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Abstract
Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to 
predict in advance. Evidence indicates that the copy number of mitochondrial 
DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released 
into circulation may act as a mediator of inflammation, a recognized factor in the 
development of CVD, in the long distance. This pilot study aims to test if levels 
of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-
mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) 
are altered in CVD patients and if they can predict heart attack in advance. A 
group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) 
was selected from the LifeLines Biobank according to the incidence of new car-
diovascular event monitored in 6 years (50 among controls had heart attack after 
the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA 
from plasma as well as in buffy coat. EVs have been characterized by their size, 
polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. 
BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and 
healthy subjects. EVs carried higher mtDNAcn in subject with a previous his-
tory of CVD than controls, also adjusting the analysis for the EVs derived count 
rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of 
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1   |   INTRODUCTION

Mitochondrial DNA (mtDNA) is a small circular multi-
copy genome located in the inner matrix of mitochondria. 
It consists of 16 569 base pairs, and it contains 37 genes: 
13 encoding for oxidative phosphorylation mRNAs, 22 for 
tRNAs, and 2 for rRNAs.1 MtDNA exists in cells in a dif-
ferent copy number (mtDNAcn) depending on the tissue 
type, health status of cells or environmental exposures.2-13 
Also, increasing evidence demonstrated the presence of 
mtDNA in body fluids as circulating cell-free mtDNA (ccf-
mtDNA).14 Ccf-mtDNA can circulate in body fluids as 
naked or contained in lipid-based vesicles.14 The mecha-
nisms underlying the release of mitochondrial DNA from 
cells into the extracellular compartment have not been 
fully elucidated, prompting the formulation of various 
hypotheses to address this phenomenon. In passive mech-
anisms, mtDNA is believed to be released into the extra-
cellular space following cellular apoptosis or necrosis, 
packaged within apoptotic bodies, intact mitochondria, 
or as ccf-mtDNA.14,15 Ccf-mtDNA can also be released 
by cells through an actively regulated process, residing 
inside extracellular vesicles (EVs), such as exosomes, 
mitochondria-derived vesicles, or neutrophils/eosinophils 
extracellular traps.15

There is a growing body of evidence associating both 
mtDNAcn and ccf-mtDNA with human health status. In 
particular, mtDNAcn has been associated with metabolic 
and cardiovascular disease (CVD).2,12,16,17 Measurement 
of mtDNAcn in human buffy coat/circulating leukocytes 
has revealed an inverse association with prevalent and in-
cident CVD outcomes.18 Also, mtDNAcn in whole blood 
has been correlated to all cause of mortality and cardio-
vascular disease in peripheral arterial disease patients 
with intermittent claudication.19 A potential role of ccf-
mtDNA in the etiology of some inflammatory diseases 
has also been hypothesized.20 MtDNA has been suggested 
to be inflammogenic and immunostimulatory, acting 
as a damage-associated molecular pattern (DAMP).20,21 
The immune system may recognize mtDNA as “foreign” 
due to its bacterial-like sequences, a trait linked to mi-
tochondria's endosymbiotic origins.20 Several pathways 
have been suggested through which mtDNA triggers im-
mune responses, including TLR9 and ZBP1 receptor ac-
tivation, cGAS-STING pathway engagement, NLRP3 and 

AIM2 inflammasome activation.20,22 Despite the unclear 
mechanisms of cell-free mitochondrial DNA (cf-mtDNA) 
entry into cells and its binding to intracellular receptors, 
changes in ccf-mtDNA levels have been measured in 
inflammation-related conditions, including diabetes, cor-
onary heart disease, Parkinson's disease, and Alzheimer's 
disease.23-28 A direct involvement of ccf-mtDNA in CVD 
pathogenesis has been proposed, where mtDNA-LL37 
complexes may accumulate in atherosclerotic plaques, 
leading to the activation of inflammatory cytokines and 
recruitment of immune cells in vitro.20,29

EVs (and their cargoes) have also been implicated in 
the pathophysiology of CVD and have recently been pro-
posed as potential biomarkers for these conditions.30 For 
instance, exosomes derived from vascular smooth muscle 
cells have been shown to transfer miR-155 from smooth 
muscle to endothelial cells, resulting in endothelial cell 
damage and accelerated atherosclerosis.31 Also, EVs re-
leased by endothelial cells may contribute to plaque 
formation by inducing a proliferative and migratory phe-
notype in vascular smooth muscle cells following arterial 
injury.32,33 Among cargoes carried by EVs, DNA is also 
included. Extracellular vesicles DNA (EV-DNA), possibly 
both nuclear and mitochondrial, can be located on the 
surface or inside the vesicle.34 The level of mtDNA carried 
by EVs, particularly exosomes, has been studied in differ-
ent pathologies,35-38 with an observed increase in patients 
with chronic heart failure.39

Despite significant evidence supporting mtDNAcn as 
a biomarker for CVD, the translation of this evidence into 
clinical practice remains limited. Uncertainties persist re-
garding if mtDNAcn from the buffy coat or ccf-DNA or 
its fractions is associated to CVD, as well as whether the 
impact of blood composition on this biomarker affects its 
predictive capabilities. In the light of this evidence, this 
case–control pilot study aims at testing if levels of mtDNA 
in buffy coat (BC-mtDNAcn), ccf-mtDNA or extracellular 
vesicles mitochondrial DNA (EV-mtDNA) are altered in 
CVD patients, and if they can predict heart attack in ad-
vance, compared to other established CVD predictors (i.e., 
Systemic Coronary Risk Estimation 2 (SCORE2),40 and tri-
glycerides/high-density lipoprotein cholesterol ratio (TG/
HDL)41,42). Additionally, this research aims to character-
ize EVs in different cardiovascular health statuses, seek-
ing to discern whether the properties of these particles can 

increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for 
further investigations to determine its pathophysiological role in inflammation.

K E Y W O R D S

cell-free DNA, CVD, extracellular vesicles, heart attack, mitochondrial DNA
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serve as predictive indicators of CVD outcomes or if they 
are associated with their mtDNA content.

