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Evaluating gene by environment (G × E) interaction under an additive risk model (i.e., additive interaction) has
gained wider attention. Recently, statistical tests have been proposed for detecting additive interaction, utilizing
an assumption on gene-environment (G-E) independence to boost power, that do not rely on restrictive genetic
models such as dominant or recessive models. However, a major limitation of these methods is a sharp increase
in type I error when this assumption is violated. Our goal was to develop a robust test for additive G × E interaction
under the trend effect of genotype, applying an empirical Bayes-type shrinkage estimator of the relative excess risk
due to interaction.The proposed method uses a set of constraints to impose the trend effect of genotype and builds
an estimator that data-adaptively shrinks an estimator of relative excess risk due to interaction obtained under a
general model for G-E dependence using a retrospective likelihood framework. Numerical study under varying
levels of departures from G-E independence shows that the proposed method is robust against the violation of
the independence assumption while providing an adequate balance between bias and efficiency compared with
existing methods. We applied the proposed method to the genetic data of Alzheimer disease and lung cancer.

additive risk model; Alzheimer disease; case-control design; empirical Bayes; gene–APOE-ε4 interaction;
gene-environment interaction; gene-smoking interaction; GWAS

Abbreviations: APOE, apolipoprotein E; CML, constrained maximum likelihood; G-E, gene-environment; GWAS, genome-wide
association study; LOAD, late-onset Alzheimer’s disease; MAF, minor allele frequency; MOR, marginal odds ratio; RERI, relative
excess risk due to interaction; SNP, single-nucleotide polymorphism; UML, unconstrained maximum likelihood.

Understanding the interaction between genes and envi-
ronmental factors is important; genes do not function in
isolation but rather in complex pathways influenced by envi-
ronmental factors. There has been a long-standing contro-
versy regarding the definition of interaction and the selection
of proper scales for measuring the presence of interactions
(1–3). Additive interaction measures the departure from a
risk model that assumes that gene and environment act
additively on the risk of the disease itself. Despite the popu-
larity of the interaction tests under multiplicative risk models
(that assume the multiplicative effects of gene and environ-
ment) via logistic regression, additive interaction has gained
wider attention recently (4–10). This is partly due to its
direct relevance for public health decision-making—such as

whether it is beneficial to target individuals for intervention
for an exposure based on genetic susceptibility—for which
assessing absolute risk differences versus relative risks is
more relevant (1, 3, 11, 12). In addition, additive interactions
might shed light on biologic mechanisms when motivated
by specific biologic hypotheses (12), although elucidating
biological interactions using an additive or multiplicative
model cannot be easily done mechanically (12, 13). Further,
utilizing an assumption of the independence between gene
and environment in the underlying population has been
shown to yield a more precise estimate of G × E (gene-
environment) interaction (5, 7, 8, 10, 14–17) for evaluating
both additive (5, 7, 8, 10) and multiplicative interactions
(14–17) in case-control studies.
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Several methods have been proposed for evaluating addi-
tive G × E or gene-gene (G × G) interaction in the recent
literature (5, 7, 9, 18–21). Specifically, Han et al. (5) devel-
oped a likelihood ratio test for additive interaction using
a set of constraints for the joint effect of gene and envi-
ronment under an additive risk model; this method utilizes
the G-E independence assumption based on a retrospective
likelihood framework (17) to boost power. However, this
approach is based on strong assumptions of the underlying
genetic models such as dominant or recessive effects that
are known to be less robust when the true genetic model
is unknown. While the use of a general genetic model with
more than 2 categories of genotype has also been proposed
for testing additive interaction, this approach has been shown
to reduce power because of increased degrees of freedom (5).
A recent study (9) has extended the likelihood ratio test from
Han et al. by incorporating the trend effect (i.e., the linear
effect of the genotype) of genotype, which is more robust
across different underlying genetic models. However, the
main limitation of this approach is the reliance on the strong
assumption of G-E or G-G independence, the violation of
which can lead to large type I error (22). In particular,
the assumption of G-G independence is often inappropriate
when interaction tests are applied to a group of single-
nucleotide polymorphisms (SNPs) that are in high linkage
disequilibrium. While more robust estimators of interaction
have previously been proposed for multiplicative models
(16) or for dominant/recessive effects of genotype under
additive risk models (7) to address this issue, no such effort
has been made for evaluating additive interaction under the
trend effect of genotype.

