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Abstract: The reconstruction of daily precipitation data is a much-debated topic of great practical
use, especially when weather stations have missing data. Missing data are particularly numerous if
rain gauges are poorly maintained by their owner institutions and if they are located in inaccessible
areas.In this context, an attempt was made to assess the possibility of reconstructing daily rainfall
data from other climatic variables other than the rainfall itself, namely atmospheric pressure, relative
humidity and prevailing wind direction.The pilot area for the study was identified in Central Italy,
especially on the Adriatic side, and 119 weather stations were considered.The parameters of atmo-
spheric pressure, humidity and prevailing wind direction were reconstructed at all weather stations
on a daily basis by means of various models, in order to obtain almost continuous values rain gauge
by rain gauge. The results obtained using neural networks to reconstruct daily precipitation revealed
a lack of correlation for the prevailing wind direction, while correlation is significant for humidity
and atmospheric pressure, although they explain only 10–20% of the total precipitation variance. At
the same time, it was verified by binary logistic regression that it is certainly easier to understand
when it will or will not rain without determining the amount. In this case, in fact, the model achieves
an accuracy of about 80 percent in identifying rainy and non-rainy days from the aforementioned
climatic parameters. In addition, the modelling was also verified on all rain gauges at the same
time and this showed reliability comparable to an arithmetic average of the individual models, thus
showing that the neural network model fails to prepare a model that performs better from learning
even in the case of many thousands of data (over 400,000). This shows that the relationships between
precipitation, relative humidity and atmospheric pressure are predominantly local in nature without
being able to give rise to broader generalisations.

Keywords: artificial neural network; multilayer perceptron; precipitation; atmospheric pressure;
binary logistic regression; relative humidity; wind direction; modelling

1. Introduction
1.1. Aim of the Study and State of the Art

The reconstruction of daily precipitation data is a topic that climatologists have always
tried to solve. The difficulty lies in the fact that rainfall can be extremely localised, [1]
and therefore, change radically a few kilometres away from the measurement, so it is
complicated to reconstruct it on the basis of nearby rain gauges or terrain topography [2]. In
an attempt to solve this problem, climatologists very often rely on satellite measurements in
order to quantify daily precipitation over the entire globe [3,4]. Among the tools that enable
these evaluations are the IMERG (Integrate Multi-satellitE Retrievals for GPM) algorithm
or the TMPA (TRMM multi-satellite precipitation analyses) or PERSIANN (Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks), etc.;
however, to date, it has been shown that they are still highly inaccurate in some areas, and
therefore, not always very useful for quantifying rainfall [5–7]. On the other hand, there
remains the possibility of trying to reconstruct rainfall values with neighbouring rain gauges
through geostatistics, which although probably the most accurate and reliable method,
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with the obvious problems described above, for reasons of time and calculation is not very
useful on a daily scale [8,9]. In this context, therefore, a path remains little explored to
date, that of reconstructing precipitation from other climatic variables, such as atmospheric
pressure, relative humidity and the prevailing wind direction in our case.In fact, it is very
rare in the literature that other climate parameters are used to reconstruct precipitation on
a daily scale [10]. This reconstruction procedure is very often neglected because weather
stations are more often equipped with rain gauges than with hygrometers, anemometers
or barometers, so it is complicated to reconstruct rainfall data from variables that are not
continuous over the territory and the individual weather station.Sometimes pressure data
are used to reconstruct precipitation in very old time series, due to the lack of rainfall data,
which leads to not very reliable results [11]; while precipitation reconstructions with relative
humidity and wind direction as covariates are almost absent in the literature.In order to
obtain the aforementioned climate variables (atmospheric pressure, relative humidity
and prevailing wind direction) for each weather station whose precipitation data are
available, it is necessary in some cases to reconstruct them in full.Many methods for
reconstructing climate data are reported in the literature, e.g., for wind, modelling based
either on digital terrain models [12] or combined with satellite data (Lidar) is very often
used [13]. Relative humidity, on the other hand, is very often spatialised, especially with
the use of deterministic or geostatistical techniques, however, the timescale is rarely daily
and more often monthly or yearly [14,15]. The key part of reconstructing precipitation data
lies in the choice of the statistical method used, i.e., modelling. There are many ways to
reconstruct data on the basis of the relationships observed between the dependent variable
and the supposed independent variables. The time scale is certainly an important limitation,
as geostatistical methods, such as kriging with its variants are based on the interpretation
of the semivariogram, so in the case of hundreds of data to reconstruct, it is very time-
consuming [16]. In these cases, techniques that need to estimate fewer parameters are
required, among these are the various types of regression, linear, non-linear, logistic, or even
artificial neural networks including radial basis functions or multilayer perceptrons [17,18].
Previous climate research shows a greater potential of the artificial neural network than
multiple regression, allowing for a reduction in error [19]. There have been approaches to
the reconstruction of climate variables completely based on machine learning, combining
stochastic synthesis with a multilayer perceptron; however, serious doubts remain as to
the comprehensibility of the model and its repeatability due to the two hidden layers
having no physical or climatic variables as input parameters [20]. In the literature, there
have also been examples of machine learning models applied to the reconstruction of
daily rainfall that has good results, in particular, studies have verified the reconstruction
potential of the multilayer perceptron with the support vector machine and the random
forest [21]. These models developed in semi-arid areas perform well in terms of RMSE and
R2, precisely because of the greater ease of predicting near-zero values and the resulting
low variance [21]. This research aims to interpolate or reconstruct if necessary, the data
of independent variables, such as relative humidity, atmospheric pressure and prevailing
wind direction. Subsequently, the aim of the research is to assess the significance of the
relationships between precipitation and other climatic variables, so as to be able to help
explain a percentage of the variance in daily precipitation and to use this model together
with other independent variables in order to obtain increasingly reliable results. At the same
time, there is also the ambitious goal of understanding, by reducing precipitation to a binary
variable that can always be assessed by means of multilayer perceptron analysis, how to
predict a rainfall event and with what accuracy.Thus, the innovativeness of this research
lies both in quantifying the relationship between variables, such as relative humidity, wind
and atmospheric pressure for the prediction of daily rainfall, and in the possibility of
understanding on the basis of these variables the presence or absence of a rainy day, all
using neural networks as a modelling technique.In fact, there are no other examples in the
literature that rely on three independent climate variables to reconstruct daily rainfall.
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1.2. Geographical Framework