2   |   MATERIALS AND METHODS

2.1  |  Participant recruitment and data 
collection

The study is in collaboration with the LifeLines Biobank. 
LifeLines43,44 is a multi-disciplinary prospective 
population-based cohort study examining in a unique 
three-generation design the health and health-related 
behaviors of 167 729 persons living in the North of the 
Netherlands. It employs a broad range of investigative pro-
cedures in assessing the biomedical, socio-demographic, 
behavioral, physical, and psychological factors which 
contribute to the health and disease of the general pop-
ulation, with a special focus on multi-morbidity. The 
LifeLines study was approved by the ethics committee 
of the University Medical Centre Groningen, document 
number METC UMCG METc 2007/152. LifeLines oper-
ates in the highest ethical standards and strictly controls, 
and it takes into account rules regarding the irreversible 
pseudonymization of participants, encryption of data, use 
of trusted third parties (TTPs), and controlled data access. 
This will guarantee that both personal data and samples 
respect the EU Directive 2004/23 on standards for the do-
nation, procurement, testing, processing, preservation, 
storage, and distribution of human tissues and cells and 
EU Regulation 2016/679 of the European Parliament and 
of the Council of April 27, 2016, on the protection of natu-
ral persons with regard to the processing of personal data 
and on the free movement of such data. All participants 
signed an informed consent (http://​wiki.​lifel​ines.​nl/​doku.​
php?​id=​infor​med_​consent).

From 2007 to 2013, over 167 000 participants were 
included at baseline (1A), with the aim to follow up for 
at least 30 years.44 Questionnaires completed during 
the study generated around 8000 variables and cover a 
broad range of topics (detailed information are avail-
able at LifeLines Wiki [http://​wiki-​lifel​ines.​web.​rug.​nl] 
or catalog [https://​data-​catal​ogue.​lifel​ines.​nl]). Subjects 
enrolled have been invited to complete two follow-up 
questionnaires within the following 6 years [from 2011 to 
2013] (time 1B and 1C, about 1.5y and 2.5y after baseline 
assessment, respectively). A second assessment (2A) to 
collect health-related data, physical measurements, and 
additional biological samples was performed after 6y from 
baseline [from 2014 to 2017].

For the participants included in this study (according 
to the study design described in paragraph 2.3), SCORE2 
was calculated. SCORE2 is as an established predictive 

biomarker for CVD, as detailed in the 2021 European 
Society of Cardiology Guidelines on cardiovascular dis-
ease prevention in clinical practice. SCORE2 algorithm es-
timates the 10-year risk of fatal and non-fatal CVD events 
in apparently healthy people aged 40–69 years.45 SCORE2 
estimates the risk of CVD events based on sex, systolic 
blood pressure (mmHg), total cholesterol (mmol/L) 
(tCHOL), HDL cholesterol (mmol/L) smoking habits 
(being or not being a smoker), and geographical origin. 
In this study, SCORE2 has been calculated according to 
the formulas contained in the supplementary materials of 
the paper published in 2021 by SCORE2 working group 
and ESC Cardiovascular risk collaboration.40 We applied 
the formulas specific for low-risk CVD countries (as The 
Netherlands is indexed).

2.2  |  Sample collection, 
processing, and storage

Blood samples have been collected at LifeLines center 
using BD Vacutainer® 10.0 mL K2E (EDTA) 18.0 mg Plus 
blood collection tubes, immediately centrifuged for 15 min 
at 2500 RCF to isolate plasma and buffy coat, then stored 
at −80° upon shipment. Data about tCHOL, HDL, low-
density lipoproteins cholesterol (LDL), triglycerides (TG), 
and blood composition (i.e., neutrophilic, basophilic, 
eosinophilic granulocytes, monocytes, leukocytes, lym-
phocytes, thrombocytes) were collected by LifeLines op-
erators at the laboratory of the University Medical Centre 
Groningen (certified according to NEN-EN-ISO 9001:2008 
and NEN-EN-ISO 15189:2012 standards). Genomic DNA 
(gDNA) was extracted from the buffy coat at LifeLines 
center using the Perkin-Elmer Chemagic 360 to perform 
magnetic bead DNA extraction. Both gDNA from buffy 
coat (BC-DNA) and plasma from selected samples were 
shipped to the University of Camerino for further analysis.

2.3  |  Study design

In this pilot study, information about sex, gender, age, 
body mass index (BMI), blood pressure (measured au-
tomatically using the DinaMap PRO100 or DinaMap 
PRO100V2), dietary records, diet quality (according to the 
LifeLines Diet Score [LLDS]),46 smoking, physical activ-
ity, cardiovascular health, and any other disease onset 
was used to select a subcohort of 144 people according to 
the experimental design shown in Figure 1 and detailed 
as follows. Recruited participants were selected according 
to three different CVD statuses: 50 individuals reported 
a CVD event that previously occurred (within 2 years be-
fore baseline assessment) (γ group). 94 individuals were 
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healthy at baseline assessment. Of them, 50 individuals 
reported a heart attack occurred after baseline assess-
ment (within the following 1.5 years) (β group). The re-
maining 44 did not report any cardiovascular event for the 
following 6 years (α group), representing healthy controls 
(Figure 1). Individuals who were healthy at baseline but 
reported a heart attack during follow-up (β group) were 
selected among new cases of heart attack reported within 
the following 1.5y after baseline assessment. Healthy con-
trols (groups α) were selected matching individuals from 
β group for age, sex, and BMI. Considering potential con-
founding factors able to affect mtDNAcn according to 
previous literature, we selected individuals so that groups 
did not show significant differences in age, ethnicity, 
country of origin, sex, body composition, dietary habits, 
and physical activity levels (see results section). To this 
aim, the selection was performed according to the follow-
ing inclusion and exclusion criteria. Exclusion criteria 
were BMI <18 or ≥40; age <45 or >65; no fasting; missing 
info about LLDS; other ethnicities than Caucasian; other 
birthplaces than Netherlands; individuals who reported at 
baseline one or more of the following pathologies: cancer, 
stroke, diabetes, atherosclerosis, aneurism, or coagulopa-
thy. Inclusion criteria were 18 ≤ BMI < 40, 45 ≤ age ≤ 65, 

blood fasting samples available, available data about 
LLDS, Caucasian ethnicity, and Netherlands birthplace. 
This study design allowed comparison of matched cases 
and controls considering a significant number of new 
cases of heart attack over time in a restricted number of 
samples, controlling for numerous other confounding 
conditions.