In this work, we have proposed a robust statistical test for
additive G × E or G × G interaction under the trend effect
of genotype, applying an empirical Bayes–type shrinkage
estimator to relax the strong independence assumption. We
conducted a simulation study to evaluate the overall per-
formance of the proposed method by estimating type I
error, bias, and mean squared error under varying levels
of departures from G-E independence. We applied the pro-
posed method to analyze gene–apolipoprotein E (APOE)-ε4
interaction in data on late-onset Alzheimer disease (LOAD)
and to examine gene-smoking interaction in lung cancer
data. We have implemented our method in the R (R Foun-
dation for Statistical Computing, Vienna, Austria) pack-
age CGEN (https://bioconductor.org/packages/release/bioc/
html/CGEN.html).

METHODS

Additive risk model, additive interaction, and null
hypothesis

Suppose, for subject i, Gi is a genetic risk factor (G) denot-
ing the number of a minor allele of a bi-allelic SNP (Gi = 0,
1, or 2); Ei is a binary variable for an environmental risk
factor (E), with Ei = 0 or 1 based on the presence or absence
of the factor; xi is the matrix of the covariates that can be
included in a model; and Di is a binary variable with Di = 0 or
1 denoting the presence or absence of a disease, respectively.

Under a general genetic model, without assuming the trend
effect of genotype for now, the genetic factor variable Gi can
be treated as a categorical variable and coded using a set of
2 dummy variables, G1i and G2i, that indicate whether the
subject i has 1 copy (G1i = 1) or 2 copies (G2i = 1) of the
minor allele. An additive risk model assumes that Gi and Ei
act additively on the disease risk itself, hence without any
link function (i.e., identity link function):

P(Di = 1 | Gi, Ei, xi) = b0+bG1G1i+bG2G2i+bEEi+xT
i bx.

A departure from the above additive risk model (i.e., additive
interaction) can be explicitly modeled using the following
extended model:

P (Di = 1 | Gi, Ei, xi) = b0 + bG1G1i + bG2G2i + bEEi

+ bG1EG1iEi + bG2EG2iEi + xT
i bx, (1)

and the interaction can be tested using the null hypothesis
of H0 : bG1E = bG2E = 0. Although the parameters of the
above model can be estimated using ordinary least squares,
it can lead to predicted probabilities greater than 1 or less
than 0, and it is difficult to account for ascertainment (e.g.,
case-control sampling). The usual solution is to reformulate
the testing problem using the saturated logit model under
a rare-disease assumption (5, 9). That is, suppose, Rge =
P(D = 1 | G = g, E = e) denotes the disease risk for
g = 0, 1, 2 and e = 0, 1 for any subject. Table 1 shows the
disease risk for each combination of gene and environment,
(g, e). The null hypothesis of no additive interaction, H0 :
bG1E = bG2E = 0, is equivalent to H0 : R10 − R00 =
R11 − R01 and R20 − R00 = R21 − R01, which implies
that the change in disease risk for G = 1 versus G = 0 is
the same across all levels of environment, and a similar
relation holds for the risk change for G = 2 versus G = 1.
By dividing both sides of the equations by the baseline risk,
R00, we obtain the following null hypothesis equations (1a)
written in terms of relative risks, RRge = Rge/R00; this null
hypothesis is based on the definition of relative excess risk
due to interaction (RERI) (23) that quantifies the magnitude
of additive interaction:

H0 :
{RERIG=1 = RR11 − RR10 − RR01 + 1 = 0

RERIG=2 = RR21 − RR20 − RR01 + 1 = 0. (1a)

It is notable that one major advantage of RERI (versus risk
differences themselves) is that it can be estimated using
case-control data. That is, under a rare-disease assumption,
each relative risk, RRge, in the above null hypothesis can be
approximated by an odds ratio, ORge:

H0 :

⎧⎪⎪⎨
⎪⎪⎩
βG1E = log

{
exp

(
βG1

)+exp(βE)−1

exp
(
βG1+βE

)
}
(⇐⇒ RERIG=1 =0)

βG2E = log

{
exp

(
βG2

)+exp(βE)−1

exp
(
βG2+βE

)
}
(⇐⇒ RERIG=2 = 0) ,

(2a)
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Table 1. Disease Risk for Each Combination of Gene and Environment Using the Additive Risk Model in
Equation 1

