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Chain-like structured superconductive materials (such as A2Cr3As3, with A = K, Rb, Cs) exhibit
the multiband electronic structure of single-particle states, where coexisting quasi-one-dimensional
(Q1D) and conventional higher-dimensional energy bands take part in the creation of the aggregate
superconducting condensate. When the chemical potential approaches the edge of a Q1D band in
a single-band superconductor, the corresponding mean-field critical temperature increases signif-
icantly but the superconductivity is quenched by fluctuations. However, recent investigation has
revealed that when a Q1D band is coupled to a higher dimensional one by the interband Cooper-pair
transfer, the thermal superconductive fluctuations can be suppressed so that the resulting critical
temperature can be close to its mean-field value. In the present work, we calculate the mean-field
Tc0 and fluctuation-shifted Tc critical temperatures for a two-band superconductor where a Q1D
band coexists with a higher-dimensional band, and investigate how the thermal fluctuations are
sensitive to the system parameters. We find that Tc is close to Tc0 in a wide range of microscopic
parameters, and even the dimensionality of the higher-dimensional band does not play an essential
role. Thus, the screening mechanism for suppressing fluctuations via the pair-exchange coupling
between the bands is indeed relevant for a large class of Q1D multiband superconducting materials,
encouraging further experiments aimed at reaching larger critical temperatures in such multiband
superconductors.

I. INTRODUCTION

Experimental detection of two superconductive gaps
in MgB2

1–4 sparked a plethora of theoretical studies of
the multiband or multi-gap models of superconductiv-
ity, see e.g. Refs. 5–10. The core of the difference be-
tween the multi- and single-band materials lies in the
interference of multiple contributing condensates, which
makes their properties to deviate from those of the single-
condensate systems. The interference can, among other
things, suppress superconducting order-parameter fluctu-
ations, which is here referred to as the multiband fluctua-
tions screening mechanism11,12. In particular, recently it
has been demonstrated12 that enormous thermal fluctu-
ations in a Q1D superconducting condensate13–15 can be
suppressed almost completely when the latter is coupled
to a 3D condensate via the pair-exchange transfer, even
when this coupling is rather weak12.

The study in Ref. 12 has also demonstrated that the
fluctuation screening can have a significant effect even
in the case of a shallow Q1D band coupled to a con-
ventional deep 3D band (shallow and deep refers to a
position of the chemical potential, close or far from the
band edge, respectively). The superconducting conden-
sate in such a case is a coherent mixture of the standard
BCS state in the 3D deep band and nearly BEC state in
the Q1D shallow band – the so-called multiband BCS-
BEC crossover regime, characterized by a much higher
mean-field critical temperature. The physical reason for
this amplification of the superconducting temperature is
a Feshbach-like resonance, see e.g. Refs. 16–20, 22, and
23. It appears when the chemical potential approaches
the Q1D-band edge, which results in much higher density

of single-particle states (DOS) due to the van Hove sin-
gularity. The fluctuations of the superconducting order
parameter in Q1D band tend to quench the supercon-
ductivity13–15 and their impact further increases in the
presence of a shallow Q1D band. However, the fluctu-
ation screening induced by the pair-exchange coupling
to a band of a larger dimensionality can suppresses the
fluctuations and restore the superconductivity, also at el-
evated temperatures T ∼ Tc0. This scenario to reach a
high critical temperature is of especial relevance for ma-
terials that combine Q1D and higher-dimensional bands,
like the recent chain-like structured materials24–26. How-
ever, the same screening mechanism takes place also in
systems where both shallow and deep bands are quasi-2D
(Q2D)11.

Motivated by recent theoretical works reporting this
fluctuation suppression mechanism11,12 and ongoing ex-
periments on the multiband superconductors with Q1D
bands, such as A2Cr3As3 (A = K, Rb, Cs)24–30 and or-
ganic superconducting compounds31–34, we investigate
details of the fluctuation screening in a two-band sys-
tem, where a shallow Q1D band is coupled to a conven-
tional Q2D or 3D reservoir band. This model serves as a
prototype for the chain-like structured superconducting
materials mentioned above.

This work complements the earlier study12 by inves-
tigating how the fluctuation-induced renormalization of
the critical temperature depends on the interplay of the
microscopic parameters such as the dimensionality of the
higher-dimensional reservoir band, its energy depth (the
Fermi energy) and intraband interaction. These param-
eters determine the fluctuations suppression in the Q1D
band by controlling the fluctuations in the reservoir band.
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The latter become stronger when e.g. the energy depth
or the dimensionality of the reservoir band decrease. It
is thus necessary to go beyond a simplified model consid-
ered in the previous study12 where only the coupling of
the Q1D condensate to that of the 3D deep band (with
almost negligible fluctuations) has been investigated.

The paper is organized as follows. In Sec. II we
consider the two-band generalization of the BCS model
and the equation for the mean-field critical temperature.
Then, we derive the effective Ginzburg-Landau (GL)
free energy functional that controls the superconduct-
ing order-parameter fluctuation corrections to the critical
temperature. Details of the computing the Q1D coeffi-
cients in the GL functional are given in Appendix A. In
Sec. III we discuss relevant parameters of the two-band
system and calculate the mean-field critical temperature
Tc0 and its fluctuation-renormalized value Tc. Section IV
summarizes our results.

II. FORMALISM

In this section, we outline the formalism neces-
sary to calculate the mean-field Tc0 and fluctuation-
renormalized Tc critical temperatures of a two-band
superconductor. We assume that one of the bands
is quasi-one-dimensional (Q1D) and it is close to the
Feshbach-like resonance associated with the Lifshitz tran-
sition16–20,22,23 that occurs when the chemical potential
crosses the bottom of the Q1D band. This band can be
referred to as shallow. The second band has a higher
dimensionality and its energy depth (the Fermi energy)
is varied in our calculations. We consider two variants
of this band - quasi-two-dimensional (Q2D) and three
dimensional (3D). The Q1D band is assumed to deter-
mine the mean-field critical temperature Tc0 of the sys-
tem. The intraband coupling in the higher-dimensional
band is weak enough, so that the critical temperature of
the superconductive transition in this band, taken as a
separate superconductor, is much lower than Tc0 of the
two-band system.

