free. Choose k and $\psi_{k}\left(x, x_{1}, \ldots, x_{n}\right)$ as in Proposition 5.4 for φ. Then $\exists x\left(\varphi\left(x, x_{1}, \ldots, x_{n}\right) \wedge \psi_{k}\left(x, x_{1}, \ldots, x_{n}\right)\right)$ has the required properties.

6 Amalgamation and joint consistency lemmas

The results in this section are about amalgamation of Steiner quasigroups and applications to joint consistency questions of formulas in T_{Sq}^{*}. If \bar{a}, \bar{b} are (finite or infinite) tuples of elements of \mathbb{M}_{Sq}, the notation $\bar{a} \equiv_{C} \bar{b}$ is standard. Throughout this section, if $A, B, C \subseteq \mathbb{M}_{\mathrm{Sq}}$ we use the notation $A \equiv_{C} B$ to mean that enumerations \bar{a} of A and \bar{b} of B have been fixed, and $\bar{a} \equiv_{C} \bar{b}$. By elimination of quantifiers, this is equivalent to the existence of an isomorphism $(\langle A \cup C\rangle, \cdot) \cong(\langle B \cup C\rangle, \cdot)$ which is the identity on C and maps A onto B respecting the enumerations \bar{a} and \bar{b}.

For ease of notation, in this section we often use juxtaposition to denote unions of two or more sets. As usual, \mathbb{P} denotes the graph of the product in $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$.

The next proposition is not used in the rest of the paper, but it is included because the proof gives a flavour of the method used to prove the more complex statement of Proposition 6.4 below.

Proposition 6.1. Let $A_{0}, A_{1}, B_{0}, B_{1} \subseteq \mathbb{M}_{\text {Sq }}$ be closed under product and suppose that

$$
A_{0} \cap B_{0}=A_{1} \cap B_{1}=B_{0} \cap B_{1}=\emptyset, \text { and } A_{0} B_{0} \equiv A_{1} B_{1}
$$

Then there is a Steiner quasigroup $(A, \cdot) \subseteq\left(\mathbb{M}_{\text {Sq }}, \cdot\right)$ such that $A \equiv_{B_{0}} A_{0}$ and $A \equiv_{B_{1}} A_{1}$.
Proof Let A, U and V be sets such that

- $|A|=\left|A_{0}\right|=\left|A_{1}\right|$,
- $|U|=\left|\left\langle A_{0} B_{0}\right\rangle \backslash A_{0} B_{0}\right|$
- $|V|=\left|\left\langle A_{1} B_{1}\right\rangle \backslash A_{1} B_{1}\right|$,
- $U \cap A=U \cap V=V \cap A=\emptyset$ and
- $A U V \cap\left\langle A_{0} A_{1} B_{0} B_{1}\right\rangle=\emptyset$.

We will define a partial STS on $A U V\left\langle B_{0} B_{1}\right\rangle$. Let $f:\left\langle A_{0} B_{0}\right\rangle \rightarrow\left\langle A_{1} B_{1}\right\rangle$ be an isomorphism of Steiner quasigroups that maps A_{0} onto A_{1} and B_{0} onto B_{1}. Fix a bijection $g:\left\langle A_{0} B_{0}\right\rangle \rightarrow A U B_{0}$ which is the identity on B_{0} and maps A_{0} onto A, and a bijection $h:\left\langle A_{1} B_{1}\right\rangle \rightarrow A V B_{1}$ which is the identity on B_{1}, and $h \upharpoonright A_{1}=g \circ f^{-1} \upharpoonright A_{1}$. Let R be a
relation on $A U B_{0}$ such that g is an isomorphism between $\left(\left\langle A_{0} B_{0}\right\rangle, \mathbb{P}^{\left\langle A_{0} B_{0}\right\rangle}\right)$ and $\left(A U B_{0}, R\right)$ and let S be a relation on $A V B_{1}$ such that h is an isomorphism between $\left(\left\langle A_{1} B_{1}\right\rangle, \mathbb{P}^{\left\langle A_{1} B_{1}\right\rangle}\right)$ and $\left(A V B_{1}, S\right)$. Since $\left(A U B_{0}\right) \cap\left(A V B_{1}\right)=A$ and $R^{A}=S^{A}$, it follows that $\left(A U V B_{0} B_{1}, R \cup S\right)$ is a partial STS. Since $\left\langle B_{0} B_{1}\right\rangle \cap\left(A U V B_{0} B_{1}\right)=B_{0} B_{1}$ and

$$
(R \cup S)^{B_{0} B_{1}}=\mathbb{P}^{B_{0}} \cup \mathbb{P}^{B_{1}}=\mathbb{P}^{B_{0} B_{1}}
$$

we have that $\left(A U V\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup R \cup S\right)$ is a partial STS that contains $\left(\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle}\right)$ as a substructure. By Remark 2.9, there is an embedding

$$
j:\left(A U V\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup R \cup S\right) \rightarrow\left(\mathbb{M}_{\mathrm{Sq}}, \mathbb{P}\right)
$$

over $\left\langle B_{0} B_{1}\right\rangle$. Clearly, $j(A)$ satisfies all our requirements.
The next corollary shows the relevance of Proposition 6.1 to joint consistency questions. It uses the notation in Definition 5.2 as well as the following.

Notation 6.2. For tuples \bar{a} and \bar{b}, we write $\bar{a} \equiv^{k} \bar{b}$ to mean that \bar{a} and \bar{b} satisfy the same equalities between terms of rank $\leq k$.

Corollary 6.3. For every formula $\varphi(\bar{x}, \bar{y})$ of the product language $L=\{\cdot\}$, there is a natural number k such that, for any finite tuples $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ of elements of \mathbb{M}_{Sq}, if

$$
\langle\bar{a}\rangle_{k} \cap\langle\bar{b}\rangle_{k}=\emptyset=\langle\bar{c}\rangle_{k} \cap\langle\bar{a}\rangle_{k} \quad \text { and } \quad \bar{c}, \bar{a} \equiv^{k} \bar{d}, \bar{b} \quad \text { and } \quad\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \varphi(\bar{c}, \bar{a}),
$$

then $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \exists \bar{x}(\varphi(\bar{x}, \bar{a}) \wedge \varphi(\bar{x}, \bar{b}))$.

Proof Let $\Sigma(\bar{x}, \bar{y})$ be the set of all inequalities of the form $t(\bar{x}) \neq t^{\prime}(\bar{y})$. Let \bar{u}, \bar{v} be tuples of variables having the same length as \bar{x} and \bar{y} respectively. Let $\Gamma(\bar{x}, \bar{y}, \bar{u}, \bar{v})$ be the set of all formulas of the form $t(\bar{x}, \bar{y})=t^{\prime}(\bar{x}, \bar{y}) \leftrightarrow t(\bar{u}, \bar{v})=t^{\prime}(\bar{u}, \bar{v})$.

By Proposition 6.1, the following implication holds in T_{Sq}^{*} :

$$
\Sigma(\bar{y}, \bar{v}) \cup \Sigma(\bar{x}, \bar{y}) \cup \Gamma(\bar{x}, \bar{y}, \bar{u}, \bar{v}) \cup\{\varphi(\bar{x}, \bar{y})\} \vdash \exists \bar{x}(\varphi(\bar{x}, \bar{y}) \wedge \varphi(\bar{x}, \bar{v}))
$$

By compactness one gets finite subsets of Σ and Γ for which the same implication holds. The number k is an upper bound for the ranks of the terms in these finite subsets.

Proposition 6.4. Let $A_{0}, A_{1}, B_{0}, B_{1} \subseteq \mathbb{M}_{\text {Sq }}$ be closed under product and such that

- $A_{0} \cap B_{0}=A_{1} \cap B_{1}$
- $E=B_{0} \cap B_{1}$
- $A_{0} B_{0} \equiv_{E} A_{1} B_{1}$
- $\left\langle A_{0} E\right\rangle \cap B_{0}=\left\langle A_{1} E\right\rangle \cap B_{1}=E$.