E = 0 E = 1

G = 0 b0 + xT
i bx(= R00) b0 + bE + xT

i bx(= R01)

G = 1 b0 + bG1 + xT
i bx(= R10) b0 + bG1 + bE + bG1E + xT

i bx(= R11)

G = 2 b0 + bG2 + xT
i bx(= R20) b0 + bG2 + bE + bG2E + xT

i bx(= R21)

Abbreviations: E, environmental factor; G, genetic factor; R, risk.

which is derived from the following saturated logit model
(see Web Table 1, available at https://doi.org/10.1093/aje/
kwab124):

logit{P (Di = 1|Gi, Ei, xi)} = β0 + βG1G1i + βG2G2i

+ βEEi + βG1EG1iEi + βG2EG2iEi + βT
i bx. (2)

Incorporation of the trend effect of genotype

The derivation and incorporation of the trend effect of
genotype (i.e., the linear effect of G) in the additive risk
model has been introduced previously (9). We note that the
“usual” additive coding of genotype for the trend effect in
a multiplicative risk model (i.e., coding G as 0, 1, or 2
depending on the number of a minor allele and treating G as
a numeric variable) is not considered here due to the identity
link function (versus logit function) used in the additive risk
model. Based on the previous results (9), the trend effect of
genotype can be expressed as:

R20 − R10 = R10 − R00 and R21 − R11 = R11 − R01.

This implies that for each fixed value of E, the increment in
disease risk for G = 1 versus G = 0 is equal to the increment
for G = 2 versus G = 1. By dividing both sides of the
above equations by R00, we obtain the following trend effect
relations expressed in relative risks:

{ RR20 − 2RR10 + 1 = 0
RR21 − 2RR11 + RR01 = 0, (3a)

These equations can be written in terms of the odds ratios in
the saturated logit model in equation 2 (Web Table 1):

⎧⎨
⎩

βG2 = log
{
2 exp

(
βG1

) − 1
}

βG2E = log

{
2 exp

(
βG1+βG1E

)−1

exp
(
βG2

)
}

,
(3b)

It can be shown that the second equations that involve βG2E
in equations 2a and 3b are identical based on simple algebra.
Therefore, the null hypothesis for testing additive interaction
under the trend effect of genotype in equation 2a reduces to

testing for one RERI parameter:

H0 :βG1E = log

{
exp

(
βG1

)+exp(βE)−1

exp
(
βG1+βE

)
}

(⇐⇒ RERIG=1 = 0),

(3c)
To estimate this RERI, we use a maximum likelihood under
the trend effect constraints in equation 3b to obtain the
estimates for the regression parameters in the logit model in
the equation. We use a standard prospective likelihood, L =∏
i

Pr(Di = di|Gi, Ei) = ∏
i
{Ri

di(1 − Ri)
1−di}, di = 0, 1,

that does not rely on G-E independence. The RERI can be
estimated as follows:

ˆRERIUML,tr = eβ̂G1,UML,tr+β̂E,UML,tr+β̂G1E,UML,tr − eβ̂G1,UML,tr

− eβ̂E,UML,tr + 1,

where the parameter estimates are the trend-constrained
maximum likelihood estimates from the prospective like-
lihood (equivalent to the retrospective likelihood without
assuming G-E interaction introduced in the next section).

Retrospective likelihood-based inference for G-E
independence

To incorporate G-E independence, we employ a retro-
spective likelihood framework that uses the profile likeli-
hood–based maximum likelihood for estimation (17). The
retrospective profile likelihood is given by

P(G, E, X|D) = P(D|G, E, X)P(G|E, X)P(E, X)∑
G,E,x P(D|G, E, X)P(G|E, X)P(E, X)

,

where in the right-hand-side numerator, the first component
shows the disease risk given G, E, and X, which can be
obtained from equation 2; the second component is given by

logit(P (GE, X))

=
{
η0 + ηT

1 X,
η0 + ηT

1 X + θE,
with G − E independence

without G − E independence
(4)
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and the third component P(E, X) is left completely non-
parametric. To impose G-E independence, we use the first
expression in equation 4—imposing the constraint of θ = 0—
which we define as the constrained maximum likelihood
method (CML) versus the unconstrained maximum likeli-
hood method (UML) in the second expression in equation
4, which does not use the independence assumption; UML
is equivalent to estimating the model parameters under a
prospective likelihood (15, 24). To integrate the trend effect
of genotype into the retrospective likelihood framework, we
estimate the parameters of the logit model (i.e., β̂CML,tr)
using the profile likelihood implemented in the CGEN pack-
age under the constraints shown in equation 3b. Then RERI
under G-E independence is estimated as follows:

̂RERICML,tr = eβ̂G1,CML,tr+β̂E,CML,tr+β̂G1E,CML,tr − eβ̂G1,CML,tr

− eβ̂E,CML,tr + 1.