A. Two-band BCS model

We consider the two-band system with the s-wave
pairing in both bands, using the standard generaliza-
tion of the BCS model35,36 with the pair-exchange cou-
pling between the different bands. The coupling matrix
gνν′ (ν, ν′ = 1, 2) is symmetric and real, where ν = 1
stands for the higher-dimensional (Q2D or 3D) band and
ν = 2 corresponds to the Q1D band. We consider that
the system is in the clean limit and the effects of impu-
rities can be neglected. The mean-field Hamiltonian of

the model in the real space writes as37

H =

∫
d3r

{ ∑
ν=1,2

[ ∑
σ=↑,↓

ψ̂†νσ(r)Tν(r)ψ̂νσ(r)

+
(
ψ̂†ν↑(r)ψ̂†ν↓(r)∆ν(r) + h.c.

)]
+ 〈~∆, γ̆ ~∆〉

}
, (1)

where ψ̂νσ(r) are the operators for carriers with spin σ
in band ν, Tν(r) is the single-particle Hamiltonian, and
∆ν(r) is the gap function in the respective band. Here we

use the vector notation ~∆ = (∆1,∆2)T , with the scalar
product 〈., .〉, and denote by γ̆ = ğ−1 the inverse of the
coupling matrix ğ with elements gνν′ .

The mean-field solution for the condensate is obtained
by diagonalizing the Hamiltonian self-consistently, to-
gether with the self-consistency gap equation37,38

∆ν(r) =
∑
ν′=1,2

gνν′Rν′(r), (2)

where Rν(r) = 〈ψν↑(r)ψν↓(r)〉 are the anomalous aver-
ages.

For the single-particle Hamiltonian Tν(r) we adopt the
effective mass approximation12 so that the single-particle
energy is approximated as

ξk1 = ε0 +
∑
α

~2k2α
2m1

− µ, ξk2 =
~2k2x
2m2

− µ, (3)

where k = {kx, ky, kz}, and index α assumes values {x, y}
for the Q2D band and {x, y, z} for the 3D one; mν is
the carrier effective mass for band ν, ε0 is the energy
shift between the bands, and µ is the chemical potential
of the system, measured with respect to the edge of the
Q1D band. Notice that the energy dispersion of the Q1D
(Q2D) band is degenerate in the remaining {y, z} (z) di-
rections. The respective summation over kα in these di-
rections, which is needed in the calculations of the band
density of states (DOS), is estimated by simply intro-
ducing multiplicative factors ny and nz related to the
Brillouin zone sizes in the corresponding directions.

The energies and the chemical potential are taken rela-
tive to the edge of the Q1D band. The edge of the higher-
dimensional band is located below the edge of the Q1D
band, so that ε0 < 0. A schematic energy diagram of the
bands is shown in Fig. 1 a). The calculations involving
the higher-dimensional band are performed within the
standard approximations of the BCS theory, whereas the
contribution of the shallow band requires a more accurate
approach. In what follows we assume |µ| < ~ωc, with ~ωc
the cut-off energy of the pairing interaction, where the
Q1D Feshbach-like resonance is most pronounced. Be-
low we set the Boltzmann constant as kB = 1.
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FIG. 1. a) Sketch of the single-particle energies ξk1 and ξk2
versus kx. Panels b) and c) illustrate the energy-dependent
DOSs for the Q1D+Q2D and Q1D+3D two-band systems:
the total and band-dependent DOSs are shown in a range of
energies around the Lifshitz point of the order of the cut-off
energy.

B. Mean field critical temperature

The mean field critical temperature Tc0 is obtained by
solving the linearized gap equation∑

ν′=1,2

Lνν′∆ν′ = 0, Lνν′ = γνν′ −Aνδνν′ , (4)

where δνν′ is the Kronecker symbol, and Aν are given by
(see Appendix A)

A1 = N1 ln

(
3.56

πTc0

)
, A2 = N2

1∫
−µ̃

dε
tanh(ε/2T̃c0)

ε
√
ε+ µ̃

, (5)

where the quantities marked by a tilde are normal-
ized by the cut-off energy, the DOS N1 for the higher-

dimensional band is given by NQ2D
1 = nzm1/2~2 for the

Q2D case and N3D
1 = m1kF /2π

2~2 for the 3D case, with

the Fermi momentum ~kF =
√

2m1(µ+ |ε0|). For the

Q1D band N2 = nynz
√
m2/32π2~3ωc, which is the Q1D

DOS at the cut-off energy ~ωc (the divergent part of
the energy-dependent Q1D DOS is kept inside the in-
tegral). The energy-dependent DOSs for bands 1 and 2
are sketched in Figs. 1. For simplicity and without loss
of generality, we assume that the factor nz is the same
for both bands.

The critical temperature Tc0 is found from Eq. (4).
The existence of a nontrivial solution for the gap func-
tions assumes that the determinant of the matrix L̆ (with
the elements Lνν′) is zero, and one gets

(g22 −GA1) (g11 −GA2)− g212 = 0, (6)

where G = g11g22 − g212. Since Aν ∝ Nν , the solution
depends on the dimensionless coupling constants

λ11 = g11N1, λ22 = g22N2, λ12 = g12
√
N1N2. (7)

Of the two possible solutions to Eq. (6) one has to choose
the one with the largest Tc0. Notice that the choice of
m1, m2, ny and nz is not important here, one needs
only to choose the dimensionless coupling constants λij
to calculate Tc0.

C. The free energy functional

The mean-field results of the previous section can be
strongly modified by thermal superconducting fluctua-
tions. To investigate the impact of those fluctuations by
calculating the related corrections to the critical temper-
ature in the vicinity of the Lifshitz transition µ ' 0, we
evaluate the corrections by using the Gibbs distribution
e−F/T with the free energy F given by

F =

∫
d3r
[ ∑
ν=1,2

fν + 〈~∆, Ľ~∆〉
]
, (8)

where fν in the vicinity of Tc0 can be expanded in powers
of ∆ν and its gradients, which yields [see Appendix A]

fν = aν |∆ν |2 +
bν
2
|∆ν |4 +

∑
α=x,y,z

K(α)
ν |∂α∆ν |2 . (9)

For the higher-dimensional band the coefficients are given
by the standard expressions. In particular, a1 and b1 are
the same for the Q2D and 3D variants

a1 = −τN1, b1 =
7ζ(3)

8π2

N1

T 2
c0

(10)

with τ = 1 − T/Tc0. The remaining coefficient is given
by

K(α)
1 =

~2v21
6

b1 (11)

with α = {x, y, z} for the 3D band and

K(α)
1 =

~2v21
4

b1, K(z)
1 = 0, (12)

with α = {x, y} for the Q2D band. For the Fermi velocity
in these expressions we have v1 = ~kF /m1.