Then there is a Steiner quasigroup $(A, \cdot) \subseteq\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$ such that $A \equiv_{B_{0}} A_{0}$ and $A \equiv_{B_{1}} A_{1}$.
Proof Let $F=A_{0} \cap B_{0}=A_{1} \cap B_{1}$ and notice that $F \subseteq E$. Now choose pairwise disjoint sets A, U, V, W, each of which is also disjoint from $\mathbb{M}_{\text {Sq }}$, and such that

- $|A|=\left|A_{0} \backslash F\right|=\left|A_{1} \backslash F\right|$
- $|W|=\left|\left\langle A_{0} E\right\rangle \backslash A_{0} E\right|=\left|\left\langle A_{1} E\right\rangle \backslash A_{1} E\right|$
- $|U|=\left|\left\langle A_{0} B_{0}\right\rangle \backslash\left(\left\langle A_{0} E\right\rangle B_{0}\right)\right|=|V|=\left|\left\langle A_{1} B_{1}\right\rangle \backslash\left(\left\langle A_{1} E\right\rangle B_{1}\right)\right|$.

Let $f:\left\langle A_{0} B_{0}\right\rangle \rightarrow\left\langle A_{1} B_{1}\right\rangle$ be an isomorphism that is the identity on E, maps A_{0} onto A_{1} and maps B_{0} onto B_{1}. Fix bijections $g:\left\langle A_{0} B_{0}\right\rangle \rightarrow B_{0} A W U$ and $h:\left\langle A_{1} B_{1}\right\rangle \rightarrow B_{1} A W V$ such that

- g is the identity on B_{0} and h is the identity on B_{1}
- $g\left(A_{0} \backslash F\right)=A$ and $h\left(A_{1} \backslash F\right)=A$
- $g\left(\left\langle A_{0} E\right\rangle \backslash A_{0} E\right)=W$ and $h\left(\left\langle A_{1} E\right\rangle \backslash A_{1} E\right)=W$
- $g\left(\left\langle A_{0} B_{0}\right\rangle \backslash\left\langle A_{0} E\right\rangle B_{0}\right)=U$ and $h\left(\left\langle A_{1} B_{1}\right\rangle \backslash\left\langle A_{1} E\right\rangle B_{1}\right)=V$.

We additionally require that $h \upharpoonright\left\langle A_{1} E\right\rangle=g \circ f^{-1} \upharpoonright\left\langle A_{1} E\right\rangle$.
Let R be a ternary relation on $A W U B_{0}$ such that g is an isomorphism between $\left(\left\langle A_{0} B_{0}\right\rangle, \mathbb{P}^{\left\langle A_{0} B_{0}\right\rangle}\right)$ and $\left(A W U B_{0}, R\right)$. Similarly, let S be a ternary relation on $A W V B_{1}$ such that h is an isomorphism between $\left(\left\langle A_{1} B_{1}\right\rangle, \mathbb{P}^{\left\langle A_{1} B_{1}\right\rangle}\right)$ and $\left(A W V B_{1}, R\right)$. We will show that $\left(A W U B_{0}, R\right)$ and $\left(A W V B_{1}, S\right)$ are compatible and that $\left(\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle}\right)$ is compatible with both of them.

Claim 1. $R^{A E W}=S^{A E W}$.
Proof of Claim 1. This is due to the fact that $h \upharpoonright\left\langle A_{1} E\right\rangle=g \circ f^{-1} \upharpoonright\left\langle A_{1} E\right\rangle$.
Claim 2. ($\left.A W U V B_{0} B_{1}, R \cup S\right)$ is a partial STS.
Proof of Claim 2. Note that $\left(A W U B_{0}\right) \cap\left(A W V B_{1}\right)=A E W$. Let $a, b \in A E W$ and assume there is some $c \in A W U B_{0}$ such that $R(a, b, c)$. We will show that $S(a, b, c)$. By claim 1 , it is enough to prove that $c \in A E W$. This is clear, since $g\left(\left\langle A_{0} E\right\rangle\right)=A E W$.

Claim 3. $\left(A W U\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup R\right)$ and $\left(A W V\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup S\right)$ are partial STSs.
Proof of Claim 3. The first statement follows from the fact that $\left(A W U\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup R\right)$ is the union of the two partial STSs $\left(\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle}\right)$ and $\left(A W U B_{0}, R\right)$, whose intersection $B_{0}=\left\langle B_{0} B_{1}\right\rangle \cap\left(A W U B_{0}\right)$ is relatively closed in both systems, and $R^{B_{0}}=\mathbb{P}^{B_{0}}$. The second statement is similar.

By Lemma 2.4 and claims 2 and $3,\left(A W U V\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup R \cup S\right)$ is a partial STS, and it clearly contains $\left(\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle}\right)$ as a substructure. By Remark 2.9, there is an embedding j of $\left(A W U V\left\langle B_{0} B_{1}\right\rangle, \mathbb{P}^{\left\langle B_{0} B_{1}\right\rangle} \cup R \cup S\right)$ in $\mathbb{M}_{\text {Sq }}$ over $\left\langle B_{0} B_{1}\right\rangle$. Clearly,

$$
j(A F) \cong_{B_{0}} A F=g\left(A_{0}\right) \cong_{B_{0}} A_{0} \text { and } j(A F) \cong_{B_{1}} A F=h\left(A_{1}\right) \cong_{B_{1}} A_{1}
$$

Proposition 6.5. Let $A_{0}, A_{1}, B_{0}, B_{1}, D \subseteq \mathbb{M}_{\text {Sq }}$ be closed under product and such that

- $A_{0} \cap B_{0}=A_{1} \cap B_{1}, E=B_{0} \cap B_{1}$ and
- $A_{0} B_{0} \equiv_{E} A_{1} B_{1}, D \equiv_{E A_{0}} B_{0}$ and $D \equiv_{E A_{1}} B_{1}$.

Then there is a Steiner quasigroup $(A, \cdot) \subseteq\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$ such that $A \equiv_{B_{0}} A_{0}$ and $A \equiv_{B_{1}} A_{1}$.
Proof We check that $\left\langle A_{0} E\right\rangle \cap B_{0}=E$ and $\left\langle A_{1} E\right\rangle \cap B_{1}=E$. Then Proposition 6.4 applies. It is enough to check the first equality. Assume $a \in\left\langle A_{0} E\right\rangle \cap B_{0}$. There are terms $t(\bar{x}, \bar{y})$,
$r(\bar{z})$ and finite tuples $\bar{a}_{0} \in A_{0}, \bar{e} \in E$ and $\bar{b}_{0} \in B_{0}$ such that $a=t\left(\bar{a}_{0}, \bar{e}\right)=r\left(\bar{b}_{0}\right)$. By the assumptions on D, there is a finite tuple $\bar{d} \in D$ such that $\bar{d} \equiv_{E A_{0}} \bar{b}_{0}$, so that $t\left(a_{0}, \bar{e}\right)=r(\bar{d})$. Now let $\bar{b}_{1} \in B_{1}$ be such that $\bar{d} \equiv{ }_{E A_{1}} \bar{b}_{1}$. Then $\bar{b}_{1} \equiv_{E} \bar{b}_{0}$, and so there is $\bar{a}_{1} \in A_{1}$ such that $\bar{a}_{0} \bar{b}_{0} \equiv_{E} \bar{a}_{1} \bar{b}_{1}$. Hence $t\left(\bar{a}_{1}, \bar{e}\right)=r\left(\bar{b}_{1}\right)$. Since $\bar{d} \equiv_{E A_{1}} \bar{b}_{1}$, we have that $t\left(\bar{a}_{1}, \bar{e}\right)=r(\bar{d})$. It follows that $a=r\left(\bar{b}_{1}\right) \in B_{1}$ and, therefore, $a \in B_{0} \cap B_{1}=E$.