The variances of ̂RERICML,tr and ̂RERIUML,tr,
Var(̂RERICML,tr) and Var( ˆRERIUML,tr) are estimated using
the delta method (25).

Proposed empirical Bayes-type estimator of RERI

We propose a robust empirical Bayes–type estimator of
RERI for testing additive interaction under the trend effect
of genotype as follows:

̂RERIEB,tr

=
(
̂RERIUML,tr − ̂RERICML,tr

)2

(
̂RERIUML,tr − ̂RERICML,tr

)2 + Var
(
̂RERIUML,tr

)
̂RERIUML,tr

+ Var
(
̂RERIUML,tr

)
(
̂RERIUML,tr − ̂RERICML,tr

)2 + Var
(
̂RERIUML,tr

)
̂RERICML,tr = f (a, b, c) , (5)

where a = ̂RERIUML,tr, b = ̂RERICML,tr and c =
Var

(
̂RERIUML,tr

)
.

The intuition behind the above estimator is that if G-E
independence holds, the CML and UML estimators consis-
tently estimate the same true RERI parameter, and hence
the difference between the 2 estimates (i.e., (̂RERIUML,tr −
̂RERICML,tr)) becomes small relative to Var(̂RERIUML,tr).
Therefore, ̂RERIEB,tr will move towards ̂RERICML,tr, and
vice versa. Equation 5 can also be expressed as a shrinkage
estimator (7, 15) as follows:

̂RERIEB,tr = ̂RERIUML,tr + Ktr
(
̂RERICML,tr − ̂RERIUML,tr

)
,

(5a)

where Ktr is the shrinkage factor that determines the extent
by which the UML estimator is shrunk towards the CML
estimator and is given by Ktr = Vtr(Vtr + δtrδ

T
tr), where δtr =

̂RERIUML,tr − ̂RERICML,tr, and Vtr = Var(̂RERIUML,tr).
We derive the variance of the proposed empirical Bayes
estimator as:

Var
(
̂RERIEB,tr

)
= AT

[
Var

(
̂RERIUML,tr

)
Cov

(
̂RERIUML,tr, ̂RERICML,tr

) Cov
(
̂RERIUML,tr, ̂RERICML,tr

)
Var

(
̂RERICML,tr

)
]

A,

where

AT =
[

∂f

∂a

∂f

∂b

]

and

Cov
(
̂RERIUML,tr, ̂RERICML,tr

) =
[
∂ ̂RERIUML,tr

∂ β̂UML,tr

]T

Cov
(
β̂UML,tr, β̂CML,tr

) [
∂ ̂RERICML,tr

∂ β̂CML,tr

]
.

The covariance term Cov(β̂UML,tr, β̂CML,tr) is computed
using the asymptotic covariance matrix

Cov

(
β̂UML,tr

β̂CML,tr

)
=

[ (
IUML

)−1
Var

(∑
iU

UML
i

)(
IUML

)−1T(
ICML

)−1
Cov

(∑
iU

CML
i ,

∑
iU

UML
i

)(
IUML

)−1T

(
IUML

)−1
Cov

(∑
iU

UML
i ,

∑
iU

CML
i

)(
ICML

)−1T(
ICML

)−1
Var

(∑
iU

CML
i

)(
ICML

)−1T

]
,

where I denotes the information matrix, and Ui denotes indi-
vidual score functions. A detailed derivation of Var(̂RERIEB,tr)
is shown in the Web Appendix 1. The resulting Wald test for
the proposed method is as follows:

ZEB,tr = ̂RERIEB,tr/

√
Var

(
̂RERIEB,tr

) ∼ N
(
0, 1

)
.