Central Italy is bordered by two seas, the Tyrrhenian Sea and the Adriatic Sea, arms
of the Mediterranean Sea which, depending on their size, influence the climate of inland
areas to a greater or lesser extent. The extent of the study area is approximately 13,400 km,
and a total of 119 rain gauges are distributed over the area (Figure 1).
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Figure 1. Map of the study area and positioning of rain gauges.

The study area encompasses an area that stretches from the Adriatic Sea to the Apen-
nines with peaks over 2000 m and overlooks the Tyrrhenian slope for a few kilometres,
thus it is a particularly heterogeneous area in terms of elevation

2. Materials and Methods
2.1. Weather Stations and Climate Data

Climate data were collected by four institutions: the Functional Multiple Risk Centre
of the Civil Protection of the Marche Region, the hydrographic service of the Umbria
Region, the national system for the processing and dissemination of climate data of the
IstitutoSuperiore per la Protezione e la RicercaAmbientale (ISPRA) and the Experimental
Geophysical Observatory of Macerata (OGSM). The total number of rain gauges is 119,
collected from 2010 to 2021, a shorter period than the classic standard 30-year period
prescribed by the WMO, which was chosen on the one hand due to the large amount of
data (scale is daily), and on the other hand due to missing data not being too extensive
for each weather station, what it would have been like collecting the previous 20 years.
Regarding the prevailing wind direction, data were collected from 16 anemometers, while
42 weather stations in the study area are equipped with hygrometers and 12 weather
stations with barometers (Table 1).
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Table 1. Name, name of the weather stations, Long., longitude, Lat., latitude, Alt., altitude, Sen.,
equipment of sensors to measure climatic variables r (rain gauge), p (barometer), w (anemometer),
h (hygrometer).

Id Name Long. Lat. Alt. Sen. Id Name Long. Lat. Alt. Sen.