Proposition 6.4 has been stated and proved for two Steiner triple systems $\left(A_{0}, B_{0}\right)$ and $\left(A_{1}, B_{1}\right)$, but in fact the result holds for arbitrary families $\left\{\left(A_{i}, B_{i}\right) \mid i<\omega\right\}$ of Steiner triple systems. We omit the proof, since it is a straightforward adaptation of that of Proposition 6.4.

Remark 6.6. Let $\left\{A_{i} \mid i \in I\right\}$ and $\left\{B_{i} \mid i \in I\right\}$ be families of subsets of $\mathbb{M}_{\text {Sq }}$ closed under product and such that $A_{i} \cap B_{i}=A_{j} \cap B_{j}, E=B_{i} \cap B_{j}$ (if $i \neq j$), $A_{i} B_{i} \equiv{ }_{E} A_{j} B_{j}$ and $\left\langle A_{i} E\right\rangle \cap B_{i}=E$. Then there is some Steiner quasigroup $(A, \cdot) \subseteq\left(\mathbb{M}_{\text {Sq }}, \cdot\right)$ such that $A \equiv B_{B_{i}} A_{i}$ for every $i \in I$.

$7 \quad \mathrm{TP}_{2}$ and NSOP_{1}

Recall that a formula $\varphi(\bar{x} ; \bar{y})$ has the tree property of the second kind $\left(\mathrm{TP}_{2}\right)$ in T if in the monster model of T there is an array of tuples $\left(\bar{a}_{i j} \mid i, j<\omega\right)$ and some natural number k such that for each $i<\omega$ the set $\left\{\varphi\left(\bar{x}, \bar{a}_{i j}\right) \mid j<\omega\right\}$ is k-inconsistent, and for each $f: \omega \rightarrow \omega$ the path $\left\{\varphi\left(\bar{x}, \bar{a}_{i f(i)}\right) \mid i<\omega\right\}$ is consistent. We say that T is TP_{2} if some formula has TP_{2} in T. Otherwise T is NTP_{2}.

Also recall that the formula $\varphi(\bar{x}, \bar{y})$ has the 1 -strong order property, SOP_{1}, if there is a tree of tuples of parameters $\left(\bar{a}_{s} \mid s \in 2^{<\omega}\right)$ such that for every $f: \omega \rightarrow 2$, the branch $\left\{\varphi\left(\bar{x}, \bar{a}_{f \upharpoonright n}\right) \mid n<\omega\right\}$ is consistent and for every $s, t \in 2^{<\omega}$ with $s^{\curvearrowright} 0 \subseteq t, \varphi\left(\bar{x}, \bar{a}_{t}\right) \wedge \varphi\left(\bar{x}, \bar{a}_{s\urcorner 1}\right)$ is inconsistent. The theory T is SOP_{1} if some formula has SOP_{1} in T. Otherwise, it is NSOP_{1}.
TP_{2} and SOP_{1}, as well as their negations NTP_{2} and NSOP_{1}, are dividing lines in the classification of first-order theories. They were first introduced by Shelah in [20]. NTP 2 theories include simple and NIP theories, and have received a lot of attention recently - see [9] and [10]. NSOP_{1} theories are the first level in the NSOP_{n} hierarchy, a family of theories without the strict order property that properly extends the class of simple theories. It is not known whether NSOP_{1} and NSOP_{2} are equivalent. NSOP_{2} is equivalent to NTP_{1}, the negation of the tree property of the first kind. Shelah proved that a theory is simple if and only if it is NTP_{2} and NTP_{1}. The class of NSOP_{1} theories has recently become the object of close scrutiny and new natural examples are being discovered - see [11], [17] and [18]. In this section we show that T_{Sq}^{*} is TP_{2} and NSOP_{1}, thus adding a further example of a TP_{2} and NSOP_{1} theory to those described in [15].

Remark 7.1. In any Steiner quasigroup, the following cancellation law holds:

$$
\forall x y z(x \cdot y=x \cdot z \rightarrow y=z)
$$

This is because if $x \cdot y=x \cdot z$, then $y=x \cdot(x \cdot y)=x \cdot(x \cdot z)=z$.
Proposition 7.2. The formula $\varphi\left(x ; y_{1}, y_{2}, y_{3}\right) \equiv x=\left(y_{1} \cdot\left(y_{2} \cdot\left(y_{3} \cdot x\right)\right)\right)$ has TP_{2} in T_{Sq}^{*}. Hence T_{Sq}^{*} is TP_{2}.

Proof We embed in $\left(\mathbb{M}_{\text {Sq }}, \mathbb{P}\right)$ a partial STS which contains an array $\left(a_{i} b_{i} c_{i j} \mid i, j<\omega\right)$ and a sequence $\left(d_{f} \mid f \in \omega^{\omega}\right)$ such that for each $i \in \omega$ the set $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i j}\right) \mid j<\omega\right\}$ is

2-inconsistent, and each d_{f} realizes the corresponding path $\left\{\varphi\left(x ; a_{i}, b_{i}, c_{i f(i)}\right) \mid i<\omega\right\}$. The array will be chosen in such a way that $c_{i j} \neq c_{i k}$ for all $j \neq k$, so that Remark 7.1 implies the inconsistency of

$$
\varphi\left(x, a_{i}, b_{i}, c_{i j}\right) \wedge \varphi\left(x, a_{i}, b_{i}, c_{i k}\right)
$$

We construct a suitable partial STS outside $\mathbb{M}_{\text {Sq }}$. Remark 2.9 then gives the required embedding. Given $i, j<\omega$, we choose a set

$$
A_{i j}=\left\{a_{i}, b_{i}, c_{i j}\right\} \cup\left\{d_{f} \mid f \in \omega^{\omega}, f(i)=j\right\} \cup\left\{a_{i j f}^{*}, b_{i j f}^{*} \mid f \in \omega^{\omega}, f(i)=j\right\}
$$

of elements not in $\mathbb{M}_{\text {Sq }}$. It is understood that for all i, j and f the elements $a_{i}, b_{i}, c_{i j}$ and d_{f} are pairwise distinct, and therefore $A_{i j} \cap A_{i k}=\left\{a_{i}, b_{i}\right\}$ if $j \neq k$ and $A_{i j} \cap A_{l k}=\left\{d_{f} \mid\right.$ $f(i)=j$ and $f(l)=k\}$ if $i \neq l$. Now we define a partial $\operatorname{STS}\left(A_{i j}, R_{i j}\right)$ on each set $A_{i j}$. The relation $R_{i j}$ will contain the triples $\left(d_{f}, c_{i j}, b_{i j f}^{*}\right),\left(b_{i j f}^{*}, b_{i}, a_{i j f}^{*}\right),\left(d_{f}, a_{i}, a_{i j f}^{*}\right)$ and all their permutations, as well as all the triples of the form (a, a, a) with $a \in A_{i j}$. It is easy to check that no product is doubly defined. Observe that this choice of $R_{i j}$ gives, in product notation,

$$
d_{f}=a_{i} \cdot a_{i j f}^{*}=a_{i} \cdot\left(b_{i} \cdot b_{i j f}^{*}\right)=a_{i} \cdot\left(b_{i} \cdot\left(c_{i j} \cdot d_{f}\right)\right)
$$