Simulation study

We conducted simulation studies to assess the perfor-
mance of the proposed empirical Bayes–type estimator
under the trend effect of genotype (i.e., empirical Bayes–
trend test), comparing with existing methods. In the first
set of simulations, we evaluated the type I error, bias, and
mean squared error of the proposed test under varying
magnitudes of the departure from the G-E independence
assumption, comparing with 2 existing methods—the ad-
ditive interaction test under the trend effect of genotype
using the retrospective likelihood (i.e., CML-trend test)
that relies on G-E independence and the standard additive
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interaction test under the trend effect of genotype without
the independence assumption (i.e., UML-trend test). In the
second set of simulations, we assessed the power of the
proposed empirical Bayes–trend test versus the existing
methods under varying magnitudes of additive interaction
measured as RERI, assuming G-E independence. For each
simulation, the minor allele frequency (MAF) of the genetic
factor G was varied as pg = 0.3, 0.1, 0.05, with the following
genotype probability for G = 0, 1, and 2 respectively:
(1 − Pg)

2, 2Pg(1 − Pg), and Pg
2. The prevalence of the

environmental factor E was assumed to be pe = 0.2. We
fixed the marginal odds ratio (MOR) for G (MOR(G))—
that is, the disease relative risk for G = 1 (versus G = 0) if
E is ignored in the analysis—at 1.1, reflecting the modest
strength of association typically observed in genome-wide
association studies (GWAS). We varied the MOR for E
(MOR(E)) from 1.5 to 2.5, 3, and 3.5. The expressions
for MOR are given in Web Appendix 2. For each type I
error simulation, we generated 10,000 cases and 10,000
controls, whereas for power simulation we considered 5,000
cases and 5,000 controls. We additionally considered an
alternative case-control ratio of 3:7 (i.e., 6,000 cases and
14,000 controls) for type I error simulation to examine
whether a different ratio might have an impact on the
relative performance of the methods. We assumed a disease
prevalence of 0.01 to reflect the rare-disease assumption.
The saturated logit model shown in equation 2 (without
the covariate terms, βT

i bx) was used to simulate data. The
parameter values for β0, βG1 , βG2 , βE, βG1E, and βG2E
in the logit model were chosen to meet the given values
of MOR(G), MOR(E), and RERI for each scenario (see
Web Table 2 for type 1 error, bias, and mean squared
error simulation, and Web Table 3 for power simulation).
For simulating the departure from G-E independence (i.e.,
varying degrees G-E dependence), we used the following
relation for modeling the correlation between gene and
environment among controls:

logit(P(E = 1)) = θ0 + θGEG,

with θ0 = log(0.427) and the value of θGE ranging from
± log(1.01) to ± log(2) (see Web Table 4), considering
both positive and negative departures from G-E indepen-
dence that were chosen to reflect the empirical findings for
exposure-SNP associations (26). For each set of simulations
under a given value for θGE, 50,000 replicates were gener-
ated for type I error evaluation. Type I error was estimated
as the proportion of the replicates that led to a P value higher
than a given significance level α. For power simulation
without the violation of G-E independence, RERI values
of 0.8, 1, 1.2 were used to vary the magnitude of additive
interaction using 1,000 replicates.

Late-onset Alzheimer disease data

We applied the proposed empirical Bayes–trend test to
examine interactions between SNPs and the ε4 allele of the
APOE gene (i.e., APOE-ε4) using GWAS data for LOAD. In
particular, we were interested in evaluating the performance

of the proposed method when G-E independence (or G-G
independence for SNP × APOE-ε4 interaction analysis) is
known to be violated. The APOE gene is located at chromo-
some 19, and APOE-ε4 has been shown to be strongly asso-
ciated with LOAD risk (27). The SNPs located in the APOE
gene and their neighboring SNPs in chromosome 19 are in
high linkage disequilibrium (i.e., correlated) with APOE-ε4,
hence violating the G-G independence assumption. Given
that the goal of this analysis is to assess the performance
of the proposed method under the violation of G-G inde-
pendence, we focused on a total of 59,661 SNPs belonging
to chromosome 19 that are present in the GWAS data. This
data contained the genotypes of ∼5 million SNPs for 8,861
cases and 7,613 controls who are of northwestern European
ancestry, collected from 18 different studies, and were made
available by the National Institute on Aging Genetics of
Alzheimer’s Disease Data Storage Site and similar LOAD
repositories (see Web Appendix 3 and Web Tables 5–7).
The APOE-ε4 variable was coded as 1 for mutation carriers
versus 0 for noncarriers, as commonly used (28, 29). The
model was adjusted for age, sex, 3 principal components for
population stratification, and a study variable. For the CML-
and empirical Bayes–trend tests, the study variable was used
as a stratification variable. In addition to the chromosome
19 analysis, we also conducted the analysis of GWAS data
across all chromosomes to compare the performance of the
tests in terms of type I error (see Web Appendix 3).