For the shallow Q1D band (for |µ| < ~ωc) the expres-
sions for the coefficients can only be represented in the
form of the integrals written as

a2 = −τ N2

2Tc0

1∫
−µ̃

dε
sech2

(
ε/2T̃c0

)
√
ε+ µ̃

,

b2 =
N2

4~2ω2
c

1∫
−µ̃

dε
sech2

(
ε/2T̃c0

)
ε3
√
ε+ µ̃

[
sinh

( ε

T̃c0

)
− ε

T̃c0

]
,

K(x)
2 =

N2v
2
2

8ω2
c

1∫
−µ̃

dε

√
ε+ µ̃

ε3
sech2

(
ε

2T̃c0

)

×
[
sinh

(
ε

T̃c0

)
− ε

T̃c0

]
, K(y,z)

2 = 0, (13)
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where T̃c0 and µ̃ are defined in Eq. (5), and the char-
acteristic velocity of the Q1D band is given by v2 =√

2~ωc/m2.
The free energy in Eq. (8) for the two-band system can

be simplified considerably by representing ~∆ as a linear
combination of the eigenvectors of the matrix L̆ as11,12

~η+ =

(
S
1

)
, ~η− =

(
1
−S

)
, (14)

where

S =
g11 −GA2

g12
, (15)

(S ≥ 0 for the s-wave pairing). Using the representation

~∆(r) = ψ(r)~η+ + ϕ(r)~η−, (16)

where ψ(r) and ϕ(r) are the modes associated with ~η+
and ~η−, the free energy functional can be rearranged as

F =

∫
d3r(fψ + fϕ + fψϕ), (17)

where fψ and fϕ have the same structure as Eq. (9), but
with ∆ν replaced by ψ(r) and ϕ(r), respectively. The

coefficients in aν , bν ,K(α)
ν are changed as

aψ = S2a1 + a2, bψ = S4b1 + b2,

K(α)
ψ = S2K(α)

1 +K(α)
2 (18)

and

aϕ = a(0)ϕ + a1 + S2a2, bϕ = b1 + S4b2,

K(α)
ϕ = K(α)

1 + S2K(α)
2 , a(0)ϕ =

(1 + S2)2

SGg12
, (19)

with α = {x, y, z}. Finally, fψϕ in Eq. (17) describes the
interaction between the modes ψ and φ.

By virtue of Eq. (15), the quantity S is real and

we have a
(0)
ϕ 6= 0 for arbitrary parameters of the two-

band model. This implies that the characteristic length

ξ
(α)
φ =

√
K(α)
φ /aφ of the mode φ is generally finite near

Tc0, which is a consequence of the fact that the two
contributing condensates are coupled by the Josephson-
like pair transfer between the band condensates. Conse-
quently, ψ is the only critical mode with the divergent

characteristic length ξ
(α)
ψ =

√
K(α)
ψ /aψ at T → Tc0. The

pair fluctuations, controlled by the mode ϕ, produce non-
critical corrections, which can be safely neglected close to
Tc0. Thus, the analysis of the pair fluctuations can con-
sider only the critical mode, i.e. F is well approximated
by the single-component GL functional

F '
∫
d3r
(
aψ|ψ|2 +

bψ
2
|ψ|4 +

∑
i=x,y,z

K(α)
ψ |∂αψ|

2
)
, (20)

where the presence of the two bands is reflected only the

coefficients aψ, bψ, and K(α)
ψ that are averages over the

contributing bands, see Eq. (18).
From the definition of ~η+ in Eq. (14) it follows that

S controls the relative occupation of the reservoir band
with ν = 1. In the limit S →∞, the Q1D band (ν = 2)

is depleted and aψ → S2a1, bψ → S4b1, and K(α)
ψ →

S2K(α)
1 . Also, Eq. (14) yields ∆1 = ψS in this case, and

the GL free energy of the system is reduced to the free
energy of the higher-dimensional band.

In the opposite limit S → 0, the higher-dimensional
band does not contribute. In this case, Eq. (18) yields

aψ → a2, bψ → b2, and K(α)
ψ → K(α)

2 . Now Eq. (14)

gives ψ = ∆2, and the GL free energy in Eq. (20) is fully
determined by the Q1D band.

Before proceeding further, it is important to discuss
Eq. (20) in the context of the fluctuation screening mech-
anism11,12. One sees that the thermal fluctuations in
both bands are not independent as they are controlled
by the same mode ψ: the band gap functions are given
by δ∆1 = Sδψ and δ∆2 = δψ. Loosely speaking,
“light” fluctuations of the Q1D condensate are “pinned”
to the “heavy” fluctuations in the higher-dimensional
band. This illustrates the physical reason why the fluctu-
ations in the Q1D band can be screened by the reservoir
higher-dimensional band.

In more detail, the fluctuations are controlled by the
superfluid stiffness coefficient Kψ, defined by Eq. (18)
as the average over the bands. One can see that in the
limit v1 � v2, the main contribution to the stiffness co-
efficient is provided by the higher-dimensional band. In
this limit strong fluctuations, specific to Q1D systems,
are fully suppressed and cannot affect the critical tem-
perature12. However, in real systems the ratio v1/v2 is
finite and the fluctuations reduce the critical tempera-
ture Tc < Tc0. Thus, the main problem is to clarify the
domain of microscopic parameters of the model, where
Tc is not significantly reduced with respect to Tc0.