2.4  |  Relative quantification of buffy coat 
mtDNA copy number (BC-mtDNAcn)

Relative quantification of mtDNAcn (mtDNAcn/nuclear 
DNA copy number [nDNAcn]) has been assessed in gDNA 
extracted from buffy coat by qPCR using CFX96 (Biorad, 
Hercules, California, USA). The following genes have 
been amplified for the detection of mitochondrial and nu-
clear DNA, respectively, using the listed primers: mtDNA-
tRNALeu (Fw: 5′-CACCCAAGAACAGGGTTTGT-3′; 
Rv: 5′-TGGCCATGGGTATGTTGTTA-3′) and beta-2-
microglobulin (B2M) (Fw: 5′-TGCTGTCTCCATGTTTGAT
GTATCT-3′; Rv: 5′-TCTCTGCTCCCCACCTCTAAGT-3′). 
These primers have been validated by Fazzini and col-
leagues47 and verified for their specificity (unique ampli-
fication of mtDNA) and for the absence of co-amplified 
nuclear insertions of mitochondrial origin (NUMTs).

2.5  |  Total cell-free DNA 
(tcf-DNA) extraction

Plasma samples were thawed at 37° for 5 min and mixed 
to avoid precipitation of insoluble particles that might 
reduce the yield of EVs isolation. According to Trumpff 
et al.,14 plasma was further centrifuged at 5000 g for 10 min 
to remove potential residual platelets and large vesicular 
apoptotic bodies. Clean plasma was used for subsequent 
analyses. Total cell-free DNA (tcf-DNA) has been isolated 
from 480 μL of clear plasma using the Plasma/Serum Cell-
Free Circulating DNA Purification Mini Kit (Cat. 55100, 
Norgen, Thorold, ON, Canada) according to manufactur-
er's instruction.

2.6  |  EVs isolation, characterization,  
and DNA extraction

Small EVs have been isolated from 850 μL of clear 
plasma using the Plasma/Serum Exosome Purification 
Mini Kit (Cat. 57400, Norgen, Thorold, ON, Canada). 
EVs quantification and characterization have been con-
ducted using Dynamic Light Scattering (DLS) (Zetasizer 
Nano-S90, Malvern Panalytical, Malvern, UK) as 

F I G U R E  1   Study design: A total of 144 subjects were included 
in the study according to their cardiovascular health status. 50 
individuals reported a CVD event that previously occurred within 
2 years before baseline assessment (γ group). In all, 94 individuals 
were healthy at baseline assessment. Of them, 50 individuals 
reported a heart attack occurred after baseline assessment (within 
the following 1.5 years) (β group). The remaining 44 did not report 
any cardiovascular event for the following 6 years (α group). 
Individuals were recruited according to specific inclusion and 
exclusion criteria to control for confounding factors that has been 
associated to mtDNAcn by previous studies (see paragraph 2.3 for 
details). Individuals were matched so that the selected groups did 
not show significant differences in age, ethnicity, country of origin, 
sex, body composition, dietary habits, and physical activity levels. 
Figure created with BioRe​nder.​com.
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previously described.48-55 For DLS analysis, 1000 μL of 
ultrapure water has been added to 5 μL of EVs extract 
and 1000 μL of the solution has been transferred in a 
polystyrene cuvette and equilibrated at 22°C. Z-Average 
size, Polydispersity Index (PDI), Derived Count Rate 
(DCR), and Zeta potential (ZP) have been measured. 
The Z-average size (nm) is defined as the intensity-
weighted mean hydrodynamic size of the ensemble 
collection of particles measured by DLS. PDI is a di-
mensionless measure of the heterogeneity of a sample 
based on size.56 The DCR (kpcs) indicates the number of 
photons collected by the light detector of the instrument 
in a second: higher DCR usually indicates higher con-
centrations, larger particles or higher concentration and 
larger particles. The ZP (mV), an indicator of colloidal 
stability, is influenced by the surface charge of extracel-
lular vesicles.57 The net surface charge of extracellular 
vesicles, indicated by the ZP, determines the stability of 
the particles or their tendency to aggregate.57 After char-
acterization, 100 μL of the solution containing EVs have 
been used to extract EV-DNA by the Qiamp DNA mini 
kit (Cat. 51304, Qiagen, Hilden, Germany) according to 
manufacturer's instructions.

2.7  |  Quantification of mtDNA in 
tcf-DNA and EV-DNA by digital PCR

Absolute quantification of total cell-free mitochondrial 
DNA (tcf-mtDNA), total cell-free nuclear DNA (tcf-
nDNA), EV-mtDNA, and extracellular vesicles nuclear 
DNA (EV-nDNA) has been performed by QIAcuity digital 
PCR (Qiagen, Hilden, Germany) according to manufac-
turer's indication. The imaging profiling has performed 
setting the instrument on an exposure duration of 350 ms 
and a gain of 4. MtDNA-tRNALeu and B2M were amplified 
to detect mtDNA or nuclear DNA (nDNA), respectively. 
Poisson statistics have been applied to calculate the aver-
age amount of target DNA per well (QIAcuity Software 
Suite 2.1.8.23, Qiagen, Hilden, Germany). A number of 
copies of target DNA contained in 1 mL of plasma were 
calculated accordingly.

2.8  |  Statistical analysis

Statistical analysis was performed using SPSS (IBM, ver-
sion 25, USA) and R studio (2023.06.0 + 421 version). Data 
were tested for normality using the Shapiro–Wilk test 
and log-transformed prior to analysis where necessary 
to normalize distribution. Parametric tests were such as 
unpaired student t-test or one-way ANOVA. Tukey's mul-
tiple comparison test was used as a post-hoc test to test 

significant difference between mean's groups. A receiver 
operating characteristic (ROC) analysis was performed, 
and the area under curve (AUC) was calculated to test 
predictiveness of the selected biomarkers. Significance 
was accepted with p ≤ .05.

3   |   RESULTS

3.1  |  Descriptive statistics of the cohort 
and CVD risk biomarkers

Table  1 presents the descriptive statistics of the se-
lected cohort. No differences between the three groups 
are measured for age (Kruskal–Wallis; p = .907), BMI 
(Kruskal–Wallis; p = .680), or sex distribution (Pearson's 
chi-square; p = .970), in accordance with the case–con-
trol design of the study. The three groups were exposed 
to current similar lifestyle habits among those that may 
impact cardiovascular risk (smoking, diet, physical ac-
tivity). In particular, current smokers were not differ-
ently distributed among groups (Pearson's chi-square; 
p = .551). Dietary habits (measured considering the 
LLDS46 as an index of the overall diet quality) were not 
significantly different among groups (ANOVA; p = .457). 
Moderate-to-vigorous physical activity was not different 
between groups neither for hours per week (Kruskal–
Wallis; p = .801) nor for the activity score (Kruskal–
Wallis; p = .932).