Lung cancer data

We also applied the proposed method to investigate gene
× smoking interactions using GWAS data for lung cancer.
The lung cancer data set contains data for 5,739 cases
and 5,848 controls from 4 studies—the Environment and
Genetics in Lung Cancer Etiology study (30), the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention Study (31),
the Prostate, Lung, Colorectal, and Ovarian Cancer Screen-
ing Trial (32), and the Cancer Prevention Study II Nutrition
Cohort (33). This data includes 15 SNPs that were identified
from previous GWAS (P < 5 × 10−8), conducted in either
European (34–37) or Asian populations (32–34) listed in
the National Human Genome Research Institute GWAS
catalog (https://www.ebi.ac.uk/gwas/) (see Web Table 8 for
information on these SNPs) (38). The smoking variable was
coded as 1 for ever-smokers and 0 for never-smokers. We
adjusted for age, sex, and study variable, where the study
was used as a stratification variable for the retrospective
empirical Bayes analysis.

RESULTS

Simulation results

Figure 1 shows the results of type I error simulation under
varying degrees of departure from G-E independence (the x-
axis) and significance levels (different panels). As expected,
the CML-trend test (the dotted curves in Figure 1), assuming
G-E independence, shows substantially increased type I
error rates as the extent of the violation of the assumption in-
creases (i.e., the correlation between gene and environment
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Figure 1. Type I error simulation under varying departure from gene-environment (G-E) independence (θGE ,the x-axis) across different type
I error thresholds: A) α = 0.005; B) α = 0.001; C) α = 0.0005; D) α = 0.0001. The y-axis shows the log (to the base 10) of the ratio between
an observed type I error rate and α (i.e., log10(observed type I error/α)). Three additive interaction tests—unconstrained maximum likelihood
(UML)-trend, constrained maximum likelihood (CML)-trend, and empirical Bayes (EB)-trend tests—are applied to simulated data sets generated
under the null hypothesis (i.e., relative excess risk due to interaction = 0); 50,000 replicated data sets are simulated for 10,000 cases and 10,000
controls with minor allele frequency (MAF) = 0.3, marginal odds ratio (MOR)(G) = 1.1, MOR(E) = 1.5. The parameters used for this simulation are
presented in Web Table 2. The results of the simulation under different MAF (0.1,0.05), MOR(E) (2.5,3,3.5), and case-control ratio are shown in
Web Figure 1 (different MAF values), Web Figure 2 (different MOR(E) values), and Web Figure 3 (different case-control ratio).

increases in the underlying population). On the other hand,
the proposed empirical Bayes–trend test (the dashed curves
in Figure 1)—using a robust shrinkage estimator that takes
into account the uncertainty around G-E independence—
shows reduced type I error rates, which are close to the levels
obtained under the standard UML-trend test without assum-
ing G-E independence. The inflation of type I error using the
CML-trend test becomes more severe under a more strin-
gent significance threshold (Figure 1D, with α = 0.0001)
compared with those under larger thresholds (α = 0.0005,
0.001, and 0.005). Similar results are observed under the
alternative MAF values, MOR(E) values, and case-control
ratio (Web Figures 1–3).