D. Ginzburg number

The impact of the thermal fluctuations on the crit-
ical temperature is determined by the Ginzburg num-
ber (also known as the Ginzburg-Levanyuk parameter)
Gi = 1 − TGi/Tc0, where TGi is defined as the tempera-
ture at which the heat capacity given by the mean-field
theory is equal to the fluctuation-driven heat capacity39.
As is seen, Gi defines the temperature interval near Tc0,
where the pair fluctuations cannot be ignored. For the
Q1D+2D system there are two nonzero stiffness coeffi-
cients in the GL functional, the effective dimensionality
of the GL theory is 2, and the corresponding Gi num-
ber11,39 is expressed as

Gi(2D) =
Tc0bψnz

4πa′ψ

√
K(x)
ψ K

(y)
ψ

, (21)
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where a′ψ = daψ/dT . Notice that nz appears in Eq. (21)
because Nν for Q1D and Q2D bands has the dimensions
of the 3D DOS, taking into account the degeneracy of
the momentum states along the z direction in the Q2D
case and along the y and z directions in the Q1D case.
The factor ny is absorbed in the coefficients bψ, a

′
ψ, and

K(α)
ψ whereas nz is not only included in these coefficients

(through Nν) but also appears explicitly in Eq. (21). As

bψ ∝ nz, a
′
ψ ∝ nz, and K(α)

ν ∝ nz, one can see that nz
does not eventually contribute to Gi2D. Then, one can
rewrite the right-hand side of Eq. (21) in the form of the
standard 2D Ginzburg number11,39 with the coefficients
that depend on the band DOSs accounting only the states
associated with the x and y directions. Utilizing the ex-

pressions for the coefficients aψ, bψ and K(x,y)
ψ given by

Eq. (18), we arrive at

Gi2D = Gi2D1
b2/b1 + S4

S
(
a′2/a

′
1 + S2

)√
K(x)

2 /K(x)
1 + S2

, (22)

where the Ginzburg number of band 1 is given by

Gi2D1 =
Tc0b1nz

4πa′1

√
K(x)

1 K
(y)
1

=
Tc0

µ+ |ε0|
, (23)

where a′ν = daν/dT and Eqs. (10) and (12) are used.
Similarly, for the Q1D+3D case there are three nonzero

stiffness coefficients in the GL functional of the two-band
system, the number of the effective dimensions of the
GL functional (20) is 3, and the Ginzburg number is ex-
pressed in the form12,39

Gi3D =
1

32π2

Tc0b
2
ψ

a′ψK
(x)
ψ K

(y)
ψ K

(z)
ψ

. (24)

Utilizing Eq. (18), one finds

Gi3D = Gi3D1
(b2/b1 + S4)2

S4(a′2/a
′
1 + S2)

(
K(x)

2 /K(x)
1 + S2

) , (25)

where the Ginzburg number of band 1 with the 3D dis-
persion is given by

Gi3D1 =
1

32π2

Tc0b
2
1

a′1K
(x)
1 K

(y)
1 K

(z)
1

, (26)

which can be rewritten as

Gi3D1 =
27π4

14ζ(3)

(
Tc0

µ+ |ε0|

)4

, (27)

see Eqs. (10) and (11).
It is instructive to examine the limiting cases S → 0

and S → ∞. As is mentioned above, when S → ∞,
band 2 does not contribute [see Eq. (14)], and super-
conductivity is determined by the condensate in band

1. In this limit, Eqs. (22) and (25) yield, respectively,
Gi2D → Gi2D1 and Gi3D → Gi3D1 .

In the opposite limit S → 0, the contribution of
band 1 is negligible and Gi → ∞ for both Q1D+2D
and Q1D+3D systems. Formally, the divergence in the

Ginzburg number follows from the fact that K(y,z)
ψ =

S2K(y,z)
1 → 0 at S → 0 for the Q1D+3D system in Eq.

(24) and K(y)
ψ = S2K(y)

1 → 0 for the 1D+2D system in

Eq. (21). This implies that for one or two spatial direc-
tions the integral over the momentum, appearing in the
expression for the fluctuation-driven heat capacity [see
Ref.39], becomes divergent. This divergence is artificial
and has to be regularized, e.g. by introducing the mo-
mentum cut-off in the integration (i.e., by taking account
of the boundary of the Brillouin zone). However, since
we are interested in the regime of the pair-fluctuation
suppression with Gi significantly smaller than 1, we can
simply ignore this regularization in our further calcula-
tions.

E. Fluctuation corrections to Tc

The Ginzburg number Gi gives a good estimate for
the temperature range in the vicinity of the critical tem-
perature where thermal fluctuations are large. However,
the fluctuation suppress the superconductivity and re-
duce the critical temperature itself. As the thermal fluc-
tuations of the two-band system are controlled by the
effective single-component GL free-energy functional, we
can utilize standard expressions connecting the Ginzburg
number with the fluctuation-driven shift of the critical
temperature in single-band superconductors, see details
in Ref. 12. For the case of the GL functional with the
two effective dimensions (Q1D+Q2D), one can use

δTc
Tc

= 4Gi(2D), δTc = Tc0 − Tc, (28)

where Tc is the Berezinski-Kosterlitz-Thouless (BKT)
transition temperature40 [see the discussion in Ref. 11].
One can also apply the renormalization group result11,39,
which yields δTc/Tc = 2Gi(2D) ln(1/4Gi(2D)). However,
this formula is applicable only when11 δTc/Tc . 0.1 (one
can see that its right-hand side even changes sign for
Gi > 1/4). In addition, values of the critical tempera-
ture calculated within the BKT scenario of the pair fluc-
tuations are very close to the renormalization group esti-
mates for δTc/Tc = 0.005 ÷ 0.1. The difference becomes
significant only when δTc/Tc . 0.001 but in this regime
Tc and Tc0 are almost indistinguishable. Thus, it is more
convenient to choose the BKT variant (28) in our present
study.

For the Q1D+3D system we have three nonzero stiff-
ness coefficients and can utilize

δTc
Tc

=
8

π

√
Gi(3D), (29)
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which is the result of the 3D renormalization group anal-
ysis39.

Thus, employing the Ginzburg number calculated with
Eqs. (28) and (29) for the Q1D+Q2D and Q1D+3D mod-
els, respectively, one can find the related shift of the crit-
ical temperature (with respect to the mean-field super-
conductive critical temperature) from Eqs. (28) and (29).

III. NUMERICAL RESULTS

Now we investigate how the critical temperature Tc
depends on the system parameters, including the dimen-
sionality and the depth of the higher-dimensional band,
as well as on the interaction strength and effective carrier
masses of the both contributing bands. The analysis is
done in two steps: first, we calculate the mean-field crit-
ical temperature Tc0 and then the critical temperature
Tc, renormalized due to the pair thermal fluctuations.