and therefore for all $i, j<\omega$ we have that $\left(d_{f} ; a_{i}, b_{i}, c_{i j}\right)$ satisfy $\varphi\left(x ; y_{1}, y_{2}, y_{3}\right)$. Now, if we take $j \neq k$, then the two elements a_{i}, b_{i} of the intersection $A_{i j} \cap A_{i k}$ do not have a defined product either in $\left(A_{i j}, R_{i j}\right)$ or in $\left(A_{i k}, R_{i k}\right)$. Hence, $\left(A_{i j} \cup A_{i k}, R_{i j} \cup R_{i k}\right)$ is a partial STS. Let $A_{i}=\bigcup_{j<\omega} A_{i j}$ and $R_{i}=\bigcup_{j<\omega} R_{i j}$. By Lemma 2.4, each $\left(A_{i}, R_{i}\right)$ is a partial STS. Now let $i, l<\omega$ be different. Then $A_{i} \cap A_{l}=\left\{d_{f} \mid f \in \omega^{\omega}\right\}$, and for $f \neq g$ the product of d_{f} and d_{g} is not defined either in $\left(A_{i}, R_{i}\right)$ or in $\left(A_{l}, R_{l}\right)$. Hence $\left(A_{i} \cup A_{l}, R_{i} \cup R_{l}\right)$ is a partial STS. Finally, let $A=\bigcup_{i<\omega} A_{i}$ and $R=\bigcup_{i<\omega} R_{i}$. Again by Lemma 2.4, we have that (A, R) is a partial STS. By Remark 2.9, there is an embedding $h:(A, R) \rightarrow\left(\mathbb{M}_{\mathrm{Sq}}, \mathbb{P}\right)$ and so for each $i, j<\omega$ and for each $f \in \omega^{\omega}$ such that $f(i)=j$,

$$
h\left(d_{f}\right)=h\left(a_{i}\right) \cdot\left(h\left(b_{i}\right) \cdot\left(h\left(c_{i j}\right) \cdot h\left(d_{f}\right)\right)\right)
$$

and therefore $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \varphi\left(h\left(d_{f}\right) ; h\left(a_{i}\right), h\left(b_{i}\right), h\left(c_{i j}\right)\right)$.
Proposition 7.3. In T_{Sq}^{*}, nonalgebraic formulas of the form $\varphi(x ; b, c)$ do not divide over \emptyset.
Proof Assume for a contradiction that $\varphi(x ; b, c)$ divides over \emptyset, and let $\left(b_{i} c_{i} \mid i<\omega\right)$, where $b_{0} c_{0}=b c$, be an indiscernible sequence that witnesses the dividing, so that $\left\{\varphi\left(x ; b_{i}, c_{i}\right) \mid i<\omega\right\}$ is inconsistent. We will use Remark 6.6 to contradict the inconsistency of this set. Choose $\left(a_{i} \mid i<\omega\right)$ such that $\models \varphi\left(a_{0} ; b_{0}, c_{0}\right)$ and $a_{i} b_{i} c_{i} \equiv a_{j} b_{j} c_{j}$ for all $i, j<\omega$. Since $\varphi(x ; b, c)$ is not algebraic, we may assume that $a_{i} \notin\left\langle b_{i}, c_{i}\right\rangle$. There are several cases to be considered. Let us consider first the case $b_{0}=c_{0}$. This implies $b_{i}=c_{i}$ for all $i<\omega$. Notice that $b_{i} \neq b_{j}$ if $i \neq j$. By Remark 6.6, with $A_{i}=\left\langle a_{i}\right\rangle=\left\{a_{i}\right\}, B_{i}=\left\langle b_{i}, c_{i}\right\rangle=\left\{b_{i}\right\}$ and $E=\emptyset$, there is a such that $a \equiv_{b_{i}} a_{i}$ for every $i<\omega$. Then a realizes each $\varphi\left(x ; b_{i}, c_{i}\right)$. Now assume that $b_{0} \neq c_{0}$, so that for all i we have $b_{i} \neq c_{i}$. If $\left\langle b_{i}, c_{i}\right\rangle$ and $\left\langle b_{j}, c_{j}\right\rangle$ (with $i \neq j$) share two elements, then they are equal and we get $b_{i}=b_{j}$ and $c_{i}=c_{j}$ for all i, j. Assume $\left\langle b_{i}, c_{i}\right\rangle$ and $\left\langle b_{j}, c_{j}\right\rangle$ (with $i \neq j$) share one element e. Then without loss of generality $b_{i} \cdot c_{i}=e$ for all i. We apply again Remark 6.6, with $A_{i}=\left\langle a_{i}\right\rangle=\left\{a_{i}\right\}, B_{i}=\left\langle b_{i}, c_{i}\right\rangle=\left\{b_{i}, c_{i}, e\right\}$ and $E=\{e\}$. Notice that $\left\langle a_{i}, e\right\rangle=\left\{a_{i}, e, a_{i} \cdot e\right\}$ and $a_{i} \cdot e \neq b_{i}, c_{i}$. The case where $\left\langle b_{i}, c_{i}\right\rangle \cap\left\langle b_{j}, c_{j}\right\rangle=\emptyset$ (with $i \neq j$) is similar, with $E=\emptyset$.

The next corollary shows that the formula in Proposition 7.2 is optimal, in the sense that no formula of the form $\varphi(x ; \bar{y})$, where \bar{y} has fewer than three variables, is TP_{2}.

Corollary 7.4. In T_{Sq}^{*}, no formula of the form $\varphi\left(x ; y_{1}, y_{2}\right)$ has TP_{2}.
Proof Let $\left\{\varphi\left(x ; b_{i j}, c_{i j}\right) \mid i, j<\omega\right\}$ be an array of formulas that witnesses TP_{2}, where the tuple \bar{x} in our definition of TP_{2} is the single variable x and the tuple of parameters $\bar{a}_{i j}$ consists of the two elements $b_{i j} c_{i j}$. We can find such an array with the property that $b_{i j} c_{i j} \equiv b_{i k} c_{i k}$ for all $i, j, k<\omega$. Consider the first row $\left\{\varphi\left(x ; b_{0 j}, c_{0 j}\right) \mid j<\omega\right\}$. Each $\varphi\left(x ; b_{0 j}, c_{0 j}\right)$ is nonalgebraic. Since $\left\{\varphi\left(x ; b_{0 j}, c_{0 j}\right) \mid j<\omega\right\}$ is k-inconsistent for some k, the row witnesses that $\varphi\left(x ; b_{00}, c_{00}\right) k$-divides over \emptyset. But this contradicts Proposition 7.3.

The notation $\bar{b}_{0} \downarrow_{M}^{u} \bar{b}_{1}$ used in Fact 7.5 below means that $\operatorname{tp}\left(\bar{b}_{0} / M \bar{b}_{1}\right)$ is a coheir of $\operatorname{tp}\left(\bar{b}_{0} / M\right)$, and satisfaction of formulas is meant in the monster model of the theory.
Fact 7.5. Assume $\varphi(\bar{x}, \bar{y})$ witnesses SOP_{1}. Then there are $M, \bar{a}_{0}, \bar{a}_{1}, \bar{b}_{0}, \bar{b}_{1}$ so that $\bar{b}_{0} \downarrow_{M}^{u} \bar{b}_{1}$, $\bar{b}_{0} \downarrow_{M}^{u} \bar{a}_{0}, \bar{a}_{0} \bar{b}_{0} \equiv_{M} \bar{a}_{1} \bar{b}_{1}$ and $\models \varphi\left(\bar{a}_{0}, \bar{b}_{0}\right) \wedge \varphi\left(\bar{a}_{1}, \bar{b}_{1}\right)$ but $\varphi\left(\bar{x}, \bar{b}_{0}\right) \wedge \varphi\left(\bar{x}, \bar{b}_{1}\right)$ is inconsistent.

Proof Proposition 5.2 in [11.
Proposition 7.6. T_{Sq}^{*} is NSOP_{1}.
Proof Assume $\varphi(\bar{x} ; \bar{y})$ witnesses SOP_{1}. By Fact 7.5, there are tuples $\bar{a}_{0}, \bar{b}_{0}, \bar{a}_{1}, \bar{b}_{1}$ and a model M such that

- $\bar{a}_{0} \bar{b}_{0} \equiv{ }_{M} \bar{a}_{1} \bar{b}_{1}$,
- $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right) \models \varphi\left(\bar{a}_{0}, \bar{b}_{0}\right) \wedge \varphi\left(\bar{a}_{1}, \bar{b}_{1}\right)$,
- $\varphi\left(\bar{x}, \bar{b}_{0}\right) \wedge \varphi\left(\bar{x}, \bar{b}_{1}\right)$ is inconsistent, and
- the types $\operatorname{tp}\left(\bar{b}_{0} / M \bar{b}_{1}\right)$ and $\operatorname{tp}\left(\bar{b}_{0} / M \bar{a}_{0}\right)$ are coheirs of their restriction to M.