1 Acqualagna 12.7 43.6 193 r,h 61 Monte Grimano Terme 12.5 43.8 362 r

2 Acquasanta 13.4 42.8 392 r,h 62 Monte Paganuccio 12.8 43.6 889 r,h

3 Agugliano 13.4 43.5 170 r 63 Monte Prata 13.2 42.9 1813 r,p,w,h

4 Amandola 13.4 43.0 550 r 64 Montecchio 12.8 43.9 43 r

5 Ancona Baraccola 13.5 43.6 37 r,h 65 Montefano 13.4 43.4 215 r,h

6 Ancona Regione 13.5 43.6 91 r,p,w,h 66 Montelabbate 12.8 43.8 65 r

7 Apecchio 12.4 43.6 465 r 67 Montemonaco 13.3 42.9 987 r

8 Appignano 13.3 43.4 199 r 68 Mozzano 13.5 42.8 193 r,p,h

9 Arcevia 12.9 43.5 535 r,h 69 Nocera Umbra 12.8 43.1 535 r

10 Arquata del Tronto 13.3 42.8 720 r 70 Norcia 13.1 42.8 700 r

11 Badia Tedalda 12.2 43.7 756 r 71 Osimo Monteragolo 13.5 43.5 123 r,w,h

12 Barbara 13.0 43.6 219 r 72 Pennabilli 12.3 43.8 600 r

13 Bastia Umbra 12.6 43.1 214 r 73 Pergola 12.8 43.6 306 r,h

14 Bettolelle 13.2 43.7 26 r 74 Pesaro 12.9 43.9 9 r

15 Bocca Serriola 12.4 43.5 730 r 75 Piagge 13.0 43.7 201 r

16 Bolognola Pintura 13.2 43.0 1352 r,p,w,h 76 Pianello di Cagli 12.6 43.5 384 r,w,h

17 Bronzo 12.5 43.8 173 r,h 77 Pievebovigliana 13.1 43.1 451 r

18 Ca’Mazzasette 12.6 43.8 112 r 78 Piobbico 12.5 43.6 339 r

19 Camerino 13.1 43.1 664 r,p,w,h 79 Pioraco 13.0 43.2 441 r

20 Campodiegoli 12.8 43.3 507 r 80 Poggio San Vicino 13.1 43.4 580 r,h

21 Cantiano 12.6 43.5 360 r 81 Ponte Felcino 12.4 43.1 205 r

22 Capodacqua 13.2 42.7 817 r 82 Porto Sant’Elpidio 13.8 43.2 3 r,p,w,h

23 Carestello 12.5 43.3 523 r 83 Recanati 13.5 43.4 235 r

24 Carpegna 12.3 43.8 748 r 84 Ripatransone 13.8 43.0 494 r

25 Cascia 13.0 42.7 604 r 85 Rostighello 13.5 43.4 28 r

26 Case San Giovanni 13.0 43.4 620 r 86 Rotella 13.6 43.0 385 r

27 Cingoli 13.2 43.4 790 r,h 87 Sant’Angelo in Pontano 13.4 43.1 473 r

28 Citta di Castello 12.3 43.5 304 r 88 Sant’Angelo in Vado 12.4 43.7 359 r,h

29 Colle 13.1 43.5 350 r,p,w,h 89 San Bendetto del
Tronto 13.9 42.9 6 r,p,w,h

30 Colleponi 12.9 43.4 254 r,h 90 San Giovanni 13.0 43.4 625 r

31 Corinaldo 13.0 43.6 203 r 91 San Lorenzo in Campo 12.9 43.6 209 r

32 Cupramontana 13.1 43.4 506 r 92 Santa Maria di Pieca 13.3 43.1 467 r

33 Esanatoglia Convento 12.9 43.3 608 r 93 Santa Maria Goretti 13.7 43.0 130 r

34 Fabriano 12.9 43.3 357 r,h 94 Santa Maria in Arzilla 12.9 43.8 53 r

35 Fermo 13.7 43.2 280 r 95 San Severino Marche 13.2 43.2 220 r,h

36 FiastraTrebbio 13.2 43.0 747 r,h 96 Sassofeltrio 12.5 43.9 221 r

37 Filottrano 13.3 43.4 270 r 97 Sassoferrato 12.9 43.4 312 r
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Table 1. Cont.

Id Name Long. Lat. Alt. Sen. Id Name Long. Lat. Alt. Sen.