3.1.1  |  Blood composition in the CVD groups

Given that changes in blood composition have been pre-
viously observed in patients with CVD or at risk,58 and 
it has been hypothesized that thrombocyte levels may 
influence ccf-mtDNA levels,14 data on the blood com-
position of participants have been analyzed. Table  2 
shows the differences in blood composition in the three 
groups. A p for trend difference was observed for leu-
kocytes (ANOVA, p = .082), where lower levels were 
measured in α than in β group (p = .026). A significantly 
different distribution between groups was measured 
for mononuclear cells (ANOVA, p = .020), with higher 
levels in β than α group (p = .005). Levels of eosino-
philic granulocytes were different in the three groups 
(ANOVA, p = .038), with higher values in γ than α group 
(p = .016). No significant differences between groups 
were observed for other parameters describing blood 
cell composition (Table 2).

Difference between the groups in platelets/leukocytes 
ratio (P/L), a factor believed to influence the quantification of 
mtDNAcn in blood cells,59 exhibited a p for trend (ANOVA, 
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p = .059). In particular, P/L was higher in α (P/L = 43.1 ± 12.6) 
than γ (P/L = 37.4 ± 8.4) (p = .033) or β (P/L = 38.7 ± 13.0) 
(p = .042). β P/L was not different to γ P/L (p = .913).

3.1.2  |  Classical CVD risk biomarkers

TG/HDL ratio (considered a CVD risk biomarker41,42) 
was different between groups (Kruskal–Wallis; p = .026). 
γ group showed a TG/HDL ratio significantly higher than 
α (p = .008). No significant differences were measured be-
tween α and β (p = .076) or β and γ (p = .355). The three 
groups did not show significant differences for the SCORE2 
profile (Kruskal–Wallis, p = .060), which is considered an es-
tablished predictor of CVD.40 Results are shown in Table 3.

3.2  |  mtDNAcn from buffy coat 
(BC-mtDNAcn) in different CVD statuses

Relative quantification of buffy coat mtDNAcn (mtD-
NAcn/nDNAcn) was not associated to age (p = .703), 
which was suggested to affect this parameter in previ-
ous studies.59 This observation could potentially be at-
tributed to the relatively narrow age range within the 
cohort (Table  1). BC-mtDNAcn was significantly cor-
related with blood composition. In particular, mtD-
NAcn was positively correlated with leukocyte levels 
(Pearson's correlation = .264, p = .002), especially mono-
nuclear cells (Pearson's correlation = .232, p = .006). A 
nominal correlation was detected also with neutrophils 
(Pearson's correlation = .188; p = .027) and basophilic 
granulocytes (Pearson's correlation = .178; p = .037) 
but not with eosinophils (p = .487). No correlation with 
platelets, the other major cellular component of buffy 
coat, was measured (p = .219). Since P/L is considered 
a confounding factor for mtDNAcn assessments in 
blood,59 we tested the association between BC-mtDNAcn 
and this parameter. Results showed a significant corre-
lation between BC-mtDNAcn and P/L ratio (Pearson's 
correlation = −.177; p = .036).

No differences were observed for BC-mtDNAcn be-
tween individuals who were healthy at baseline (α + β) 

and CVD cases (γ) (p = .558). Given the previously men-
tioned correlation with blood cells, we normalized BC-
mtDNAcn for platelet/leukocyte ratio. Still, no significant 
differences were measured (p = .995) (Figure  2A). No 
significant differences were measured by distinguishing 
between healthy controls (α), individuals who reported 
a heart attack in 1.5y (β), and previous CVD cases (γ) 
(p = .442) (Figure 2B).

3.3  |  mtDNA from total cell-free DNA 
(tcf-mtDNA)

Mean levels of total cell-free mitochondrial DNA copy num-
ber (tcf-mtDNAcn) were 48068.72 ± 41744.96 copies/mL, 
while levels of total cell-free nuclear DNA copy number 
(tcf-nDNAcn) were 1407.52 ± 859.51 copies/mL of plasma. 
As expected, tcf-mtDNAcn was higher than tcf-nDNAcn 
detected in the same starting volume of plasma (1 mL). 
No differences in tcf-mtDNAcn (p = .510) (Figure  3A) or 
tcf-nDNAcn (Figure  3B) (p = .387) or tcf-mtDNAcn/tcf-
nDNAcn ratio (p = .922) have been observed between sub-
jects that were healthy at baseline (α + β) and CVD cases (γ). 
No differences in tcf-mtDNAcn (p = .796) (Figure 3C) or tcf-
nDNAcn (p = .134) (Figure 3D) or tcf-mtDNAcn/nDNAcn 
(p = .296) amount have been measured between groups.

No correlations between tcf-DNAcn and blood com-
position (data not shown) were measured, except for 
tcf-mtDNAcn/nDNAcn ratio, which was significantly 
correlated with leukocyte abundance in blood (Pearson's 
correlation = .235; p = .005). No correlations between 
the BC-mtDNAcn and tcf-mtDNAcn (p = .444) or tcf-
mtDNAcn/nDNAcn (p = .450) were measured.

3.4  |  Plasma EVs characterization and 
EV-DNA cargoes

3.4.1  |  Plasma EVs characterization

DLS results show a homogeneous population of isolated 
extracellular vesicles (PDI: 0.29 ± 0.19). DCR, Z-average, 
and ZP for the overall group are shown in Table 4. No 

T A B L E  3   Classical biomarkers of CVD (TG/HDL and SCORE 2) in the three groups: α (N = 44), β (N = 50), and γ (N = 50).