A. Model parameters

The mean-field critical temperature Tc0 is determined
by the three dimensionless coupling constants λ11, λ22,
λ12 and the chemical potential µ. Within the adopted
model, µ ∼ 0 determines the proximity to the Lifshitz
transition point (the Feshbach-like resonance) and is used
as a variable in our calculations. We avoid the trivial
regime of a dominant higher-dimensional band λ11 � λ22
at which the system characteristics are close to those of
a conventional BCS superconductor. Notice that similar
situation occurs for large pair-exchange couplings λ12 �
λ22 because intensive Cooper-pair transfer between the
contributing bands washes out the Q1D effects. Thus,
the most physically interesting is the case of λ11, λ12 .
λ22, where the Q1D physics is still important.

Below we choose λ22 = 0.2, which is in the range of
the values typical for the dimensionless couplings of con-
ventional superconductors41. For the higher-dimensional
band, we investigate two variants: the vanishing cou-
pling constant λ11 = 0 (λ11 � λ22), and λ11 = 0.24
(λ11 ' λ22). Finally, to study the effects of the inter-
band interactions on the system properties, several values
of the pair-exchange coupling λ12 are considered.

To calculate the critical temperature renormalized by
the thermal pair fluctuations, one needs to know the
Ginzburg number of the two-band system in addition
to Tc0. The former depends on the Ginzburg number
of the higher-dimensional band Gi1, the band occupa-
tion parameter S, as well as on the ratios N2/N1 and
v2/v1. As follows from Eq. (15), S is controlled by λνν′ ,
µ, and N2/N1, whereas Gi1 is determined by the chemi-
cal potential µ and the band depth ε0. Further, the ratio

v2/v1 =
√
m1/

(
m2(µ̃+ |ε̃0|)

)
depends on µ, ε0, and the

band mass ratio m2/m1. Consequently, we find that Tc
is governed by λνν′ , µ, ε0, N2/N1, and m2/m1. Notice
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a) λ11 = 0.24

λ12=0.20
λ12=0.15
λ12=0.10
λ12=0.05
λ12→0

-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.00
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ℏωc

b) λ11 = 0

λ12=0.20
λ12=0.15
λ12=0.10
λ12=0.05
λ12→0

FIG. 2. The mean-field critical temperature Tc0 of the two-
band system as a function of the chemical potential µ. Panels
a) and b) demonstrate results obtained for the intraband cou-
plings λ11 = 0.24 and λ11 = 0 in the higher-dimensional band,
results for the Q1D+Q2D and Q1D+3D models are the same.
The calculations assume the intraband coupling in the Q1D
band is λ22 = 0.2 while the pair-exchange interband coupling
is λ12 = 0, 0.05, 0.1, 0.15, 0.2. The dotted line represents Tc0

obtained in the limit λ12 → 0 of uncoupled bands.

that there is no need to specify the cut-off energy ~ωc
as the latter simply determines the energy scale of the
model.

The ratio of the band DOSs N2/N1 is close to 1 in most
of two-band superconductors, see Ref. 11, and for simplic-
ity we choose N2/N1 = 1. Finally, we consider different
values of ε0 and m2/m1, to investigate how the depth of
band 1 impacts Tc and how this impact is sensitive to the
band mass ratio m2/m1. In multiband superconductors
the effective band masses can significantly deviate from
that of free electrons42, and therefore the ratio m2/m1 is
not necessarily equal to 1.

B. Mean-field critical temperature Tc0

Figure 2 demonstrates Tc0 versus the chemical poten-
tial µ for λ11 = 0.24 in panel a) and for λ11 = 0 in panel
b); the results of solving Eq. (6) are given for the set of
the pair-exchange couplings λ12 = 0, 0.05, 0.1, 0.15, 0.2.
Notice that the mean-field critical temperature does not
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depend on the number of the dimensions of band 1.
Moreover, one can see that Tc0 is not much sensitive to
particular values of λ11 and λ12 at µ > −0.2 (here and be-
low the values of the energy related quantities are given
in units of the cut-off energy). The mean-field critical
temperature enhancement is mainly determined by the
van Hove singularity of the Q1D DOS, which results in
the Q1D Feshbach-like resonance enhancement of super-
conductivity and the related enhancement of Tc0. Notice
that this enlargement starts at µ ' −0.2, not at µ = 0.
This downward shift is related to the Cooper-pair bind-
ing energy ∼ max[Tc0] ' 0.2 and to the temperature-
dependent smearing of the Fermi surface of the normal
state. One can see that only at µ < −0.2 the contri-
bution of the Q1D band is negligible, and Tc0 is fully
determined by the higher-dimensional band: Tc0 = 0 for
λ11 = 0 and Tc0 ≈ 0.02 for λ11 = 0.24. We note that
even for λ11 = 0.24 the maximal value of Tc0 is larger by
an order of magnitude than Tc0 at µ < −0.2. We note
that the possibility of a significant increase of Tc0 is at
the core of the researchers interest to the Feshbach-like
resonances in multiband superconductors20,22,23.

C. Renormalized Tc close to the Lifshitz transition

We now consider impact of the thermal pair fluctu-
ations and calculate the critical temperature Tc renor-
malized by the fluctuations. Figure 3 shows Tc as a
function of µ, calculated for the pair-exchange couplings
λ12 = 10−3 (panel a) and λ12 = 2×10−3 (panel b). Here
the depth of band 1 with respect to the bottom of band 2
is chosen as |ε0| = 300, which yields the Fermi energy of
the higher-dimensional band EF = |ε0| + µ ≈ 300. This
value of the Fermi energy is close to that of the conven-
tional elemental superconductors, see Ref. 43 (e.g., for Al
we have EF ≈ 350 whereas in Pb one gets EF ≈ 1000).
The ratio of the band masses is chosen as m2/m1 = 1.
Results for the Q1D+Q2D and Q1D+3D systems are
shown by the red and blue lines, correspondingly. To
demonstrate the shift of the critical temperature by the
fluctuations, Tc0 is also shown Figs. 3 a) and b) by
the black lines. In all cases, solid lines correspond to
λ11 = 0.24 and the dotted lines are related to λ11 = 0.