38 Foligno 12.7 43.0 224 r 98 Sassotetto 13.2 43.0 1365 r,p,w,h

39 Fonte Avellana 12.7 43.5 689 r,h 99 Scheggia 12.7 43.4 688 r

40 Foresta della Cesana 12.7 43.7 640 r,h 100 Sefro 13.0 43.2 469 r

41 Forsivo 13.0 42.8 968 r 101 Sellano 12.9 42.9 608 r

42 Fossombrone 12.8 43.7 116 r 102 Senigallia 13.2 43.7 5 r,w,h

43 Gallo 12.7 43.8 122 r,h 103 Serravalle di Chienti 13.0 43.1 647 r,h

44 Gelagna Alta 13.0 43.1 711 r 104 Servigliano 13.5 43.1 215 r

45 Grottammare 13.9 43.0 4 r 105 Sorti 13.0 43.1 672 r,h

46 Grottazzolina 13.6 43.1 200 r 106 Spindoli 12.9 43.2 484 r

47 GualdoTadino 12.8 43.2 535 r 107 Spinetoli 13.8 42.9 52 r

48 Gubbio 12.6 43.3 473 r 108 Svarchi 13.6 43.5 6 r

49 Illice 13.4 42.9 760 r 109 Tavoleto 12.6 43.8 426 r

50 Jesi 13.2 43.5 96 r,h 110 Tolentino 13.3 43.2 244 r,w,h

51 Loreto 13.6 43.4 127 r,h 111 Trestina 12.2 43.4 257 R

52 Loro Piceno 13.4 43.2 435 r,h 112 Umito 13.4 42.7 646 R

53 Lucrezia 13.0 43.8 36 r,h 113 Urbania 12.5 43.7 273 R

54 Macerata 13.4 43.3 294 r,w,h 114 Urbino 12.6 43.7 451 r,p,w,h

55 Marotta 13.1 43.7 144 r 115 Ussita 13.1 43.0 744 r

56 Metaurilia 13.1 43.8 7 r 116 Villa Fastiggi 12.9 43.9 22 r,p,w,h

57 Moie 13.1 43.5 110 r 117 Villa Potenza 13.4 43.3 133 r,h

58 Monte Bove Sud 13.2 42.9 1917 r,p,w,h 118 Villa San Filippo 13.6 43.3 58 r

59 Monte Cavallo 13.0 43.0 960 r 119 Vallo di Nera 12.9 42.8 310 r

60 Monte Cucco 12.7 43.4 1092 r

2.2. Interpolation and Extrapolation of Climate Data

In order to obtain the climatic values for atmospheric pressure, relative humidity and
prevailing wind direction, interpolative procedures were required. For both atmospheric
pressure and relative humidity, an inverse distance weighting (IDW) based on the square
of the distance was performed, with the following formula:

ẑ(x) = ∑n
i wizi

∑n
i wi

(1)

where
wi = |x− xi|−2 (2)

|x− xi| = Euclidean distance

ẑ(x) = value z at location x, it is a weighted mean of nearby observations
IDW has been calculated for each day reconstructing missing values and testing errors

by means of cross-correlation, which led on average to the resultsshown in Table 2 and
Figure 2.

Table 2. Table of average errors in the model from 2010 to 2021; ME, mean error; RMSE, root mean
square error.

Error of a Model in the Prediction Relative Humidity Atmospheric Pressure

ME −0.14 −0.01
RMSE 4.86 1.79
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Figure 2. Interpolation example performed with the IDW method and annual average data from 2010
to 2021: (a) Relative humidity (b) Atmospheric pressure.

On the other hand, for the prevailing wind direction, the situation was more complex,
both because of the variability to which the direction is usually subject on uneven topo-
graphical surfaces, and because of the few weather stations equipped with an anemome-
ter.In light of these issues, in order to obtain the most correct values possible, wind direction
and wind speed modelling software, Wind Ninja, was used [22]. This software was pri-
marily designed to assess the development of fires; however, it also performs well in the
climatic field.In this way, the values of wind from the weather stations were introduced into
the software and the response was evaluated by interpolating the entire surface based on
the topographic obstacles encountered by the wind. This procedure then made it possible
to extrapolate the values obtained inall weather stations where wind direction values were
missing (Figure 3).
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2.3. Predictive Modelling

The main objective of the research is to obtain a model that can best exploit atmospheric
pressure, relative humidity and prevailing wind direction to predict precipitation or at least
explain some of the variance. Artificial neural networks were used to do this, which have
the peculiarity of simulating the functioning of the animal brain by using non-linear data
modelling to discover complex relationships between data (Figure 4). In particular, the
algorithm called multilayer perceptron (MLP) was used, which has input layers and output
layers, and in between the two, there are hidden layers with many stacked neurons [23].
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The MLP algorithm is as follows:

f (X) = b2 + W2 ∗ ( fA(b1 + W1 ∗ X)) (3)
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where
W1 = weight matrices of the hidden layer
W2 = weight matrices of the output layer
b1 = bias vector of the hidden layer
b2 = bias vector of the output layer
fA = activation function
The goodness of the model was assessed using the relative error [24]:

REv = yrv − ŷrv/yrv (4)

where
yrv = source point
ŷrv = predicted point
Subsequently, the possibility of creating a model that could predict whether it would

rain or not was also considered. Again, the MLP technique was used, and precipitation
was transformed into a binary categorical variable, with zero indicating no precipitation
and one indicating the presence of precipitation. In this case, the success rate of the model
was evaluated, corresponding to the ability to correctly predict a rainy or a non-rainy day.
In order to assess the importance of each individual variable in the model, an analysis was
carried out to assess how much the predicted values change as the independent variables
change. In particular, the effect of a perturbation introduced into the model is measured and
related to the measured data. It is calculated by measuring the effect this perturbation has
by computing the Root Mean Square difference between the original ŷ and the perturbed ŷi.
A larger Root Mean Square difference means that the variable is “more important”. Finally,
to assess the reliability of the model, it was divided into 30% data subject to training and
70% data subject to testing. For each of these two categories, the correctly predicted values
were evaluated, i.e., those in which the model predicts rain or no rain, in agreement with
the observed data, and this generates a percentage of model reliability.