α (N = 44) β (N = 50) γ (N = 50)

pMin Max Mean SD Min Max Mean SD Min Max Mean SD

TG/HDL 0.21 7.49 1.132 1.250 0.152 5.100 1.306 1.024 0.367 3.664 1.346 0.802 .026

SCORE2 0.010 0.160 0.042 0.028 0.012 0.104 0.046 0.022 0.008 0.086 0.035 0.017 .060

SCORE2 (%) 0.949 16.014 4.190 2.770 1.181 10.426 4.566 2.192 0.826 8.606 3.458 1.686 .060

Abbreviations: Max, maximum; Min, minimum; N, number; p = p-value; SD, standard deviation.
Significant results are in bold
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8 of 17  |      RUCCI et al.

significant differences were measured in terms of DCR 
and PDI (Table 4). Thus, no differences in DNA cargoes 
between CVD groups can be attributed to differential 
processing of the samples during EVs extraction. Also, 

no significant differences among groups were observed 
for EVs Z-average and ZP (Table 4), suggesting that no 
major differences in EVs dimension and charge can be 
measured in different cardiovascular health statuses.

F I G U R E  2   BC-mtDNAcn normalized for platelets/leukocytes ratio in (A) healthy individuals at baseline (α + β) and CVD cases (γ) or 
(B) in the three groups α, β, and γ.

F I G U R E  3   Tcf-mtDNAcn and tcf-nDNAcn measured in healthy subjects at baseline (α + β) versus CVD cases (γ) (A, B). Tcf-mtDNAcn 
and tcf-nDNAcn measured in the three groups α, β, and γ (C, D).
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3.4.2  |  Quantification of mtDNA and nDNA 
in plasma EVs

Both mtDNA and nDNA were detected by QIAcuity 
dPCR in the DNA extracted from EVs. In particular, EV-
mtDNAcn plasma levels were 1840.0 ± 2663.5 copies/mL, 
while EV-nDNAcn was 126.4 ± 105.7 copies/mL of plasma. 
EV-mtDNAcn/EV-nDNAcn ratio was 51.00 ± 83.99 in the 
whole sample.

EV-mtDNAcn was significantly positively correlated 
with the DCR (Pearson's correlation = .294; p = 3.5*10−4), 
proving that mtDNA is a cargo in the isolated EVs. Since 
the DCR depends on the number of particles and their 
average size, we also tested the correlation between the 
EV-mtDNAcn and the DCR adjusting for the average size. 
The correlation between mtDNAcn and DCR is confirmed 
(β = 0.328, p = .003), with no contribution of the average 
size (p = .766) to the model. This corroborates the hypoth-
esis that EV-mtDNcn is correlated with the abundance of 
EVs, and even eventual nanoparticle aggregates are not 
responsible for differences observed between groups. EV-
mtDNAcn was correlated with Z-average (p = .044) but not 
with the ZP (p = .574). Since ZP depends on the EVs sur-
face charge, these results suggest that it is unlikely that 
mtDNA is passively carried on the surface of the EVs, 
while it is rather carried as expected within EVs.

On the contrary, EV-nDNA was not correlated to extra-
cellular vesicles DCR (p = .315), Z-average (p = .626), or ZP 
(p = .284). This suggests that the low level of nDNA mea-
sured in EVs is likely a residual contamination rather than 
a real EVs cargo. According to this hypothesis, the ratio 
EV-mtDNA/EV-nDNA was not associated to exosomes 
DCR (p = .725), Z-average (p = .427), or ZP (p = .445).

EV-mtDNA was not associated to the blood compo-
sition in the whole group (Additional file  1: Table  S1). 
EV-nDNAcn was correlated to the levels of basophilic 
granulocytes (Pearson's correlation = 0.272; p = .001) and 
mononuclear cells (Pearson's correlation = .205; p = .017). 
EV-nDNA was also correlated with BC-mtDNAcn 
(Pearson's correlation = .223; p = .009), tcf-mtDNAcn 
(Pearson's correlation = .209; p = .013), and tcf-nDNAcn 

(Pearson's correlation = .226; p = .007). This evidence (EV-
nDNA correlating to total levels of DNA circulating in 
plasma but not to the abundance of EVs) supports the hy-
pothesis that EV-nDNA detected in these samples is rather 
a contamination than EV-DNA cargo. On the contrary, EV-
mtDNAcn (which was associated to the abundance of EVs 
in the sample) was correlated neither with BC-mtDNAcn 
nor with the tcf-mtDNAcn or tcf-nDNAcn levels (Table 5). 
This supports the hypothesis that EV-mtDNAcn is due to a 
biological phenomenon independent of the total cell-free 
DNA levels.

3.4.3  |  EVs DNA cargoes in CVD groups

Individuals who were healthy at baseline (α + β) had lower 
levels of EV-mtDNAcn than in CVD cases (γ) (p = .006) 
(Figure  4A). In particular, the γ group showed signifi-
cantly higher levels of EV-mtDNAcn than the α group 
(p = .019) and the β group (p = .016), with no differences 
between α and β groups (p = .995) (Figure 4C). The asso-
ciation between EV-mtDNAcn and CVD status remained 
significant (β = 0.195; p = .022) also adjusting the analysis 
for the blood composition (that differed between CVD 
groups), suggesting that increased EV-mtDNAcn is not a 
direct consequence of blood cell composition differences.

EV-nDNAcn was significantly higher in CVD cases 
than in healthy subjects at baseline (p = .033) (Figure 4B). 
Also, EV-nDNAcn was significantly higher in γ than β 
group (p = .009), but it did not differ from α group (p = .167) 
(Figure  4D). However, a multivariate linear regression 
model adjusted for blood composition showed no signif-
icant association between EV-nDNAcn and CVD status 
(p = .477). Similarly, no significant associations were de-
tected adjusting for DCR, Z-average, or ZP between EV-
nDNA with the CVD status (p = .326). On the contrary, the 
association between EV-mtDNAcn and CVD status was 
significant (β = 0.180; p = .025) even adjusting the model 
for the DCR (that is per se associated to the EV-mtDNAcn; 
β = 0.294; p = .003), the Z-average, and the ZP (which do 
not contribute to this association). These results suggest 

T A B L E  4   Characterization of plasma EVs by DLS in α (N = 44), β (N = 50), and γ (N = 50) groups.

α (N = 44) β (N = 50) γ (N = 50)

pMin Max Mean SD Min Max Mean SD Min Max Mean SD

DCR (kcps) 182 5417 1640 1177 306 7413 1453 1316 343 7473 2001 1726 .22

Z-average (nm) 105 357 236 62 118 368 242 63 120 366 241 60 .87

PDI 0.03 0.69 0.27 0.18 0.39 0.77 0.31 0.19 0.04 0.68 0.30 0.20 .53

Z-potential (mV) −25.6 −3.0 −11.3 4.8 −22.4 −2.4 −11.3 3.9 −25.6 −3.1 −10.6 4.9 .61

Note: Kruskal–Wallis test was applied.
Abbreviations: Max, maximum; Min, minimum; N, number; p, p-value; SD, standard deviation.
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10 of 17  |      RUCCI et al.

that both the EVs abundance and their mtDNA cargoes 
contribute to explain the difference between the three 
groups.

