UNIVERSITY OF CAMERINO

INTERNATIONAL SCHOOL OF ADVANCED STUDIES

Dany: scalability solutions for
IoT smart contracts

DocTORrRAL THESIS

PhD Candidate (XXXV Cycle):
Davide Sestili

Universita di Camerino

1336

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophyin

Computer Science

Author: Supervisor:
Davide Sestili Prof. Leonardo Mostarda

April 2023

http://www.unicam.it

UNIVERSITY OF CAMERINO

Abstract

Computer Science
Doctor of Philosophy

Dany: scalability solutions for IoT smart contracts

by Davide Sestili

Smart contracts are self-executing programs that run when certain predetermined
conditions are met. The advent of blockchain technologies provided the means
to executing smart contracts in a decentralized fashion without the need of trust-
ing a central authority: the correct execution of the smart contract is ensured
by the consensus protocol of the blockchain on which it is deployed. Blockchain
smart contracts property of trustless execution make it an interesting technology
for the IoT. However, IoT applications often require processing large amounts of
data which are often difficult to manage in a blockchain environment. In fact,
traditional blockchains can process only few transactions per second, making it
unsuitable for the needs of many IoT applications. Furthermore, traditional pub-
lic blockchains require users to pay fees for every piece of data committed to the
chain, this makes the use of blockchains too expensive in many [oT case scenarios,
since they often involve [oT devices exchanging large amounts of messages. In
this thesis, it is presented a solution for executing smart contracts that improves
scalability on blockchains in terms of throughput and costs. The solution is par-
ticularly suited for the IoT but its generality make it possible to be used in a
variety of scenarios not necessarily related to the internet of things.

1

HTTP://WWW.UNICAM.IT
https://computerscience.unicam.it

Contents

Abstract

1

Introduction

1.1 UTXO model and Account model
1.2 Smart contracts
1.3 Internet of Things and Blockchains
1.4 Motivation and research questions
1.5 Thesis contribution Lo
1.6 Thesis organisation L

State of art on scalability solutions
2.1 On-chain approaches to scalability
2.1.1 Consensus protocolso
Proof-of-Stake consensus protocols
Proof-of-Authority consensus protocols
2.1.2 Sharding
2.1.3 IoT blockchain ecosystems
2.1.4 Other Distributed Ledger technologies
Directed acyclic graph
2.2 Off-chain approaches to scalability
2.2.1 Payment channels 0oL
2.2.2 Statechannelso
2.2.3 Delegated computation L
2.2.4 Sidechains
225 Diversityo

Pollutant emission control system

3.1 Pollutant emission control case study

3.2 Blockchain solution oL oo

3.3 Evaluation of a local blockchain solution with Hyperledger Besu . .
3.3.1 Blockchain configurations
3.3.2 Benchmark configuration
3.3.3 Benchmark results

3.4 Evaluation of a distributed blockchain solution using Hyperledger
Besu o
3.4.1 Blockchain configuration
3.4.2 Hyperledger Caliper
3.4.3 Custom benchmark tool,

111

ii

10
12
13
17
18
18
19
19
20
21
23
25

3.4.4 Benchmark tests performed
Caliperresults

Custom tool results L.

3.5 Discussion

4 Dany

4.1 Dany at glance
4.2 Sensor layer
4.2.1 Sensor messages and windows L.

4.3 Blockchain layero oo
4.4 Intermediate node layer.o 0L
4.5 Agreement certificate protocol00
4.6 Dispute resolution protocol L.
Dispute resolution by providing the window of data

4.6.1 Dispute with window and agreement certificate

4.7 Proofs
4.8 Monetary incentive
4.9 Riskso
4.9.1 Inappropriate window size
4.9.2 Blackhole attack o000
4.9.3 Off-line intermediate node
4.9.4 Inappropriate dispute periodo
4.9.5 Inappropriate transition function
4.9.6 Stakeistoolow
4.9.7 Blockchain reorganizations

5 Intermediate nodes implementation
5.1 Data structures
5.1.1 Message structures
5.2 Procedures.
5.2.1 parseSensorMessage procedure
5.2.2 parseProtocolMessage procedure L.
5.2.3 parseLeaderProtocolMessage procedure
5.2.4 parseStandardProtocolMessage procedure.
5.2.5 parseAgreementCertificate procedure
5.2.6 parseTick procedure
5.2.7 Dispute process oL