3. Results
3.1. Quantitative Rainfall Prediction Model Based on MLP Technique

The MLP technique was used on all 119 available weather stations, with precipitation
as the dependent variable and relative humidity, atmospheric pressure and prevailing wind
direction as covariates. From the point of view of the architecture of the neural network,
two hidden layers were chosen between the input and output layersand evaluatedon the
basis of the decrease in relative error. For each weather station modelled, a 70% sample
was taken for model training and a 30% sample for testing the model. This percentage
was chosen by analysing the best performance of the model in relation to the various
percentages of data taken for training and those taken for testing as can be seen in Table 3.

Table 3. Evaluation of the correct prediction percentage of rainfall and non-rainfall events with
different percentages of testing and training datasets.

Training Percentage Testing Percentage Correct Percentage

50 50 79.7

60 40 79.8

70 30 80.0

80 20 79.9

90 10 79.9

The results as can be seen in Table 4 are not such that daily precipitation can be
predicted on the basis of the chosen covariates, however, some interesting indications
were obtained. It was observed that especially atmospheric pressure and relative humid-
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ity possess a significant relationship with precipitation and thus could be exploited for
introduction into other models together with other variables.

Table 4. Assessment of the relative error for the training (reTr) and for the testing (ret), for each
weather station identified by the id code (Id).

Id reTr ret Id reTr ret Id reTr ret Id reTr ret Id reTr ret Id reTr ret

1 0.83 0.83 21 0.82 0.83 41 0.89 0.89 61 0.89 0.93 81 0.86 0.81 101 0.83 0.86

2 0.89 0.85 22 0.84 0.87 42 0.87 0.84 62 0.87 0.88 82 0.90 0.87 102 0.87 0.89

3 0.83 0.86 23 0.84 0.81 43 0.86 0.82 63 0.90 0.91 83 0.83 0.84 103 0.89 0.92

4 0.93 0.89 24 0.85 0.88 44 0.86 0.84 64 0.86 0.85 84 0.89 0.89 104 0.90 0.91

5 0.84 0.88 25 0.80 0.83 45 0.81 0.87 65 0.86 0.86 85 0.87 0.83 105 0.78 0.80

6 0.86 0.87 26 0.88 0.88 46 0.76 0.84 66 0.90 0.86 86 0.81 0.73 106 0.88 0.84

7 0.85 0.86 27 0.89 0.90 47 0.90 0.89 67 0.86 0.84 87 0.91 0.90 107 0.82 0.77

8 0.83 0.82 28 0.86 0.90 48 0.83 0.82 68 0.82 0.73 88 0.89 0.88 108 0.91 0.92

9 0.90 0.91 29 0.84 0.88 49 0.84 0.83 69 0.84 0.80 89 0.88 0.96 109 0.93 0.93

10 0.86 0.91 30 0.83 0.83 50 0.85 0.84 70 0.88 0.85 90 0.82 0.78 110 0.85 0.86

11 0.88 0.87 31 0.84 0.83 51 0.88 0.88 71 0.86 0.81 91 0.92 0.94 111 0.86 0.91

12 0.87 0.84 32 0.87 0.87 52 0.86 0.86 72 0.84 0.85 92 0.85 0.84 112 0.88 0.90

13 0.89 0.86 33 0.85 0.85 53 0.87 0.87 73 0.82 0.82 93 0.88 0.88 113 0.85 0.88

14 0.85 0.85 34 0.81 0.85 54 0.86 0.85 74 0.84 0.87 94 0.93 0.91 114 0.85 0.83

15 0.89 0.90 35 0.81 0.79 55 0.86 0.83 75 0.86 0.88 95 0.81 0.88 115 0.88 0.85

16 0.86 0.89 36 0.86 0.84 56 0.93 0.90 76 0.85 0.85 96 0.73 0.90 116 0.84 0.85

17 0.91 0.87 37 0.86 0.86 57 0.81 0.83 77 0.88 0.87 97 0.85 0.90 117 0.85 0.82

18 0.91 0.91 38 0.88 0.85 58 0.89 0.92 78 0.88 0.88 98 0.86 0.90 118 0.89 0.86

19 0.84 0.82 39 0.75 0.80 59 0.80 0.82 79 0.82 0.84 99 0.87 0.88 119 0.86 0.85

20 0.85 0.82 40 0.83 0.82 60 0.82 0.83 80 0.85 0.81 100 0.85 0.84

From Table 4, it can be seen that the model can estimate on average between 10 and
20% of the variance of the daily precipitation at each weather station.At the same time, the
importance of each independent variable used in the model was tested for each weather
station, and this revealed that both atmospheric pressure and relative humidity have a
weight, while wind direction does not seem to influence precipitation(Table 5).In this case,
the influence of each variable on precipitation was calculated through the independent
variable importance, which is a measure of how much the value predicted by the model
changes for different values of the independent variable(Table 5).