Figure 3 demonstrates that the pair fluctuations are
negligible for µ < 0.2 and important for µ > 0.2, where
the contribution of the Q1D band matters. It is seen
from Fig. 3 a) that for µ > 0.2 the difference between the
results for λ11 = 0.24 and λ11 = 0 is almost negligible
for the Q1D+Q2D system and even not visible for the
Q1D+3D case. Moreover, as it follows from Fig. 3 b),
this difference tends to disappear for larger values of λ12.
For example, it is not visible in panel b) for both the
Q1D+Q2D and Q1D+3D systems. Thus, though the
higher-dimensional condensate can exist only due to the
Cooper-pair transfer from the Q1D band at λ11 = 0, the
coupling to the higher-dimensional band “kills” the Q1D
pair fluctuations similarly to the case of a finite value of

-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.00
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0.10
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0.20

μ/ℏωc
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ℏωc

a)

Q1D+Q2D
Q1D+3D
Mean Field

λ12 = 10-3

-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

μ/ℏωc
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ℏωc

b)

Q1D+Q2D
Q1D+3D
Mean Field

λ12 = 2×10-3

FIG. 3. The critical temperature Tc renormalized by the
pair fluctuations versus µ, calculated for λ12 = 2 ·10−3 (panel
a) and λ12 = 5 · 10−3 (panel b). The depth of the higher-
dimensional band is chosen as |ε0| = 300~ωc and the mass
ratio is set to m2/m1 = 1. Results for the Q1D+Q2D and
Q1D+3D models are given by blue and red lines, respectively.
The dotted lines correspond to λ11 = 0 whereas the solid lines
represent the case of λ11 = 0.24. Black lines give the mean-
field critical temperature, for comparison.

λ11.

As is well known, the role of fluctuations increases in
low dimensional samples39. Then, one can expect that
the effect of the pair fluctuations on the critical tem-
perature in the Q1D+Q2D model should be significantly
stronger than that in the Q1D+3D model. Figure 3
demonstrates that Tc is indeed lower in the Q1D+Q2D
system. However, the most pronounced difference be-
tween the critical temperatures of the two models is only
about 30%, see the results in Fig. 3 a) for µ ≈ 0.2-
0.6. The reason for such a weak dependence of Tc on
the dimensionality of band 1 is originated in the depen-
dence of δTc/Tc on Gi: the fluctuation-driven shift of
the critical temperature is linear in Gi2D while it is pro-
portional to the square root of Gi3D [cf. Eqs. (28) and
(29)]. Though Gi2D is indeed by orders of magnitude
larger than Gi3D, the difference between the correspond-
ing values of δTc is much less pronounced. For instance,
at µ ≈ 0.4 and λ12 = 10−3 we have Gi2D ≈ 5× 10−2 and
Gi3D ≈ 4.5× 10−4.

The most important result is that Tc rapidly ap-
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proaches Tc0 when the interband coupling increases above
λ12 & 10−3 [Fig. 3]. Notice, that in this regime one
can still have λ12 � λ22, so that at µ > −0.2, Tc0 is
determined by the resonant Q1D band. This conclu-
sion is independent on the intraband coupling λ11 in
the higher-dimensional band and holds even when the
higher-dimensional condensate appears only due to the
proximity-like effect between the bands.

D. Impact of the energy depth of the reservoir
band

The results in Fig. 3 are obtained for |ε0| = 300 (recall
that all energy-related quantities are given in units of the
cut-off energy in the text) and, as is mentioned above, the
corresponding Fermi energy of band 1 is in the range of
the Fermi energies of the conventional elemental super-
conductors. However, in novel superconducting materials
EF can be significantly smaller, down to 10 or even below
this value44–47. This is why in Fig. 4 we consider how Tc
is sensitive to |ε0|. We again employ λ22 = 0.2, λ11 = 0
and 0.24 (dotted and solid lines, respectively) and use
λ12 = 2 · 10−3 in Fig. 4 a) and λ12 = 5 · 10−3 in Fig. 4
b). The chemical potential is now fixed as µ = 0.4 which
corresponds to a nearly maximal value of Tc, see Fig. 3
b). Here we still adopt m2/m1 = 1 while this value will
be changed below.

Our results demonstrate that Tc increases with |ε0|,
asymptotically approaching Tc0 (saturation) for very
large values of |ε0|. Notice, that Tc0 is only weakly depen-
dent on λ11 and λ12, as shown in Figs. 2 and 3. Thus, we
find that the pair fluctuations are quenched in the limit
|ε0| → ∞, which is in agreement with our previous results
for the two-band model with a deep higher-dimensional
band12.

For relatively small values of |ε0| one finds that Tc devi-
ates notably from Tc0. In this case the coherence length
of band 1 decreases, which leads to an increase of Gi1
and so, to an enhancement of the pair fluctuations in the
reservoir band, see Ref. 39. This, in turn, results in a
rise of Gi and δTc, see Eqs. (22), (25), (28), and (29). In
addition, the ratio v2/v1 decreases with decreasing |ε0|
and so does the ratio K(x)

2 /K(x)
1 . As the latter appears in

the denominators of Eqs. (28) and (29), one obtains an
additional contribution to an increase of Gi and δTc.

One can see that the suppression of the fluctuations
is more effective in the Q1D+3D system but again, we
do not observe an order of magnitude difference between
the critical temperatures in the Q1D+Q2D and Q1D+3D
models even at small |ε0|. Notice that only the results for
Tc > 0.05 are shown in Fig. 3 since our formalism does
not apply for strong pair fluctuations with Gi close to 1,
see the discussion after Eq. (27).