To understand if the concentration of circulating EVs 
(DCR) and/or EV-mtDNAcn were able to distinguish be-
tween healthy subjects (α + β) and CVD patients (γ), we 
performed a multivariate logistic regression. The analysis 
showed that EV-mtDNAcn (β = 1.673; p = .019), but not 
the EVs DCR (p = .410), significantly contributed to the 
prediction model. This suggests the hypothesis that EV-
mtDNAcn cargo (rather than the number of EVs) is the 
major driver of the association between EV-mtDNAcn 
and the cardiovascular health status.

Considering the possibility to distinguish in advance 
subjects that are going to develop CVD from really healthy 
subjects (i.e., comparing α with β group), neither EV-
mtDNAcn (p = .994) nor EVs DCR (p = .396) were able to 
predict the onset of CVD in advance.

3.5  |  CVD risk prediction

No significant correlations were measured between CVD 
risk biomarkers such as TG/HDL or SCORE2 and BC-
mtDNAcn, tcf-mtDNAcn, or EV-mtDNAcn (Table  6). 
However, SCORE2 was correlated to the EVs DCR (total 
number of exosomes isolated from the same amount 
of plasma) (β = 0.171; p = .049), independently from the 
EV-mtDNAcn (β = 0.014; p = .875), and the CVD status 
(β = −0.152; p = .072).

To assess the predictive power and compare the se-
lected biomarkers for CVD, we conducted ROC analysis. 
Results showed that only EV-mtDNAcn (AUC = 0.648; 
p = .002) was predictive of CVD presence at baseline 
(α + β vs. γ). A p for trend was measured for TG/HDL 
(AUC = 0.595; p = .051). No significant results were ob-
tained for SCORE2 (AUC = 0.411; p = .068), tcf-mtDNAcn 
(AUC = 0.544; p = .390), or BC-mtDNAcn (AUC = 0.450; 
p = .337) (Figure 5A). Testing the predictiveness of heart 
attack in advance (α vs. β), none of the classifiers re-
sulted to be significantly associated to the outcome [EV-
mtDNAcn, AUC = 0.648; p = .002; TH/HDL, AUC = 0.595; 
p = .051; SCORE2, AUC = 0.570; p = .068; tcf-mtDNAcn, 
AUC = 0.544; p = .390; BC-mtDNAcn, AUC = 0.450; 
p = .337] (Figure 5B).

4   |   DISCUSSION

A large body of literature describes the link between CVD 
and inflammation,60 which in turn is connected to mi-
tochondrial homeostasis.61 Remarkably, Chen et  al. re-
cently showed that small EVs from young plasma reverse T

A
B

L
E

 5
 

Pe
ar

so
n 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
 (r

) a
nd

 p
-v

al
ue

 (p
) o

f t
he

 c
or

re
la

tio
n 

be
tw

ee
n 

BC
-m

tD
N

A
cn

, T
cf

-m
tD

N
A

cn
, T

cf
-n

D
N

A
cn

, T
cf

-m
tD

N
A

cn
/T

cf
-n

D
N

A
cn

, E
V

-m
tD

N
A

cn
, E

V
-

nD
N

A
cn

, a
nd

 E
V

-m
tD

N
A

cn
/E

V
-n

D
N

A
cn

.

B
C

-m
tD

N
A

cn
T

cf
-m

tD
N

A
cn

T
cf

-n
D

N
A

cn
T

cf
-m

tD
N

A
cn

/
T

cf
-n

D
N

A
cn

E
V

-m
tD

N
A

cn
E

V
-n

D
N

A
cn

E
V

-m
tD

N
A

cn
/

E
V

-n
D

N
A

cn

r
p

r
p

r
p

r
p

r
p

r
p

r
p

BC
.-m

tD
N

A
cn

1
−

0.
06

5
.4

44
−

0.
15

4
.0

68
0.

06
4

.4
50

0.
16

3
.0

54
0.

22
3

.0
09

0.
06

4
.4

50

Tc
f-m

tD
N

A
cn

−
0.

06
5

.4
44

1
0.

28
8

4*
10

−
4

0.
65

8
3*

10
−

19
−

0.
03

2
.6

99
0.

20
9

.0
13

0.
65

8
3*

10
−

5

Tc
f-n

D
N

A
cn

−
0.

15
4

.0
68

0.
28

8
4*

10
−

4
1

−
0.

53
2

6*
10

−
12

−
0.

05
7

.4
95

0.
22

6
.0

07
−

0.
53

2
6*

10
−

12

Tc
f-m

tD
N

A
cn

/T
cf

-n
D

N
A

cn
0.

06
5

.4
50

0.
65

8
3*

10
−

19
−

0.
53

2
6*

10
−

12
1

0.
01

6
.8

45
0.

01
6

.8
51

1
0

EV
-m

tD
N

A
cn

0.
16

3
.0

54
−

0.
03

2
.6

99
−

0.
05

7
.4

95
0.

01
6

.8
45

1
0.

18
7

.2
8

0.
16

.8
45

EV
-n

D
N

A
cn

0.
22

3
.0

09
0.

20
9

.0
13

0.
22

6
.0

07
0.

01
6

.8
51

0.
18

7
.2

8
1

−
0.

01
6

.8
51

EV
-m

tD
N

A
cn

/E
V

-n
D

N
A

cn
0.

06
4

.4
50

0.
65

8
3*

10
−

5
−

0.
53

2
6*

10
−

12
1

0
0.