The most important variable in most cases is atmospheric pressure, followed by
relative humidity, with wind being of little importance, although there are some weather
stations for which wind is a significant variable.
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Table 5. Independent variable importance for all the weather stations; Id = code to identify the
weather station; V. = independent variable (p, atmospheric pressure; h, relative humidity; w, wind
direction); Imp = value of the independent variable importance.

Id V. Imp Id V. Imp Id V. Imp Id V. Imp Id V. Imp Id V. Imp Id V. Imp Id V. Imp

1
p 0.64

16
p 0.46

31
p 0.53

46
p 0.29

61
p 0.33 p 0.58 p 0.84 p 0.76

h 0.34 h 0.44 h 0.44 h 0.62 h 0.61 76 h 0.34 91 h 0.10 106 h 0.15
w 0.02 w 0.10 w 0.03 w 0.09 w 0.06 w 0.08 w 0.06 w 0.09

2
p 0.55

17
p 0.49

32
p 0.49

47
p 0.77

62
p 0.52 p 0.66 p 0.37 p 0.06

h 0.37 h 0.43 h 0.47 h 0.04 h 0.35 77 h 0.18 92 h 0.57 107 h 0.85
w 0.08 w 0.08 w 0.04 w 0.19 w 0.13 w 0.16 w 0.06 w 0.09

3
p 0.42

18
p 0.67

33
p 0.79

48
p 0.61

63
p 0.16 p 0.74 p 0.51 p 0.60

h 0.49 h 0.26 h 0.11 h 0.32 h 0.59 78 h 0.13 93 h 0.45 108 h 0.38
w 0.09 w 0.07 w 0.10 w 0.07 w 0.25 w 0.13 w 0.04 w 0.02

4
p 0.59

19
p 0.53

34
p 0.55

49
p 0.24

64
p 0.62 p 0.49 p 0.77 p 0.97

h 0.16 h 0.45 h 0.39 h 0.72 h 0.28 79 h 0.48 94 h 0.05 109 h 0.02
w 0.25 w 0.02 w 0.06 w 0.04 w 0.10 w 0.03 w 0.18 w 0.01

5
p 0.46

20
p 0.80

35
p 0.42

50
p 0.53

65
p 0.61 p 0.51 p 0.64 p 0.46

h 0.42 h 0.13 h 0.53 h 0.44 h 0.32 80 h 0.38 95 h 0.32 110 h 0.51
w 0.12 w 0.07 w 0.05 w 0.03 w 0.07 w 0.11 w 0.04 w 0.03

6
p 0.48

21
p 0.55

36
p 0.65

51
p 0.60

66
p 0.44 p 0.48 p 0.62 p 0.87

h 0.43 h 0.39 h 0.32 h 0.37 h 0.41 81 h 0.47 96 h 0.36 111 h 0.05
w 0.09 w 0.06 w 0.03 w 0.03 w 0.15 w 0.05 w 0.02 w 0.08

7
p 0.68

22
p 0.80

37
p 0.49

52
p 0.61

67
p 0.43 p 0.72 p 0.48 p 0.80

h 0.18 h 0.06 h 0.46 h 0.37 h 0.51 82 h 0.23 97 h 0.47 112 h 0.02
w 0.14 w 0.14 w 0.05 w 0.02 w 0.06 w 0.05 w 0.05 w 0.18

8
p 0.53

23
p 0.82

38
p 0.91

53
p 0.59

68
p 0.28 p 0.46 p 0.66 p 0.50

h 0.39 h 0.08 h 0.03 h 0.39 h 0.68 83 h 0.51 98 h 0.34 113 h 0.46
w 0.08 w 0.10 w 0.06 w 0.02 w 0.04 w 0.03 w 0.00 w 0.04

9
p 0.69

24
p 0.49

39
p 0.52

54
p 0.45

69
p 0.74 p 0.41 p 0.82 p 0.51

h 0.24 h 0.49 h 0.36 h 0.44 h 0.08 84 h 0.57 99 h 0.03 114 h 0.41
w 0.07 w 0.02 w 0.12 w 0.11 w 0.18 w 0.02 w 0.15 w 0.08