Our goal is to show that we can realize $\varphi\left(\bar{x}, \bar{b}_{0}\right) \wedge \varphi\left(\bar{x}, \bar{b}_{1}\right)$. Nothing changes if one replaces each tuple by a tuple enumerating the substructure generated by it and we will assume that the replacement has been made.

Now let \bar{e} enumerate $\bar{b}_{0} \cap \bar{b}_{1}$. Since $\operatorname{tp}\left(\bar{b}_{0} / M \bar{b}_{1}\right)$ does not fork over M, \bar{e} is a tuple of M. We claim that there is a tuple \bar{d} such that $\bar{d} \equiv \overline{e a}_{0} \bar{b}_{0}$ and $\bar{d} \equiv \overline{e a}_{1} \bar{b}_{1}$. Let $p(\bar{x}, \bar{y})=\operatorname{tp}\left(\bar{a}_{0} \bar{b}_{0} / \bar{e}\right)$. Note that $p(\bar{x}, \bar{y})=\operatorname{tp}\left(\bar{a}_{1} \bar{b}_{1} / \bar{e}\right)$. We want to check the consistency of $p\left(\bar{a}_{0}, \bar{y}\right) \cup p\left(\bar{a}_{1}, \bar{y}\right)$. Let $\psi(\bar{x}, \bar{y}) \in p(\bar{x}, \bar{y})$. Since $\operatorname{tp}\left(\bar{b}_{0} / M \bar{a}_{0}\right)$ is a coheir of its restriction to M, there is some tuple $\bar{m} \in M$ such that $\models \psi\left(\bar{a}_{0}, \bar{m}\right)$. Since $\bar{a}_{0} \equiv{ }_{M} \bar{a}_{1}, \models \psi\left(\bar{a}_{1}, \bar{m}\right)$ and, therefore, $\psi\left(\bar{a}_{0}, \bar{y}\right) \wedge \psi\left(\bar{a}_{1}, \bar{y}\right)$ is consistent.

Finally, note that the coheir assumptions imply additionally that $\bar{a}_{0} \cap \bar{b}_{0}$ and $\bar{a}_{1} \cap \bar{b}_{1}$ are contained in M, and hence they coincide. Then Proposition 6.5 gives a tuple \bar{c} such that $\bar{c} \equiv \bar{b}_{0} a_{0}$ and $\bar{c} \equiv_{\bar{b}_{1}} a_{1}$. But then $\models \varphi\left(\bar{c} ; \bar{b}_{0}\right) \wedge \varphi\left(\bar{c} ; \bar{b}_{1}\right)$.

8 Hyperimaginaries and imaginaries

In this section we prove that T_{Sq}^{*} has elimination of hyperimaginaries and weak elimination of imaginaries. We use the method due to Conant and described in [14]. We first discuss briefly its main ideas.

Consider an arbitrary complete theory T. Let \bar{a} be a tuple in the monster model of T, possibly infinite, and let E be an equivalence relation between tuples of the same length as \bar{a}. Assume that E is type-definable over the empty set. Then \bar{a}_{E} is a hyperimaginary; if \bar{a} is finite and E is definable, it is an imaginary. It is well known that if there is a (possibly infinite) tuple \bar{b} such that $\bar{a}_{E} \in \operatorname{dcl}(\bar{b})$ and $\bar{b} \in \operatorname{bdd}\left(\bar{a}_{E}\right)$, then \bar{a}_{E} is eliminable (see, for instance, Lemma 18.6 in [7]). When \bar{a}_{E} is an imaginary, the tuple \bar{b} can be chosen to be finite and in $\operatorname{acl}\left(\bar{a}_{E}\right)$. If for every hyperimaginary \bar{a}_{E} such a tuple \bar{b} can be found, then T has elimination of hyperimaginaries and weak elimination of imaginaries.

Definition 8.1. Let \bar{a}_{E} be as above. Then $\Sigma(\bar{a}, E)$ is the set of all the subtuples \bar{c} of \bar{a} for which there is an indiscernible sequence $\left(\bar{a}_{i} \mid i<\omega\right)$ with $\bar{a}=\bar{a}_{0}$ and $E\left(\bar{a}_{i}, \bar{a}_{j}\right)$ for all i, j, and such that \bar{c} is the common intersection of all the \bar{a}_{i}. The set $\Sigma(\bar{a}, E)$ is partially ordered by the relation of being a subtuple.

Fact 8.2. Let \bar{a}_{E} be a hyperimaginary.

1. There are minimal elements in $\Sigma(\bar{a}, E)$.
2. If \bar{b} is a minimal element of $\Sigma(\bar{a}, E)$, then $\bar{b} \in \operatorname{bdd}\left(\bar{a}_{E}\right)$.
3. Assume \bar{a} enumerates an algebraically closed set and there is a ternary relation \downarrow between subsets of the monster model of T with the following properties:
(a) Invariance: if $A \downarrow_{C} B$ and f is an automorphism of the monster model, then $f(A) \downarrow_{f(C)} f(B)$.
(b) Monotonicity: if $A \downarrow_{C} B$, then $A_{0} \downarrow_{C} B_{0}$ for every $A_{0} \subseteq A$ and $B_{0} \subseteq B$.
(c) Full existence over algebraically closed sets: for all A, B, C, if C is algebraically closed, then $A^{\prime} \downarrow_{C} B$ for some $A^{\prime} \equiv_{C} A$.
(d) Stationarity: if A, A^{\prime}, B, C are algebraically closed sets such that $A \equiv_{C} A^{\prime}, C \subseteq$ $A \cap B, A \downarrow_{C} B$ and $A^{\prime} \downarrow_{C} B$, then $A \equiv_{B} A^{\prime}$.
(e) Freedom: for all A, B, C, if $A \downarrow_{C} B$ and $C \cap(A B) \subseteq D \subseteq C$, then $A \downarrow_{D} B$.

Then $\bar{a}_{E} \in \operatorname{dcl}(\bar{b})$ for every $\bar{b} \in \Sigma(\bar{a}, E)$.
Proof By lemmas 5.2, 5.4 and 5.5 of [14].
We will apply a minor modification of Fact 8.2 to our theory T_{Sq}^{*}. For this, we need to define a suitable relation \downarrow.

Definition 8.3. Let (A, R) be a partial $S T S$ and let (B, \cdot) a Steiner quasigroup. Let (B, S) be the STS corresponding to (B, \cdot). We say that $f: A \rightarrow B$ is a homomorphism if it is a homomorphism between the relational structures (A, R) and (B, S). Equivalently, $f: A \rightarrow B$ is a homomorphism if, for all $a, b, c \in A$,

$$
R(a, b, c) \Rightarrow f(a) \cdot f(b)=f(c)
$$

A Steiner quasigroup (B, \cdot) is freely generated by $A \subseteq B$ if $\langle A\rangle=B$ and every homomorphism from (A, R) (where R is the restriction to A of the graph of the product on B) into some Steiner quasigroup (C, \cdot) can be extended to a homomorphism of (B, \cdot) into (C, \cdot).

Remark 8.4. Every partial STS (A, R) can be extended to some $\operatorname{STS}(B, S)$ whose corresponding Steiner quasigroup (B, \cdot) is freely generated by A. Moreover, (B, \cdot) is unique up to isomorphism over A.