The effective band masses can significantly deviate
from the free electron mass in multiband superconduc-
tors42 and then the ratio m2/m1 can be notably differ-
ent from 1. As is mentioned above, the value of v2/v1 is
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Q1D+3D

Q1D+Q2D

λ12=2×10-3
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Tc

ℏωc

b)

Q1D+3D

Q1D+Q2D

λ12=5×10-3

FIG. 4. The critical temperature Tc renormalized by the fluc-
tuations, plotted as a function of the reservoir band depth |ε0|,
calculated for µ/~ωc = 0.4 and m2/m1 = 1: panel a) repre-
sents λ12 = 2·10−3 and panel b) corresponds to λ12 = 5·10−3.
The results for the Q1D+Q2D (blue lines) and Q1D+3D (red
lines) systems are shown for both the passive (λ11 = 0) and
active (λ11 = 0.24) regimes of band 1 by the dotted and solid
lines.

controlled by |ε0| and by the ratio m2/m1. The larger
(smaller) is the value ofm2/m1, the smaller (larger) is the
ratio v2/v1 at a given |ε̃0| and, then, the larger (smaller)
is the impact of the pair fluctuations. For illustration, we
calculate Tc with the same microscopic parameters as in
Fig. 4 but for m1 = 4m2, see Fig. 5. The results in Fig. 5
are similar to those in Fig. 4 but the region of strong
fluctuations shifts to lower values of |ε0|. For instance,
for the Q1D+3D system Tc is equal to a half of Tc0 at
|ε̃0| ≈ 7-8 in panel a) and at |ε̃0| ≈ 2-3 in panel b).

Thus, a drop of Tc at small |ε0| demonstrates that the
Q1D thermal pair fluctuations are significantly enhanced
when the reservoir band approaches its shallow regime.
However, quite surprisingly, we find that the fluctuations
are significantly weakened even when the Fermi energy
of the higher-dimensional band is by two orders of mag-
nitude smaller than EF in the conventional elemental
superconductors.
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FIG. 5. The same as in Fig. 4 but for m2/m1 = 1/4.

IV. CONCLUSION

Although the mean-field critical temperature of a
single-band Q1D superconductor can be very large when
approaching the van Hove singularity, the thermal pair
fluctuations suppress or even eliminate altogether the
superconductivity, reducing the critical temperature to
very low values or to zero. However, the situation changes
dramatically when a Q1D band is coupled to the reser-
voir condensate of a higher-dimensional band due to the
pair transfer between the bands. This pair-exchange cou-
pling can effectively suppress the detrimental Q1D pair
thermal fluctuations12.

This work studies details of how thermal supercon-
ducting fluctuations are quenched in a two-band system
comprising a Q1D and Q2D/3D bands, and the criti-
cal temperature Tc approaches its mean-field value Tc0.
The focus of the study is to clarify how the screening
of the pair thermal fluctuations in such a two-band sys-
tem depends on the microscopic parameters specifying
the single-particle bands and the intra- and interband
pairing interactions.

Although the two-band system is controlled by a fairly
large number of different parameters, our calculations
demonstrate that the fluctuation suppression effect is a
general phenomenon, taking place in a wide paramet-
ric domain. This domain for the Q1D+Q2D model is
very close to that of the Q1D+3D model. Furthermore,

we find that the fluctuation suppression occurs even if
the reservoir band alone does not develop the supercon-
ducting state and also when the reservoir band is nearly
shallow, having a relatively small band Fermi energy in
comparison to that of the conventional metallic supercon-
ductors. Notice that the case of unusually small Fermi
energies in superconducting compounds is not a theoret-
ical assumption or oversimplification, it is relevant, e.g.,
for FeSe, where multiple overlapping bands crossing the
Fermi level have similar small depths46,47.

The present results have both academic and practi-
cal importance. Our work uncovers an important as-
pect of the physics of multiband superconductors exhibit-
ing a BCS-BEC crossover (see experimental results in
Refs. 42, 44–47 and theoretical studies in Refs. 16–23).
It is commonly expected that thermal superconducting
fluctuations proliferate when a system approaches the
BCS-BEC crossover and then goes into the BEC regime.
In contrast, our study and investigations of the previ-
ous works11,12 demonstrate that those fluctuations, be-
ing detrimental in the single-band case, are screened in
the multiband superconductors by the pair-exchange cou-
pling of a shallow-band condensate in the BCS-BEC-
crossover regime to the band that is still in the BCS
regime. As a result, the preformed Cooper pairs induced
by thermal fluctuations disappear and the critical tem-
perature of the global coherence approaches the pair-
formation temperature. Interestingly, this conclusion
agrees with the recent scanning tunnelling microscopy
results for FeSe47.

From the practical point of view, our results are en-
couraging to merit engineering and further detailed in-
vestigations of the Q1D multiband superconductors, such
as recent materials A2Cr3As3, with A = K, Rb, Cs24–30.
Our investigation confirms that tuning the Lifshitz topo-
logical transition associated with the edge of a Q1D band,
e.g. by means of doping, applying external pressure or
chemical engineering, is a very promising way to achieve
robust high-Tc superconductivity.
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Appendix A: Coefficients for the Q1D GL theory

In this Appendix we derive the coefficients for the Q1D
GL theory for the reader convenience. Below we follow
the standard procedure of the microscopic derivation of
the GL formalism introduced by Gor’kov48,49. In vicinity
of the mean-field critical temperature the gap function
∆ν(r) is small and the corresponding anomalous Green
function Rν(r) can be represented by series in powers of
∆ν(r). Adopting the Gor’kov truncation procedure48,49

and keeping only the lowest nonlinear term, we obtain
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the anomalous Green function as

Rν(r) = Iaν [∆ν(r)] + Ibν [∆ν(r)], (A1)

where

Iaν =

∫
d3r′Kaν(r, r′)∆ν(r′) (A2)

and

Ibν =

∫
d3r′d3r′′d3r′′′Kbν(r, r′, r′′, r′′′)

×∆ν(r′)∆∗ν(r′′)∆ν(r′′′), (A3)

with the integral kernels defined by

Kaν(r, r′) = −T
∑
ω

G(0)νω (r, r′)Ḡ(0)νω (r, r′) (A4)

and

Kbν(r, r′, r′′, r′′′) =− T
∑
ω

G(0)νω (r, r′)Ḡ(0)νω (r′, r′′)

× G(0)νω (r′′, r′′′)Ḡ(0)νω (r′′′, r). (A5)

Here the normal-state Green function is expressed in
terms of the single electron energy ξkν as

G(0)νω (r, r′) =

∫
d3k

(2π)3
e−ik(r−r

′)

i~ω − ξkν
, (A6)

and Ḡ(0)νω (r, r′) = −G(0)ν,−ω(r′, r). The integral kernels in-
volve, as usual, the summation over the fermionic Mat-
subara frequencies ω → ωn = πT (2n + 1)/~ (n =
0,±1,±2, . . .).