6 Experimental results
6.1 Scenario
6.2 Implementationo L
6.3 Results and discussion

7 Conclusions and future directions

v

40
41
41
42
44
46
47
49
20
o1
02
56
57
o8
o8
o8
29
59
29
60

61
61
63
64
65
65
66
67
67
68
71

73
73
73
7

81

Chapter 1

Introduction

Blockchain technology was introduced by Satoshi Nakamoto in [46], where he
proposed a solution for allowing electronic payments between users without having
to trust a centralized institution. The problem Nakamoto’s work addressed was the
problem of creating a distributed storage of timestamped documents that no user
can tamper with without being detected [26]. These kinds of distributed storage
systems are called Distributed ledgers. Bitcoin implements a distributed ledger in
a peer-to-peer network of nodes that do not require to trust each other. Each node
of the network is connected to a subset of other nodes and exchanges messages
with them. When a user wants to include a transaction in the distributed ledger,
he needs to send the transaction to a node; the node will gossip the transaction
to its peers and eventually, the transaction will reach a miner. In the Bitcoin
blockchain, a miner is a node that can append a transaction to the distributed
ledger and, in order to do that, the miner performs some preliminary checks on
the transaction received in order to guarantee that the transactions are compliant
with the protocol specifications and the current state of the ledger (e.g., no user
can spend the same coin twice [18]). After that, the miner tries to include the
transactions in the ledger by creating a block that contains them along with other
data, including a reference to a previous block and a solution to a computationally
expensive cryptographic puzzle, and then propagates it to the network: the process
by which a miner creates a block is called mining.

Mining allows the bitcoin blockchain to guarantee that nodes will reach consensus
with overwhelming probability on the state of the blockchain even if bizantine
nodes [39] are present in the network.

Bizantine nodes, and the related concept of Bizantine fault tolerance, have been
described for the first time by Leslie Lamport et al. in [38]. This seminal work
described the problem of reaching a consensus on the state of a computer system
in the presence of malicious actors that can send conflicting information to other
parts of the system as a problem of Byzantine generals camped outside an enemy
city having to reach an agreement on a common plan of action by communicating
with one another by messenger. However, some of the generals may be traitors and
send conflicting information, trying to prevent the loyal generals from reaching an
agreement. The same work presented two solutions to the problem: one involving
oral messages and the other involving signed messages.

Oral messages are messages that satisfy the following assumptions:

e Every oral message sent is delivered correctly.

2 Chapter 1. Introduction

e The receiver of a message knows who the sender is.

e [t can be detected whether an oral message that should have reached a
certain receiver hasn’t arrived.

A solution to the problem of reaching an agreement among honest generals, each
of which can communicate directly with one another, has been provided for 3m-+1
generals, where m is the number of Byzantine generals (malicious generals) that
the system can withstand when only oral messages are exchanged. The solution
involving unforgeable signed messages -differently from the oral message solution-
can withstand any number of traitors.

However, these solutions, are built on a set of assumptions that do not hold in a
public blockchain.

First of all, the solutions proposed require nodes (generals) to know in advance
the identities of the nodes of the network, while in a public blockchain, nodes
participating in the consensus may drop in or out of the network without having
to be previously registered. Second, the proposed solutions work assuming nodes
are in a synchronous network, which is a strong assumption for a public blockchain.
In consensus protocol literature, there are three main network models that have
been considered which differ from one another on the assumptions about message
delay; these network models are:

1. Synchronous network: a network in which the maximum latency is bounded
and known.

2. Asynchronous network: the maximum latency is unknown and messages may
never be delivered.

3. Partially synchronous network: introduced by Dwork et al. [27]. In this
network model, an upper bound on the latency exists but it is unknown.