Proof For $a \in A$, let c_{a} be a constant symbol and extend the language $L=\{\cdot\}$ to $L(A)=$ $L \cup\left\{c_{a} \mid a \in A\right\}$. Let K be the class of all $L(A)$-structures $\left(M, \cdot, c_{a}^{M}\right)_{a \in A}$ such that (M, \cdot) is a Steiner quasigroup and the mapping $a \mapsto c_{a}^{M}$ defines a homomorphism of (A, R) into (M, \cdot). Since K is closed under substructures, direct products and homomorphic images, it is a variety (in the sense of universal algebra) and therefore it contains a free algebra $\left(F, \cdot, c_{a}^{F}\right)_{a \in A}$, which is unique up to isomorphism. As an $L(A)$-structure, $\left(F, \cdot, c_{a}^{F}\right)_{a \in A}$ is freely generated by the empty set. Since there are structures in K whose corresponding STS restricted to A is (A, R), the mapping $a \mapsto c_{a}^{F}$ defines an isomorphism of partial STSs and we can assume that $a=c_{a}^{F}$ and (A, R) is a substructure of the STS associated to (F, \cdot) and $F=\langle A\rangle$. It is easy to see that (F, \cdot) satisfies our requirements.

Remark 8.5. If (B, \cdot) is a Steiner quasigroup, S is the graph of the product on B and $A \subseteq B$, the following are equivalent:

1. (B, \cdot) is freely generated by A;
2. $(B, S)=\bigcup_{n<\omega}\left(A_{n}, R_{n}\right)$ for some chain of partial STSs $\left(A_{n}, R_{n}\right)$ such that:
(a) $A_{0}=A$
(b) $A_{n+1}=\left\{a \cdot b \mid a, b \in A_{n}\right\}$
(c) For every $c \in A_{n+1} \backslash A_{n}$ there is a unique pair $\{a, b\} \subseteq A_{n}$ such that $a \cdot b=c$
(d) $R_{n}=S^{A_{n}}$.

Proof Assume (B, \cdot) is as in 2 , let (C, \cdot) be a Steiner quasigroup and let $f: A \rightarrow C$ be a homomorphism of $\left(A, S^{A}\right)$ into (C, \cdot). Using the uniqueness condition (c), we can inductively define an ascending chain of homomorphisms $f_{n}: A_{n} \rightarrow C$ of $\left(A_{n}, R_{n}\right)$ into ($\left.C, \cdot\right)$ starting with $f_{0}=f$. Then $\bigcup_{n<\omega} f_{n}$ is a homomorphism from (B, S) into (C, \cdot) that extends f.

The other direction follows from this and the uniqueness of the freely generated structure.
Definition 8.6. For subsets A, B, C of the monster model $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$ of T_{Sq}^{*}, define $A \downarrow_{C} B$ if and only if $\langle A C\rangle \cap\langle B C\rangle=\langle C\rangle$ and $\langle A B C\rangle$ is freely generated by $\langle A C\rangle\langle B C\rangle$.

Remark 8.7. It is clear that \downarrow is invariant and symmetric. Moreover, $A \downarrow_{C} B$ if and only if $\langle A C\rangle \downarrow_{\langle C\rangle}\langle B C\rangle$.

In the next lemmas we check that the ternary relation \downarrow satisfies the remaining properties in Fact 8.2, with the exception of freedom. Instead, in Lemma 8.12 we prove a weak version of freedom which suffices for elimination of hyperimaginaries in our setting and seems more appropriate for a language with function symbols. Recall that in the monster model $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$ of T_{Sq}^{*} we have $\operatorname{acl}(A)=\langle A\rangle$. Also recall that \mathbb{P} is the graph of the product in \mathbb{M}_{Sq}. We will say that a set A is closed if $A=\langle A\rangle$. In the rest of this section we use elimination of quantifiers for T_{Sq}^{*} and Remark 2.9 without explicit mention.

Lemma 8.8. Assume $(A, R) \subseteq\left(A^{\prime}, R^{\prime}\right)$ and $(B, S) \subseteq\left(B^{\prime}, S^{\prime}\right)$ are STSs and $(A B, R \cup S)$ and $\left(A^{\prime} B^{\prime}, R^{\prime} \cup S^{\prime}\right)$ are partial STSs. Assume additionally that $A \cap B^{\prime}=A \cap B=A^{\prime} \cap B$. If f is a homomorphism from the partial STS $(A B, R \cup S)$ into a Steiner quasigroup (E, \cdot), then there is some Steiner quasigroup $\left(E^{\prime}, \cdot\right)$ extending (E, \cdot) and some homomorphism $f^{\prime} \supseteq f$ from the partial $S T S\left(A^{\prime} B^{\prime}, R^{\prime} \cup S^{\prime}\right)$ into $\left(E^{\prime}, \cdot\right)$.

Proof Choose pairwise disjoint sets U, V, W that are disjoint from E and such that $|W|=$ $\left|\left(A^{\prime} \cap B^{\prime}\right) \backslash(A \cap B)\right|,|U|=\left|A^{\prime} \backslash A B^{\prime}\right|$ and $|V|=\left|B^{\prime} \backslash A^{\prime} B\right|$, choose a bijection $h:\left(A^{\prime} \cap B^{\prime}\right) \backslash$
$(A \cap B) \rightarrow W$ and extend h to bijections $h_{1}: A^{\prime} \backslash A \rightarrow U W$ and $h_{2}: B^{\prime} \backslash B \rightarrow V W$. Let P be the graph of the product on E. Define a ternary relation R_{f} on $f(A) U W$ by adding to $P^{f(A)} \cup h_{1}\left(R^{\prime} \upharpoonright\left(A^{\prime} \backslash A\right)\right)$ all triples of the form $\left(h_{1}(a), h_{1}(b), f(a \cdot b)\right)$ with $a, b \in A^{\prime} \backslash A$ and $a \cdot b \in A$ as well as its permutations and all triples of the form (a, a, a). Similarly, define S_{f} on $f(B) V W$ by adding to $P^{f(B)} \cup h_{2}\left(S^{\prime} \upharpoonright\left(B^{\prime} \backslash B\right)\right)$ all triples of the form $\left(h_{2}(a), h_{2}(b), f(a \cdot b)\right)$ where $a, b \in B^{\prime} \backslash B$ and $a \cdot b \in B$ and their permutations, as well as identities (a, a, a). Now, $\left(f(A) U W, R_{f}\right)$ and $\left(f(B) V W, S_{f}\right)$ are STSs and

$$
(f \upharpoonright A) \cup h_{1}:\left(A^{\prime}, R^{\prime}\right) \rightarrow\left(f(A) U W, R_{f}\right) \text { and }(f \upharpoonright B) \cup h_{2}:\left(B^{\prime}, R^{\prime}\right) \rightarrow\left(f(B) V W, S_{f}\right)
$$

are homomorphisms. The STSs $\left(f(A) U W, R_{f}\right)$ and $\left(f(B) V W, S_{f}\right)$ are compatible on their intersection $(f(A) \cap f(B)) W$ and hence $\left(f(A B) U V W, R_{f} \cup S_{f}\right)$ is a partial STS, and moreover

$$
f^{\prime}=f \cup h_{1} \cup h_{2}: A^{\prime} B^{\prime} \rightarrow f(A B) U V W
$$

is a homomorphism. Extend the partial STS ($E U V W, P \cup R_{f} \cup S_{f}$) to an STS, and let $\left(E^{\prime}, \cdot\right)$ be its associated Steiner quasigroup. Then $(E, \cdot) \subseteq\left(E^{\prime}, \cdot\right)$ and $f^{\prime}: A^{\prime} B^{\prime} \rightarrow E^{\prime}$ is a homomorphism extending f.