Figure 2 shows the bias and mean squared error for the
3 methods (UML-trend, CML-trend and empirical Bayes–
trend tests) under varying levels of departure from G-E in-
dependence. As the magnitude of the departure increases,
the bias using the CML-trend test increases dramatically
compared with the empirical Bayes–trend test and the UML-
trend test. Similarly, the CML-trend test shows increased
mean squared error when the assumption is violated, whereas
the proposed empirical Bayes–trend method demonstrates
lower mean squared error that is close to the level of the
UML-trend test. Consistent results are observed under
the alternative MAF and MOR(E) values (Web Figures
4–6).
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Figure 2. Simulation for evaluating bias (A) and mean squared error (MSE) (B) of relative excess risk due to interaction (RERI) under varying
magnitude of gene-environment (G-E) dependence (θGE ,the x-axis) that includes the negative correlation and positive correlation. The simulated
data sets are generated under the null hypothesis (RERI = 0), and 50,000 replicated data sets were simulated for 10,000 cases and 10,000
controls with marginal odds ratio (MOR) = 0.3, marginal odds ratio (MOR)(G) = 1.1, MOR(E) = 1.5. The parameters used for this simulation are
presented in Web Table 2. The results of the simulation under different MAF (0.1,0.05) and MOR(E) (2.5,3,3.5) are shown in Web Figure 4 (differ-
ent MAFs for the given MOR(E) = 1.5), Web Figure 5 (different MOR(E) and MAF values for evaluating bias), and Web Figure 6 (different MOR(E)
and MAF values for evaluating MSE). EB, empirical Bayes; CML, constrained maximum likelihood; UML, unconstrained maximum likelihood.

Figure 3 shows the results of power simulations under the
assumption of G-E independence. As expected, the CML-
trend shows the largest power when this assumption is met,
and the proposed empirical Bayes–trend test shows a higher
power compared with the standard UML-trend but lower
than the CML-trend test. We observed similar results under
the alternative MAFs and MOR(E) values (Web Figure 7).

Analysis for SNP × APOE-ε4 interaction for LOAD

The results of SNP × APOE-ε4 interaction analysis for
LOAD are shown in Figure 4, applying the existing addi-
tive CML-trend test (Figure 4A) and the proposed additive
empirical Bayes–trend test (Figure 4B) on chromosome 19,
which harbors the APOE gene. As we expected, the result
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Figure 3. Power comparison of the 3 tests—unconstrained maximum likelihood (UML)-trend, constrained maximum likelihood (CML)-trend,
and empirical Bayes (EB)-trend tests (based on the α threshold of 1×10−8)—under varying magnitudes of additive interaction (relative excess risk
due to interaction, RERI) and varying marginal odds ratio (MOR)(E). A) MOR(E) = 1.5; B) MOR(E) = 2.5; C) MOR(E) = 3; D) MOR(E) = 3.5; 1,000
replicated data sets are simulated for 5,000 cases and 5,000 controls with marginal odds ratio (MOR) = 0.3, MOR(G) = 1.1. The parameters used
for this simulation are presented in Web Table 3. The results of the simulation under different MAF (0.1,0.05) values are shown in Web Figure 7.

based on the CML-trend test, assuming G-G independence,
shows a high peak of false-positive signals near the base-
pair positions between 45,048,120 and 45,868,038, where
the APOE is located; 349 of a total of 747 SNPs in this region
exceed the genome-wide significance level (P < 5 ×10−8)
using the CML-trend test. On the other hand, none of the
SNPs exceed the level using the proposed empirical Bayes
test, where the false positive signals disappear, demonstrat-
ing the robustness of the proposed method. The results under
the UML-trend are shown in Web Figure 8. The analysis
results using GWAS data across all chromosomes are pre-
sented in Web Figures 9 and 10. Overall, the results show

that the CML-trend test has substantial inflation in type I
error with a noticeable departure from the 45-degree line
in the quantile-quantile plot, whereas the empirical Bayes–
trend and UML-trend tests show reasonably well-controlled
type I error across the entire genome.

Analysis for SNP × smoking interaction for lung cancer
data analysis

The results for SNP × smoking interaction analysis, shown
in Table 2, demonstrate that 3 SNPs on 15q25.1, rs8034191
(empirical Bayes–trend test, P = 2.317×10−12), rs1051730

Am J Epidemiol. 2021;190(9):1948–1960
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Figure 4. Manhattan plots for single nucleotide polymorphism (SNP) × apolipoprotein E (APOE)-ε4 interaction analysis for chromosome 19,
which harbors the apolipoprotein E gene, using data from 8,861 cases and 7,613 controls of northwestern European ancestry, collected from
18 different studies. The y-axis shows −log10(P) values from testing SNP × APOE-ε4 interaction using: A) the additive constrained maximum
likelihood (CML)-trend test; B) the additive empirical Bayes (EB)-trend test (the proposed test). The result using the additive unconstrained
maximum likelihood (UML)-trend test is shown in Web Figure 8. The y-axis is truncated at 15. The dashed line corresponds to genome-wide
significance level of P = −log10(5 × 10−8).