The network model with the weakest assumptions is the asynchronous model, and
devising a byzantine fault-tolerant consensus protocol that guarantees consensus
under this network model would be ideal for a public blockchain. However, Fischer
et al. [31] showed that any consensus protocol that aims to tolerate at least one
fail-stop node is not assured to terminate in the asynchronous network model.
The bitcoin consensus protocol in fact, even though it is designed for the asyn-
chronous network model, guarantees termination only probabilistically assuming
that the majority of the computational power of the network is not held by a
malicious user or by a set of malicious colluding users.

Bitcoin successfully implements an electronic payment system that does not rely
on trust. However, there are some limitations, in fact the rate of transactions that
the system can handle is low compared to centralized solutions; the fees to be paid
to the miners are relatively high, making it unfit for processing micro-transactions;
and the energy consumed for keeping alive the blockchain is extremely high.
After the success of Bitcoin, however, numerous solutions for implementing dis-
tributed ledgers have been explored, aiming at reducing the limitations of the
Bitcoin blockchain, or aiming at providing a distributed ledger optimized for a
specific domain.

Chapter 1. Introduction 3

1.1 UTXO0O model and Account model

Blockchains can be divided in two groups based on the type of transactions
that they accept. Bitcoin transaction model is termed unspent-transaction-output
model (UTXO) [58].

In a blockchain that supports a UTXO model, a single transaction is made up
of inputs and outputs. The inputs of a transaction reference transaction outputs
of transactions previously included in the blockchain that has not been spent by
any other transaction input. The outputs of a transaction specify how the inputs
are spent. UTXO transactions usually include signatures or authorization scripts
that determine whether the inputs are allowed to spend the outputs they refer to.
In a UTXO blockchain, a user can know what his balance is by summing the values
associated to the unspent-transaction-outputs he is allowed to spend.

In an account-based blockchain, a user is identified by an address which is associ-
ated to a balance. Transactions in this kind of model specify: the sender address;
the receiver address; the value to transfer, if any; and optionally additional infor-
mation.

These two transaction models have their own advantages and disadvantages:
The UTXO model makes it easier to parallelize transaction processing and also
makes it easier to implement scaling solutions such as sharding [37, 59].

The account model, popularized by Ethereum [29] instead, provides a more intu-
itive platform for smart contracts.

1.2 Smart contracts

The smart contract concept was introduced by Nick Szabo [54] back in 1994, way
before the advent of blockchains. He described it as “a computerized transaction
protocol that executes the terms of a contract”. The non-trusted nature of the
blockchain proved to be the right environment for the implementation of smart
contracts. In fact, already in bitcoin there was the possibility of including snippets
of code written with a non-turing complete language in a transaction output that
specifies the requirements to satisty for spending it.

A blockchain smart contract is generally a piece of code stored in the blockchain
that can produce a change of state when it is addressed by a transaction. Blockchain
smart contracts have been used for implementing a variety of services such as de-
centralized crowdfunding [3] and peer-to-peer energy trading [4]. Blockchains and
smart contracts often face significant problems in terms of scalability and costs,
and their use with a straightforward approach is not always convenient for many
applications.

Smart contracts become popularized with the advent of second generation blockchains:
the most popular of which is Ethereum [29]. In fact, the differences between
Ethereum and Bitcoin lied primarily in the transaction model employed and in
the expressivity of their smart contract languages.

Ethereum is an account-based blockchain and also its smart contracts are identified
with addresses. When a user wants to deploy a smart contract to the Ethereum
blockchain, he has to specify the code for creating the smart contract in the data

4 Chapter 1. Introduction

field of a transaction that has no receiver address. If the transaction is committed
successfully, then an instance of a smart contract is deployed on the blockchain
and a univocal address is associated to it. The code that is contained in the trans-
action data field is in the form of Ethereum Virtual Machine (EVM) bytecode.
The operations specified in the bytecode are executed by the Ethereum Virtual
Machine of the miner that mines the block containing that transaction, and by
the nodes receiving that block, resulting in a change of the world state of the
blockchain.

Requesting the execution of bytecode, however, comes at a cost: in fact, Ethereum
transactions also specify the maximum number of gas units that can be used
for executing that transaction (gas limit), and the price of each unit of gas (gas
price) expressed in wei (the smallest unit of Ethereum cryptocurrency); each EVM
bytecode is associated with a specific gas number that is spent each time that in-
struction is executed. If the number of gas units used during the execution of a
transaction exceeds the gas limit provided, then the execution aborts. The costs
of fees associated to transactions are therefore proportional to the number and
complexity of the operations they require to perform. This provides an incentive
to miners to include these transactions into their blocks: in fact, if every transac-
tion were to have similar fees, regardless of their computational demands, miners
would have an incentive in including in a block only the transactions requiring the
least operations to perform.