10
p 0.52

25
p 0.53

40
p 0.56

55
p 0.42

70
p 0.93 p 0.52 p 0.87 p 0.61

h 0.36 h 0.42 h 0.44 h 0.52 h 0.05 85 h 0.48 100 h 0.10 115 h 0.38
w 0.12 w 0.05 w 0.00 w 0.06 w 0.02 w 0.00 w 0.03 w 0.01

11
p 0.68

26
p 0.71

41
p 0.95

56
p 0.71

71
p 0.60 p 0.15 p 0.92 p 0.52

h 0.20 h 0.22 h 0.02 h 0.19 h 0.35 86 h 0.84 101 h 0.04 116 h 0.42
w 0.12 w 0.07 w 0.03 w 0.10 w 0.05 w 0.01 w 0.04 w 0.06

12
p 0.47

27
p 0.51

42
p 0.55

57
p 0.34

72
p 0.47 p 0.59 p 0.58 p 0.61

h 0.51 h 0.37 h 0.38 h 0.64 h 0.50 87 h 0.16 102 h 0.38 117 h 0.34
w 0.02 w 0.12 w 0.07 w 0.02 w 0.03 w 0.25 w 0.04 w 0.05

13
p 0.79

28
p 0.81

43
p 0.66

58
p 0.48

73
p 0.47 p 0.73 p 0.44 p 0.41

h 0.18 h 0.11 h 0.32 h 0.51 h 0.44 88 h 0.21 103 h 0.41 118 h 0.48
w 0.03 w 0.08 w 0.02 w 0.01 w 0.09 w 0.06 w 0.15 w 0.11

14
p 0.48

29
p 0.55

44
p 0.82

59
p 0.50

74
p 0.47 p 0.55 p 0.45 p 0.85

h 0.50 h 0.37 h 0.07 h 0.33 h 0.43 89 h 0.38 104 h 0.15 119 h 0.14
w 0.02 w 0.08 w 0.11 w 0.17 w 0.10 w 0.07 w 0.40 w 0.01

15
p 0.92

30
p 0.42

45
p 0.35

60
p 0.42

75
p 0.50 p 0.38 p 0.63 p

h 0.03 h 0.35 h 0.62 h 0.53 h 0.43 90 h 0.54 105 h 0.23 120 h
w 0.05 w 0.23 w 0.03 w 0.05 w 0.07 w 0.08 w 0.14 w
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3.2. Binary Forecast Model of Rainy and Non-Rainy Days Based on the MLP Technique

Observing the significance ofthe correlation between relative humidity, atmospheric
pressure and precipitation, led us to draw up another model with the aim this time of
predicting rainy and non-rainy days (Table 6).

Table 6. Error computation based on the percentage of correctly predicted rainy or non-rainy days,
testing value in percentage (test), for each weather station identified by the id code (Id).