Using Eqs. (2) and (A1), one obtains the integral equa-
tions for the gap functions ∆1(r) and ∆2(r). In the next
step, the obtained integral equations are approximated
by partial differential equations via using the gradient
expansion (r′ = r + z)

∆ν(r′) =
∑

m=0,1,2,...

(z ·∇)m

m!
∆ν(r), (A7)

where we keep only the contributions up to second-order
spatial derivatives. Substituting this expansion into the
integral gap equations, we obtain

Iaν = I ′aν + I ′′aν , (A8)

with

I ′aν =

∫
d3r′Ka2(r, r′)∆2(r) (A9)

and

I ′′aν =

∫
d3r′Ka2(r, r′)

(z ·∇)2

2
∆2(r), (A10)

where the contribution of the first-order derivatives van-
ishes due to the symmetry Ka2(r, r′) = Ka2(r′, r). Then,
Eq. (A9) is rewritten in the form

I ′aν = T∆2

∫
d3k

(2π)3

∑
ω

1

~2ω2 + ξ2kν
, (A11)

which is further reduced to

I ′aν = ∆2

∫
d3k

(2π)3
tanh(ξkν/2T )

2ξkν
(A12)

where we use the well-known relation for the summation
over the Matsubara frequencies∑

ω

1

~2ω2 + ξ2kν
=

tanh(ξkν/2T )

2Tξkν
. (A13)

To proceed further, we recall that our analysis focuses
on the GL coefficients for the Q1D band. We take into
account that the single-particle energy in band 2 depends
only on kx (the Q1D band). Then, performing the inte-
gration over the momentum k for band 2, we find∫

d3k

(2π)3
= nynz

∫
dkx
2π

, (A14)

where constants ny and nz are introduced to take into
account the Brillouin zone boundaries in the k space.
Changing the integration variable to the single-particle
energy in Eq. (A12), we arrive at (ν = 2)

I ′aν = ∆2N2

+∞∫
−µ̃

dε
tanh(ε/2T̃ )

ε
√
ε+ µ̃

θ(1− |ε|), (A15)

where N2 is the Q1D DOS at the cut-off energy, see
Eq. (5), T̃ is the temperature in units of the cut-off en-
ergy, and the Heaviside step function θ(x) is introduced
to restrict the integration over single-particle states as
|ξk2| < ~ωc. The derived expression can be represented
as a series of τ = 1− T/Tc0 (τ is small near Tc0). Keep-
ing only the leading and next-to-leading terms in this
expansion, one arrives at

I ′2 = (A2 − a2)∆2, (A16)

with

A2 = N2

+∞∫
−µ̃

dε
tanh(ε/2T̃c0)

ε
√
ε+ µ̃

θ(1− |ε|), (A17)

and

a2 = −τ N2

2T̃c0

+∞∫
−µ̃

dε
sech2

(
ε/2T̃c0

)
√
ε+ µ̃

θ(1− |ε|), (A18)

Now, when µ̃ ≤ 1, Eqs. (A17) and (A18) give the expres-
sions for A2 and a2 used in the article, see Eqs. (5) and
(13).
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We turn now to the calculation of I ′′a2. It can be rewrit-
ten as

I ′′a2 =
∑

i,j=1,2,3

∂i∂j∆2

∫
d3r′Ka2(r, r′)

zizj
2

, (A19)

where zi is the Cartesian component of z (i = x, y, z).
The integral in the right-hand side of this expression is
rearranged to get

I ′′a2 =− T

2

∑
i,j=1,2,3

∂i∂j∆2

∑
ω

∫
d3k

(2π)3

× ∂ki
(

1

i~ω − ξk2

)
∂kj

(
1

i~ω + ξk2

)
, (A20)

with ki the Cartesian component of k. As the Q1D dis-
persion does not depend on ky and kz, Eq. (A20) is re-
duced to

I ′′a2 = T
~2

m2
∂2x∆2

∑
ω

∫
d3k

(2π)3
ξk2 + µ(

~2ω2 + ξ2k2

)2 . (A21)

The summation over the Matsubara frequencies yields

∑
ω

1

(~2ω2 + ξ2k2)
2 =

T sinh
(
ξk2/T

)
− ξk2

8ξ3k2T
2

× sech2(ξk2/2T ). (A22)

Changing the integration variable to the single-particle
energy and keeping only the leading-order term in the τ
expansion, one obtains

I ′′a2 = K(x)
2 ∂2x∆2, (A23)

with

K(x)
2 =~2v22

N2

8 ~2ω2
c

+∞∫
−µ̃

dε

√
ε+ µ̃

ε3
sech2

(
ε/2T̃c0

)
×
[
sinh

(
ε

T̃c0

)
− ε

T̃c0

]
θ(1− |ε|), (A24)

which gives K(x)
2 in Eq. (13) when µ̃ ≤ 1. Thus, for the

first term in Eq. (A1) we find

Ia2 = (A2 − a2)∆2 +K(x)
2 ∂2x∆2. (A25)

Finally, we calculate the nonlinear term Ib2 in
Eq. (A1). It is represented in the form

Ib2 =− T∆2|∆2|2
∑
ω

∫
d3k

(2π)3
1(

~2ω2 + ξ2k2

)2 . (A26)

This expression is evaluated by taking the sum over the
Matsubara frequencies, see Eq. (A14) and changing the
integration variables as previously. Finally, applying the
τ expansion and keeping the leading contribution in τ ,
we get

Ib2 = b2∆2(r)|∆2(r)|2, (A27)

where

b2 =
N2

4~2ω2
c

+∞∫
−µ̃

dε
sech2

(
ε/2T̃c0

)
ε3
√
ε+ µ̃

×
[
sinh

( ε

T̃c0

)
− ε

T̃c0

]
θ(1− |ε|). (A28)

For µ̃ ≤ 1, this expression for b2 coincides with Eq. (13).

Thus, the anomalous Green function of the Q1D band
in the GL approximation is given by

R2(r) =(A2 − a2)∆2 +K(x)
2 ∂2x∆2

+ b2∆2|∆2|2. (A29)

Notice, that the functional derivative of the free energy
given by Eq. (8) yields Eq. (2), where Rν is given by
Eq. (A29).
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