Lemma 8.9. \downarrow is monotone.
Proof Since \downarrow is symmetric, it is enough to prove that $A \downarrow_{C} B$ implies $A \downarrow_{C} B_{0}$ for every $B_{0} \subseteq B$. Moreover we may assume that $C \subseteq A \cap B_{0}$ and A, B, C, B_{0} are closed. It is clear that $\langle A C\rangle \cap\left\langle B_{0} C\right\rangle=\langle C\rangle$. We check that $\left\langle A B_{0}\right\rangle$ is freely generated from $A B_{0}$. Let $R=\mathbb{P}^{A B_{0}}$ and let $f: A B_{0} \rightarrow D$ be a homomorphism of $\left(A B_{0}, R\right)$ to a Steiner quasigroup (D, \cdot), which can be assumed to be a substructure of $\left(\mathbb{M}_{\mathrm{Sq}}, \cdot\right)$. We want to extend f to some homomorphism from $\left(\left\langle A B_{0}\right\rangle, \cdot\right)$ to (D, \cdot). By Lemma 8.8, there is some Steiner quasigroup $\left(D^{\prime}, \cdot\right) \supseteq(D, \cdot)$ and some homomorphism $f^{\prime} \supseteq f$ from the partial $\operatorname{STS}\left(A B, \mathbb{P}^{A B}\right)$ into $\left(D^{\prime}, \cdot\right)$. Since we are assuming that $\langle A B\rangle$ is freely generated from $A B, f^{\prime}$ extends to some homomorphism g from $(\langle A B\rangle, \cdot)$ into $\left(D^{\prime}, \cdot\right)$. But $g\left(\left\langle A B_{0}\right\rangle\right) \subseteq D$ and so $g \upharpoonright\left\langle A B_{0}\right\rangle$ is a homomorphism from $\left(\left\langle A B_{0}\right\rangle, \cdot\right)$ to (D, \cdot) extending f, as required.

Lemma 8.10. \downarrow has the full existence property over any set.
Proof Assume that A, B, C are subsets of $\mathbb{M}_{\text {Sq }}$. We want to find some $A^{\prime} \equiv_{C} A$ such that $A^{\prime} \downarrow_{C} B$. Without loss of generality A, B and C are closed (so in particular C satisfies the hypotheses of $3(\mathrm{c})$ in Fact 8.2) and $C \subseteq A \cap B$. If $A=C$, then A is algebraic over C and we can take $A^{\prime}=A$. If $A \neq C$, then no element of A is algebraic over C. Let \bar{a} enumerate $A \backslash C$. By P.M. Neumann's Separation Lemma ([5], Theorem 6.2), for every finite subtuple \bar{a}_{0} of \bar{a} there is $\bar{a}_{0}^{\prime} \equiv_{C} \bar{a}_{0}$ such that ${\overline{a_{0}}}^{\prime} \cap B=\emptyset$. It follows that there is $A^{\prime} \equiv_{C} A$ such that $A^{\prime} \cap B=C$. By Remark 8.4, the partial STS $\left(A^{\prime} B, \mathbb{P}^{A^{\prime} B}\right)$ can be extended to a Steiner quasigroup (D, \cdot) which is freely generated by $A^{\prime} B$. There is an embedding f of (D, \cdot) in $\left(\mathbb{M}_{\text {Sq }}, \cdot\right)$ over B. If $A^{\prime \prime}=f\left(A^{\prime}\right)$, then $A^{\prime \prime} \equiv_{B} A^{\prime}$ and hence $A^{\prime \prime} \equiv_{C} A$. Since $f(D)$ is freely generated by $A^{\prime \prime} B$ and $A^{\prime \prime} \cap B=C$, we have $A^{\prime \prime} \downarrow_{C} B$.

Lemma 8.11. \downarrow has the stationarity property.
Proof Assume A, A^{\prime}, B, C are closed, $A \equiv_{C} A^{\prime}, C \subseteq A \cap B, A \downarrow_{C} B$ and $A^{\prime} \downarrow_{C} B$. We check that $A \equiv_{B} A^{\prime}$. By hypothesis $\langle A B\rangle$ is freely generated from $A B$, and $\left\langle A^{\prime} B\right\rangle$ is freely generated from $A^{\prime} B$. Fix some isomorphism of STSs $f: A \rightarrow A^{\prime}$ over C, let $i d_{B}$ be the identity mapping on B and notice that $f \cup i d_{B}: A B \rightarrow A^{\prime} B$ is an isomorphism of partial STSs. By the uniqueness of freely generated Steiner quasigroups, $f \cup i d_{B}$ extends to some isomorphism of Steiner quasigroups $g:\langle A B\rangle \rightarrow\left\langle A^{\prime} B\right\rangle$ that witnesses $A \equiv_{B} A^{\prime}$.

Lemma 8.12. \downarrow satisfies the following weak version of the freedom property: if A, B, C, D are closed, $C \cap(\langle A D\rangle\langle B D\rangle) \subseteq D \subseteq C$ and $A \downarrow_{C} B$, then $A \downarrow_{D} B$.

Proof The assumption $A \downarrow_{C} B$ implies that $\langle A C\rangle \cap\langle B C\rangle=C$ and that $\langle A B C\rangle$ is freely generated by $\langle A C\rangle\langle B C\rangle$. Notice that $\langle A D\rangle \cap\langle B D\rangle=D$. We check that $\langle A B D\rangle$ is freely generated by $\langle A D\rangle\langle B D\rangle$. Let $f:\langle A D\rangle\langle B D\rangle \rightarrow E$ be a homomorphism of the partial STS $\left(\langle A D\rangle\langle B D\rangle, \mathbb{P}^{\langle A D\rangle\langle B D\rangle}\right)$ to the Steiner quasigroup (E, \cdot) and let us check that f can be extended to $\langle A B D\rangle$. By Lemma 8.8 there is a Steiner quasigroup $\left(E^{\prime}, \cdot\right) \supseteq(E, \cdot)$ and a homomorphism $f^{\prime} \supseteq f$ from $\left(\langle A C\rangle\langle B C\rangle, \mathbb{P}^{\langle A C\rangle\langle B C\rangle}\right)$ to $\left(E^{\prime}, \cdot\right)$. Since $\langle A B C\rangle$ is freely generated by $\langle A C\rangle\langle B C\rangle$, we can extend f^{\prime} to a homomorphism $g:\langle A B C\rangle \rightarrow E^{\prime}$. Since $g(A B D)=f(A B D) \subseteq E$, it follows that $g(\langle A B D\rangle) \subseteq E$ and therefore $g \upharpoonright\langle A B D\rangle$ is a homomorphism to (E, \cdot), as required.

We are now ready to prove that T_{Sq}^{*} has elimination of imaginaries. We use parts 1 and 2 of Fact 8.2, and a version of part 3 where freedom is replaced by the property in Lemma 8.12, Moreover, we should remove the requirement that \bar{a} should enumerate a closed set and instead deal with the general case. Since our assumptions are slightly different from those in Conant's original result ([14], Lemma 5.5), we repeat the proof and adapt it to our setting.

Proposition 8.13. T_{Sq}^{*} has elimination of hyperimaginaries and weak elimination of imaginaries.

Proof Let \bar{a}_{E} be a hyperimaginary and let \bar{b} be a minimal tuple in $\Sigma(\bar{a}, E)$. Part 2 of Fact 8.2 gives that $\bar{b} \in \operatorname{bdd}\left(\bar{a}_{E}\right)$. So it suffices to check that $\bar{a}_{E} \in \operatorname{dcl}(\bar{b})$. In fact, this holds for any element of $\Sigma(\bar{a}, E)$.