Id test Id test Id test Id test Id test Id test Id test Id test

1 81.2 16 77.6 31 79.6 46 80.2 61 77.0 76 78.9 91 78.2 106 76.6

2 76.8 17 77.6 32 83.1 47 77.6 62 76.9 77 78.7 92 75.9 107 79.0

3 78.1 18 81.2 33 76.7 48 76.9 63 76.4 78 76.3 93 74.4 108 79.3

4 75.3 19 81.2 34 80.6 49 75.0 64 79.1 79 77.2 94 79.3 109 78.8

5 83.0 20 80.3 35 76.9 50 83.7 65 82.2 80 80.1 95 81.4 110 78.6

6 81.7 21 77.0 36 76.9 51 82.3 66 78.8 81 81.3 96 81.7 111 79.3

7 76.5 22 76.7 37 75.4 52 78.8 67 73.1 82 80.2 97 76.9 112 75.9

8 83.0 23 81.3 38 81.0 53 82.4 68 82.4 83 76.2 98 77.6 113 81.5

9 82.8 24 78.2 39 82.4 54 81.4 69 82.1 84 79.5 99 79.2 114 81.0

10 78.1 25 80.2 40 77.1 55 78.9 70 78.9 85 78.8 100 79.9 115 77.8

11 75.9 26 83.3 41 76.7 56 78.8 71 80.7 86 75.9 101 81.7 116 82.6

12 78.8 27 77.7 42 83.9 57 82.2 72 79.8 87 76.8 102 82.2 117 81.4

13 84.1 28 79.0 43 82.6 58 76.3 73 82.6 88 77.2 103 80.9 118 77.3

14 79.4 29 80.3 44 78.0 59 82.7 74 80.8 89 83.1 104 75.6 119 79.1

15 77.8 30 81.5 45 81.5 60 73.5 75 81.8 90 77.0 105 81.2 120

In this case, the model developed with the MLP turned out to be much better when
it does not have to assess the extent of rainfall but only discriminates between rainy and
non-rainy days. The hyperbolic tangent was chosen as the hidden layer activation function
and the softmax as the output layer activation function. In fact, the correctness of the model
in the random samples chosen as tests for the model itself led to the model being considered
correct, on average, in 79.7% of the cases for the training part of the data and 80% for the
testing part of the data. The sensitivity and specificity of the test arealso reported in order
to understand the actual validity of the model and how accurately it can reconstruct rainy
and non-rainy days (Table 7).

Table 7. Sensitivity and specificity of the model, in the testing part, amounting to 30% of the total
data. True Positive days with rain correctly predicted by the model; True Negative days without
rain correctly predicted by the model; False Negative days without rain incorrectly predicted; False
Positive days with rain incorrectly predicted.

Cases Cases

True Positive (rain) 17,535 True Negative (no rain) 86,811

False Negative 9570 False Positive 16,574

Sensitivity 65% Specificity 84%

For further confirmation, all observations were also tested simultaneously; however,
this did not improve the model, which gave almost exactly the same results with a predic-
tion accuracy of 80.1%.
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For the purpose of completeness, here is the network diagram showing how wind
direction has been treated as a categorical variable, while atmospheric pressure and relative
humidity as numerical variables (Figure 5).
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4. Discussion

This research had the absolutely innovative aim of using other climate variables as
covariates to predict daily precipitation. In particular, there are many examples in the liter-
ature of multivariate analyses in which the independent variables are precipitation-related
environmental variables spatialised in a GIS environment [17,25,26]. In contrast, there are
no examples exploring the correlation between precipitation and other climatic variables,
especially atmospheric pressure in the literature is never considered for this type of analysis,
but rather is often correlated with teleconnective indices [27]. However, a good significance
was observed in the correlation between daily precipitation and atmospheric pressure, so
this was on average the most important variable for the model in the analysis.Regarding
the prevailing wind direction, in some cases, it was used as a well-correlated variable for
precipitation prediction [28,29], exactly the opposite of what was found in this analysis,
where wind direction was observed to be of marginal importance compared to the other
variables used.Finally, relative humidity is most often part of analyses that combine climate
and pollution [30], although in this case, it shows a good correlation for precipitation pre-
diction.From the point of view of model architecture, MLP-type artificial neural networks
have been increasingly used for predictive purposes over the past 20 years, and they have
also found quite interesting applications in rainfall forecasting [31]. Normally, however,
predictive climate analyses of this type analyse monthly scales, whereas in this case the
daily scale was evaluated. There have also been analyses that seem to be able to predict
rainfall, again using machine learning techniques, but with one major difference, that
these analyses were performed on arid climate zones that, therefore, do not possess the
high variability of rainfall present in the pilot area that can be defined as a humid climate.
This has obvious repercussions on the error of the model and it follows that it cannot be
considered more correct if it is not applied to the same climate zone [21]. In the case of
the present research, the input parameters were represented by threeclimate variables.
The result of the quantitative analysis on the one hand made it clear that the threechosen
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variables are not sufficient to be able to indicate responsive precipitation values; however,
they do allow us to discriminate those that could be exported into a new model by making
it more refined.In particular, atmospheric pressure, relative humidity and prevailing wind
direction can explain 10 to 20 percent of the variance, with a smaller role for the wind
variable. On the other hand, a good model fit emerged with regard to the possibility of rain
during the day, in fact, the correctness of the forecast reaches about 80 percent, which is
certainly significant.

5. Conclusions

Quantitative prediction of daily precipitation is certainly not an easy subject to solve,
and variables, such as atmospheric pressure, relative humidity and prevailing wind direc-
tion alone are not sufficient to guarantee a good model response. However, the relationships
found, make it possible to think of developments through the addition of other variables
that may have even greater weight. As far as the prediction of the possibility of daily
precipitation is concerned, then in that case they show that they can result in a rather
high-performance model.A final consideration must be made regarding the applicability of
the relationships obtained, since having observed that a much larger number of samples
does not improve the model, it is evident that the relationships between precipitation and
atmospheric pressure or relative humidity are extremely local, so much so that not even in
such a close and almost homogeneous environment do they lead to an improvement in the
performance of the model. Therefore, a model, such as this must always be calibrated area
by area and cannot be subject to extensive generalisations.
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