01
6

.8
45

0.
01

6
.8

51
1

Si
gn

ifi
ca

nt
 re

su
lts

 a
re

 in
 b

ol
d

 15306860, 2024, 10, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202400463R

 by C
ochraneItalia, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  11 of 17RUCCI et al.

age-related functional declines by improving mitochon-
drial energy metabolism, suggesting a functional link be-
tween EVs and mitochondrial functions.62 Intracellular 
mtDNAcn, initially proposed as a surrogate biomarker of 
mitochondrial functions, has been associated to metabolic 
and cardiovascular health in humans.12 Also, ccf-mtDNA 
may be implicated in the pathogenesis of CVD, owing to 
its potential pro-inflammatory properties.14,20,22 Thus, the 
hypothesis that mtDNAcn might be used as a predictive 
tool for CVD prevention and risk stratification has been 
postulated.18 Previous studies have shown an inverse cor-
relation between whole blood63-65 or BC-mtDNAcn18,66 
(relative to nDNA) and both prevalent and incident CVD.18 

However, concerns about this measurement have been 
raised,59 particularly considering that blood composition 
might influence this parameter. This concern arises from 
the varied abundance of mtDNAcn in different cell types, 
with platelets, in particular, contributing to the measure-
ment with mtDNA but not nDNA. Therefore, mtDNAcn 
measured from whole blood or buffy coat may serve as 
an index of overall blood composition rather than specifi-
cally reflecting mitochondrial functions. In our study, BC-
mtDNAcn was not different in subjects that were healthy 
at baseline (α + β) than in CVD cases (γ). No significant 
difference has been seen neither in adjusting the analy-
sis for platelet/leukocyte ratio. The BC-mtDNAcn was 

F I G U R E  4   EV-mtDNAcn and EV-nDNAcn measured in healthy subjects at baseline (α + β) and in CVD cases (γ) (A, B). EV-mtDNAcn 
and EV-nDNAcn measured in the three groups α, β, and γ (C, D). *p < .005.

BC-mtDNAcn p Tcf-mtDNAcn p EV-mtDNAcn p

TG/HDL ratio −0.032 .704 −0.035 .675 0.089 .289

SCORE2 0.075 .376 −0.064 .447 0.034 .686

T A B L E  6   Pearson coefficient and 
p-value (p) of the correlation between BC-
mtDNAcn, Tcf-mtDNAcn, EV-mtDNAcn, 
and TG/HDL ratio and SCORE2.
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not associated to SCORE2 or TG/HDL. Despite platelets 
and leukocytes being major contributors to the release of 
ccf-mtDNA, no correlations between BC-mtDNAcn and 
tcf-mtDNAcn were observed. It is worth noting that plate-
lets and leukocytes, while significant contributors, are not 
the sole contributors to this phenomenon.14 In any case, 
BC-mtDNAcn was not informative of the cardiovascular 
health status in this cohort.

While numerous studies have tested the associations 
between CVD and mtDNAcn from whole blood, there is 
a scarcity of data from human cohorts concerning ccf-
mtDNAcn in CVD. Berezina et al.67 showed that heart 
failure patients (N = 120) have higher ccf-nDNAcn but 
lower ccf-mtDNAcn than controls (N = 120). In contrast, 
Liu et al.24,68 measured an increase in mtDNA in diabetic 
patients with coronary heart disease (CHD) (N = 50) 
compared to those without CHD (N = 44). Wiersma 
et al.69 showed increased levels of ccf-mtDNAcn in par-
oxysmal atrial fibrillation (N = 100) but reduced levels in 
persistent atrial fibrillation (N = 116) and longstanding-
persistent atrial fibrillation (N = 20) compared to controls 
(N = 84). Ueda et  al.70 measured higher levels of both 
ccf-mtDNAcn and ccf-nDNAcn in patients with athero-
sclerotic plaques (N = 62) than controls (N = 21). Only 
Ye et al.39 selectively investigated the plasma exosomes-
derived mtDNA (by droplet digital PCR), showing that 
both the plasma exosome particle numbers and the exo-
somal mtDNAcn were elevated in chronic heart failure 
patients (N = 20) compared to controls (N = 20). In our 
study, no significant differences were observed between 
healthy subjects (α + β) and CVD patients (γ) in terms of 
mtDNAcn measured in the total fraction of cell-free DNA 
(tcf-mtDNAcn). Tcf-mtDNAcn was not different neither 

between α and β groups. However, the specific fraction 
of mtDNAcn carried in EVs was higher in CVD patients 
(γ) than healthy subjects (α + β), while no difference was 
observed between individuals who reported a heart at-
tack after 1.5 years (β) and those remaining healthy in 
the following 6 years (α). The association between EV-
mtDNAcn and CVD status remained significant even 
after adjusting the analysis for both the abundance of 
EVs and blood composition. This observation suggests 
that variations in EV-mtDNAcn may offer more insights 
into cardiovascular health compared to tcf-mtDNAcn. 
This is significant because tcf-mtDNA includes both 
passively released mtDNA (resulting from necrosis or 
apoptosis) and actively released mtDNA, while EV-
mtDNA specifically originates from an active and reg-
ulated process.14 Little is known about the mechanistic 
explanation of the packaging of mtDNA in EVs but in-
creasing attention has recently started to be addressed 
to this phenomenon. EVs containing mtDNA have been 
hypothesized to derive from mitochondria-derived ves-
icles,22 given that they transport mitochondrial pro-
teins.71 However, a recent study denied the presence of 
mtDNA in mitochondria-derived vesicles72 proposing 
the hypothesis that different mechanisms could be im-
plicated in the translocation of mtDNA to EVs, or that 
other transporters of mtDNA from mitochondria to EVs 
may exist.22 Our results lead us to speculate that cells 
may initiate an active response to CVD, resulting in 
the packaging of mtDNA inside EVs released into the 
bloodstream. Indeed, a positive correlation between the 
EV-mtDNAcn and EVs abundance was measured in our 
cohort. The role of mtDNA transfer by EVs in CVD has 
been previously investigated,73 especially in  vitro.74,75 