Suppose that \bar{a} is closed and let $\bar{c} \in \Sigma(\bar{a}, E)$. Let f be an automorphism of the monster model fixing \bar{c} and let us check that $E(\bar{a}, f(\bar{a}))$. This will show that $f\left(\bar{a}_{E}\right)=\bar{a}_{E}$ and hence that $\bar{a}_{E} \in \operatorname{dcl}(\bar{c})$. By definition of $\Sigma(\bar{a}, E)$, there is an indiscernible sequence $I=\left(\bar{a}_{i} \mid i<\omega\right)$ with $\bar{a}=\bar{a}_{0}$, with common intersection \bar{c} and such that $E\left(\bar{a}_{i}, \bar{a}_{j}\right)$ for all i, j. It follows that \bar{c} is closed and I is \bar{c}-indiscernible. By Lemma 8.10 (full existence) there is some \bar{b} such that $\bar{b} \equiv \bar{a} \bar{a}_{1}$ and $\bar{b} \downarrow_{\bar{a}} \bar{a}_{1}$. Notice that $E(\bar{b}, \bar{a})$ and hence $E\left(\bar{b}, \bar{a}_{1}\right)$. Since $\bar{b} \bar{a} \equiv_{\bar{c}} \bar{a}_{1} \bar{a}$, we have $\bar{b} \cap \bar{a}=\bar{c}=\bar{a} \cap \bar{a}_{1}$. By symmetry $\bar{a}_{1} \perp_{\bar{a}} \bar{b}$. Since $\bar{a} \cap\left(\bar{b} \bar{a}_{1}\right)=\bar{c} \subseteq \bar{a}$ and $\bar{b} \downarrow_{\bar{a}} \bar{a}_{1}$, we may apply Lemma 8.12 and obtain $\bar{b} \downarrow_{\bar{c}} \bar{a}_{1}$. Another application of Lemma 8.10 gives some $\bar{b}_{0} \equiv_{\bar{c}} \bar{a}$ such that $\bar{b}_{0} \mathcal{L}_{\bar{c}} \bar{a} f(\bar{a})$. Since $\bar{a} \equiv_{\bar{c}} \bar{a}_{1}$, there is some \bar{b}_{1} such that $\bar{b}_{0} \bar{a} \equiv_{\bar{c}} \bar{b}_{1} \bar{a}_{1}$. Lemma 8.9 (monotonicity) and invariance gives $\bar{b}_{1} \mathcal{L}_{\bar{c}} \bar{a}_{1}$. Since $\bar{b}_{1} \equiv_{\bar{c}} \bar{b}$, by Lemma 8.11 (stationarity) we have $\bar{b} \bar{a}_{1} \equiv \bar{c}_{\bar{b}} \bar{b}_{1} \bar{a}_{1} \equiv \bar{c} \bar{b}_{0} \bar{a}$. Since $E\left(\bar{b}, \bar{a}_{1}\right)$ we have that $E\left(\bar{b}_{0}, \bar{a}\right)$. By symmetry and monotonicity, $\bar{a} \downarrow_{\bar{c}} \bar{b}_{0}$ and $f(\bar{a}) \downarrow_{\bar{c}} \bar{b}_{0}$. Since f fixes \bar{c}, we have $\bar{a} \equiv_{\bar{c}} f(\bar{a})$. By stationarity, $\bar{a} \bar{b}_{0} \equiv{ }_{\bar{c}} f(\bar{a}) \bar{b}_{0}$, which implies that $E\left(\bar{b}_{0}, f(\bar{a})\right)$ and therefore $E(\bar{a}, f(\bar{a}))$.

Now we consider the general case where \bar{a} might not be closed. We argue as in the proof of Theorem 5.6 of [14]: take an enumeration \bar{a}^{\prime} of the rest of $\langle\bar{a}\rangle$, define $E^{\prime}\left(\bar{x}, \bar{x}^{\prime} ; \bar{y}, \bar{y}^{\prime}\right) \leftrightarrow E(\bar{x}, \bar{y})$ and observe that \bar{a}_{E} and $\left(\bar{a}, \bar{a}^{\prime}\right)_{E^{\prime}}$ are interdefinable. We know that there is a tuple \bar{b} such that $\left(\bar{a}, \bar{a}^{\prime}\right)_{E^{\prime}} \in \operatorname{dcl}(\bar{b})$ and $\bar{b} \in \operatorname{bdd}\left(\left(\bar{a}, \bar{a}^{\prime}\right)_{E^{\prime}}\right)$. It follows that $\bar{a}_{E} \in \operatorname{dcl}(\bar{b})$ and $\bar{b} \in \operatorname{bdd}\left(\bar{a}_{E}\right)$, and hence \bar{a}_{E} is eliminable.

Acknowledgements The first author would like to thank Katie Chicot and Bridget Webb for preliminary discussion of Steiner triple systems. The authors are grateful to Martin Ziegler for helpful suggestions, and to the anonymous referee for a thorough review and numerous helpful comments.

References

[1] Andersen, L., Hilton, A., and Mendelsohn, E. Embedding partial Steiner triple systems. Proceedings of the London Mathematical Society 41 (1980), 557-576.
[2] Baldwin, J. and Paolini, G. Strongly minimal Steiner systems I: existence. arXiv:1903.03541, March 2019.
[3] Cameron, P. Infinite linear spaces. Discrete Mathematics 129 (1994), 29-41.
[4] Cameron, P. An orbit theorem for Steiner triple systems. Discrete Mathematics 125 (1994), 97-100.
[5] Cameron, P. Permutation Groups, volume 45 of London Mathematical Society Student Texts. Cambridge University Press, 1999.
[6] Cameron, P., and Webb, B. Perfect countably infinite Steiner triple systems. Australasian Journal of Combinatorics 54 (2012), 273-278.
[7] Casanovas, E. Simple Theories and Hyperimaginaries, volume 39 of Lecture Notes in Logic. Cambridge University Press, 2011.
[8] Chang, C., and Keisler, H. Model Theory, third ed. North Holland, 1990.
[9] Chernikov, A. Theories without the tree property of the second kind. Annals of Pure and Applied Logic 165 (2014), 695-723.
[10] Chernikov, A., and Kaplan, I. Forking and dividing in $N T P_{2}$ theories. The Journal of Symbolic Logic 77, 1 (2012), 1-20.
[11] Chernikov, A., and Ramsey, N. On model-theoretic tree properties. Journal of Mathematical Logic 16, 2 (2016).
[12] Chicot, K., Grannell, M., Griggs, T., and Webb, B. On sparse countably infinite Steiner triple systems. Journal of Combinatorial Designs 18, 2 (2010), 115-122.
[13] Colbourn, C., and Rosa, A. Triple Systems. Oxford University Press, 1999.
[14] Conant, G. An axiomatic approach to free amalgamation. The Journal of Symbolic Logic 82 (2017), 648-671.
[15] Conant, G., and Kruckman, A. Independence in generic incidence structures. arXiv:1709.09626, September 2017.
[16] Doyen, J. Sur la structure de certains systèmes triples de Steiner. Mathematische Zeitschrift 111 (1969), 289-300.
[17] Kaplan, I., and Ramsey, N. On Kim-independence. arXiv:1702.03894, To appear in the Journal of the European Mathematical Society, July 2017.
[18] Kaplan, I., Ramsey, N., and Shelah, S. Local character of Kim-independence. arXiv:1707.02902v2, July 2017.
[19] Lindner, C. A survey of embedding theorems for Steiner systems. Annals of Discrete Mathematics 7 (1980), 175-202.
[20] Shelah, S. Simple unstable theories. Annals of Mathematical Logic 19 (1980), 177-203.
[21] Thomas, S. Triangle transitive Steiner triple systems. Geometriae Dedicata 21 (1986), 19-20.
[22] Treash, C. The completion of finite incomplete Steiner triple systems with applications to loop theory. Journal of Combinatorial Theory Series A 10 (1971).

School of Mathematics and Statistics
The Open University
silvia.barbina@open.ac.uk
Departament de Matemàtiques i Informàtica
Universitat de Barcelona
e.casanovas@ub.edu

[^0]: *Research partially supported by grant MTM2014-59178P from Ministerio de Economía, Industria y Competitividad, Spain. The first author has been supported by a series of Santander Mobility Scholarships.