(empirical Bayes–trend test, P = 7.158 × 10−13), and
rs8042374 (empirical Bayes–trend test, P = 6.393 × 10−9)
are statistically significant (P < 0.05/45 = 0.001 based on
the Bonferroni correction). We note that highly significant
additive interactions of rs8034191 (P = 2 × 10−10) and
rs1051730 (P = 1 × 10−9) with smoking intensity (number
of cigarettes smoked per day) were previously reported in
the literature (39). The RERI estimates, 95% confidence
intervals, and stratified odds ratios by smoking status for the
top 3 SNPs are shown in Web Table 9. The results of testing
for the G-E independence assumption using the controls
data (i.e., SNP-smoking association among controls) are
shown in Web Table 10, where none of the 15 SNPs show
a significant departure from the assumption. Other notable
SNPs are rs31489 (empirical Bayes–trend test, P = 0.006)
on 5p15.33 and rs3117582 (empirical Bayes–trend test, P =
0.007) on 6p21.33, which approached but did not reach the
statistical significance threshold.

DISCUSSION

We have proposed a robust test for evaluating additive
interaction under the trend effect of genotype using an
empirical Bayes-type shrinkage estimator. Simulation study
under varying levels of departures from G-E independence
shows that the proposed method is robust against the vio-
lation of G-E independence while providing an adequate
balance between bias and efficiency versus the existing
methods.

It is notable that the top 2 SNPs on 15q25.1 (rs1051730
and rs8034191) that showed significant interactions with
smoking intensity on lung cancer risk (39) are also reported
to be associated with nicotine dependence (26, 40–45),
thus potentially violating the SNP-smoking independence
assumption. However, our tests for assessing G-E indepen-
dence did not show any significant departures. This could be
due to the potential lack of power of the G-E association test
or to the difference in environmental exposures used across
different analyses (smoking initiation/status versus smoking
intensity).

To the best of our knowledge, the proposed method is
the first approach that evaluates additive G × E interaction
under the trend effect of genotype by combining the
traditional prospective likelihood-based and the retrospec-
tive likelihood-based estimators to relax the strict G-E
independence assumption. The application of the proposed
empirical Bayes–trend method to examine SNP × APOE-ε4
interaction for LOAD demonstrated a substantial improve-
ment in controlling false-positive results over the existing
CML-trend method when the assumption on the G-E (or G-
G) independence was violated. Finally, we implemented the
proposed method in the CGEN package (46), which enables
its wide application for identifying various interactions
among researchers in genetic epidemiology.

Our study is not without limitations. The proposed method
is based on a Wald test, which tends to have a lower power
compared with a likelihood ratio test, especially for alter-
natives sufficiently far from the null value or for additive

Am J Epidemiol. 2021;190(9):1948–1960
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risk models (47–49). In addition, the proposed method is not
directly applicable to analyzing imputed genotype data. This
is because the constraints for additive joint effects of gene
and environment and the trend effect of genotype are ascer-
tained in terms of a categorical genotype variable, which
cannot be defined for continuous imputed dosage scores.
We also note that the proposed empirical Bayes–trend test
can have modest bias in the presence of G-E dependence.
The UML-trend test is only guaranteed to provide unbiased
estimates in the presence of G-E correlation when there is
no exposure misclassification (50, 51). For evaluating gene-
smoking interaction for lung cancer analysis, we focused
on smoking initiation (ever vs. never). It is possible that
the analysis based on smoking intensity could be different
from the results presented in this study, especially in terms
of the relative performance of the empirical Bayes– versus
CML-trend tests. In our simulation study, we used a range of
MAF values between 5% and 30%, but we did not consider a
rare MAF below 5%. This was partly due to the heavy com-
putational burden involved in conducting large simulations
under rare MAF values; the proposed algorithm requires a
minimum of 5 samples for each combination of gene and
environment categories, and hence a much larger sample
size is needed to run simulations under rare MAF values
(e.g., 1%) than the sample size we considered (10,000 cases
and 10,000 controls). A further evaluation with potentially
smaller values of MAF would be also helpful, and that will
require more intense computations.

In conclusion, we developed an empirical Bayes-type
shrinkage estimator for testing G × E interaction under an
additive risk model that incorporates the trend effect of
genotype. Future research directions include an extension of
the proposed method to incorporate imputed genotype data
and a potential modification of the data-adaptive approach
using a likelihood ratio test to improve power.
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