F I G U R E  5   ROC curve analysis evaluating the predictiveness of the selected biomarkers for CVD presence at baseline (A) or after 
1.5 years from baseline (B).
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While the molecular pathways activated by mtDNA in 
EVs are only partially defined, compelling evidence re-
garding the pro-inflammatory potential of ccf-mtDNA 
has been gathered.20,22,76 Fan et al.77 showed increased 
levels of inflammatory biomarker in chronic kidney 
disease patients with high mtDNAcn. Also, mtDNA 
released within exosomes has been recently shown to 
promote inflammation in Behçet's syndrome, a chronic 
systemic inflammatory disorder.78 Indeed, exosomes, 
which represent a large part of EVs, play a crucial role 
in the process of intracellular and inter-organ commu-
nication transporting fundamental biological signals 
which can have paracrine or long-rage effects.34 The 
uptake of exosomes by recipient cells involves the en-
dosomal pathway.79 As a DAMP, mtDNA may activate 
TLR9, cGAS-STING, and NLRP3.22 Of note, previous 
studies have shown that the cGAS-STING-IRF3 or the 
STING–NF-kB pathway is activated when oxidized 
mtDNA leaks into the cytosol.80 Also, the activation of 
the NLRP3 inflammasome requires the release of oxi-
dized mtDNA.81 These findings suggest that biochem-
ical modifications of mtDNA (not limited to oxidation 
but potentially including other modifications, such as 
methylation or hydroxymethylation) might represent an 
additional layer of regulation of these mechanisms and 
modulate the pro-inflammatory potential of the mtDNA 
over long distances. This interesting hypothesis might 
represent an additional level of regulation of mtDNA 
pro-inflammatory effects, warranting further investiga-
tions currently ongoing in our laboratories.

A role for exosomes per se has been suggested in the 
development of CVD,30,33 with previous literature show-
ing higher levels of plasma exosomes in chronic heart 
failure patients and acute ischemic stroke patients than 
controls.39,82 In our study, EV-mtDNAcn remained associ-
ated with CVD even after adjusting for the characteristics 
of EVs and blood composition, suggesting that the cargo, 
rather than the number and size of EVs, may play a crucial 
role in the biological phenomena occurring after a heart 
attack. Nevertheless, we found a correlation between the 
abundance of EVs and SCORE2, an international index 
considered a predictor of CVD in the long range,40 corrob-
orating the importance of EVs in defining the risk for CVD.

In our study, EV-mtDNAcn was not associated with the 
EVs surface charge, suggesting that the DNA is contained 
within the vesicles rather than being externally associated 
with the vesicle surface. This evidence aligns with our hy-
pothesis, suggesting a cellular response in the context of 
CVD, leading to the active packaging of mtDNA as a cargo 
within EVs. The presence of double-stranded DNA on the 
surface of EVs has been previously reported.83 Complexes 
constituted by double-stranded DNA and histones such 
as H2A, H2B, and H3 have been found on the surface of 

exosomes.84 In line with this evidence, a few copies of nu-
clear DNA were also detected in EVs in our study, where 
EV-nDNAcn was higher in CVD patients than in subjects 
who were going to develop a heart attack. No differences 
have been seen in the EV-nDNAcn levels between CVD 
patients and controls. However, EV-nDNAcn was not as-
sociated to the abundance of EVs (measured as DCR by 
DLS), while it was correlated with both mtDNAcn and 
nDNAcn from the overall cell-free fraction, as well as to 
the number of blood mononuclear cells and basophilic 
granulocytes. This hinted at the hypothesis that the few 
copies of nDNA detected in our EVs samples could po-
tentially be passively carried on the surface of the vesicles 
rather than being a real EVs cargo. Also, nDNA detected in 
EVs might be a remnant of nDNA from the total cell-free 
DNA fraction. Indeed, despite some studies that reported 
nDNA in EVs,85,86 the presence of genomic DNA in EVs is 
still a matter of debate. In particular, the mechanism by 
which nDNA, which is compartmentalized in the nucleus, 
is transported into EVs remains an open question.87 A hy-
pothesis posits that micronuclei, structural formations in 
the nuclear membrane that arise during cell division in 
the event of errors in chromosome distribution, may col-
lapse, releasing their DNA content into the cytoplasm.87 
In turn, the nDNA released by micronuclei may be loaded 
into exosomes. Indeed, higher levels of DNA have been 
found in the exosomes produced by cancer cells or by cells 
exposed to genotoxic conditions which contains a higher 
number of micronuclei.86-88 Despite this intriguing hy-
pothesis, our findings do not confirm that the low levels 
of nDNA detected in EVs, even with advanced and highly 
sensitive technologies like digital PCR, represent a reliable 
signal.

Concerning the possibility to predict CVD, neither 
classical predictors (TG/HDL,41 SCORE240) nor levels of 
mtDNAcn (both in buffy coat or EVs) were able to pre-
dict heart attack 1.5y in advance (distinguishing α from β 
group). In contrast, SCORE2 was significantly able to pre-
dict CVD onset after 6y.

This study shows preliminary findings, and some 
drawbacks have to be acknowledged. The first limita-
tion arises from the unavailability of blood samples 
from acute cases of heart attack for analysis. These 
samples would have been valuable as positive controls. 
Unfortunately, this constraint originates because the 
LifeLines cohort primarily focuses on studying healthy 
individuals. Consequently, we weren't able to identify 
a significant number of samples still matching cases 
and controls by adhering to the selection and matching 
criteria. The sample size of 144 individuals is a second 
limitation, potentially increasing the risk of false neg-
ative outcomes. However, this risk is mitigated by the 
study's robust case–control design, which is founded 
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on stringent inclusion and exclusion criteria outlined 
earlier. These criteria consider not only information at 
basal assessment (i.e., age, smoking, diet, physical activ-
ity, other disease presence) but also prospective disease 
onset (i.e., we excluded individuals who developed any 
other diseases than heart attack in 1.5y). For this rea-
son, this is a unique cohort, where differences between 
samples are likely attributed to the presence or onset of 
heart attack, controlling for numerous confounding fac-
tors, which are rarely used as selection criteria in bigger 
cohorts. Unfortunately, it was not possible to consider 
familial history for CVD and to compare predictiveness 
of mtDNAcn with other specific biomarkers of cardio-
vascular health in this cohort. Future studies addressing 
this research question in larger cohorts and including 
these information would enhance the potential for 
translating the evidence into clinical practice.

In conclusion, risk stratification and prediction of car-
diovascular event remains a challenge, emphasizing the 
need for further research investments. This is particularly 
crucial given the substantial impact of these pathologies 
on the health system. Although several studies suggested 
the usage of mtDNAcn as a predictor of CVD,2,18,19,89-91 
applications of this evidence in clinical practice remain to 
be validated. Nevertheless, our preliminary findings sug-
gest EVs and their cargoes (including mtDNA) as a prom-
ising and novel focus for a better understanding of CVD 
pathophysiology. Further research is warranted to investi-
gate how mtDNA released in plasma exerts its biological 
effects, especially in the context of inflammation-driven 
pathologies.
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