The introduction of gas limit and gas price in Ethereum also allows it to support
sophisticated smart contracts written with a Turing complete language mitigating
the risks of spamming attacks.

Ethereum contracts are stored in the ledger as EVM bytecode, a stack-based
turing-complete low level language. However, it is possible to write smart con-
tracts in high-level languages that compile down to EVM bytecode, the most
popular of which is Solidity [4].

Solidity is a smart contracting language inspired in its syntax by javascript. Smart
contracts written in Solidity look like classes of object-oriented languages that
specify methods and state variables.

Methods are functions that can be called either by a user or by a contract and
their execution may result in a change of the world state.

State variables are the equivalent of attributes in OOP languages and its values
can be modified by running a smart contract method. Solidity has been used for
a variety of projects including the token smart contracts of OpenZeppelin [3].
The code in 1.1 ! shows a simple smart contract written in Solidity that acts like a
wallet: anyone can send ether to it but only the owner of the contract can retrieve
them.

In our work Bistarelli et. al [11], we performed an analysis on smart contracts
deployed in Ethereum in order to retrieve information about the frequency of
EVM instruction usage per contract and to retrieve information about the most

!Taken from: https://solidity-by-example.org/app/ether-wallet/

https://solidity-by-example.org/app/ether-wallet/

Chapter 1. Introduction 5

used high-level primitives occurring in solidity smart contracts. In Figure 1.1, it
is shown an histogram representing the frequency of EVM instruction in contracts
deployed in Ethereum. Figure 1.2 shows the number of occurrences of solidity
primitives in smart contracts deployed on ethereum.

10000000

15% of the total opcode occurences
—— 10% of the total opcode occurences

1000000 = Opcode usage on veriisd contracts
—— 5% of the total opcade occurences

100000

10000

1000

Ficure 1.1: Histogram of opcode count on smart contracts de-
ployed in ethereum (logarithmic scale).

35000

30000~ m—

25000 -

20000 -

15000 ~

10000 -

5000 -

Storage Storage return Logging if require assert else throw for revert 'S call while hreak continue do
Reading Writing Operations

F1cURE 1.2: Histogram of solidity primitives count on smart con-
tracts deployed on ethereum (logarithmic scale).

6 Chapter 1. Introduction

Algorithm 1.1 Wallet implementation in Solidity

1 // SPDX—License—Identifier: MIT
> pragma solidity 70.8.17;

1 contract EtherWallet {
address payable public owner;

7 constructor () {
8 owner = payable(msg.sender);

9 }
1 receive () external payable {}

function withdraw(uint _amount) external {
| require (msg.sender = owner, "caller is not owner");
5 payable(msg.sender).transfer(_amount);

1

1

1

1

1

16 }
17

1

1

2

8 function getBalance() external view returns (uint) {
9 return address(this).balance;
0 }

1.3 Internet of Things and Blockchains

The Internet of things (IoT) is characterized by heterogeneous small physical de-
vices that can communicate with each other in order to reach common goals [7].
IoT applications can be found in a plethora of domains: for example, IoT solutions
have been employed in the context of smart cities [6] and supply chains [9]. The
distributed non-trusted nature of blockchains, along with their smart contract ex-
ecution capabilities, provides a practical solution for addressing the limitations of
traditional IoT applications. For instance, blockchains can provide a platform for
ensuring the integrity of data produced by IoT devices without having to trust a
centralized entity, and may also provide a platform for performing computations on
these data, saving thus the computational resources of low-power IoT devices [40].
However, the integration of IoT with blockchains faces significant challenges: for
instance, traditional blockchains can process only a small number of transactions
per block, with blocks being appended on the chain at a rate of one block each
several minutes, making it not particularly suited for those IoT applications that
require low latency times. Furthermore, public blockchain transactions require
the sender to pay some fees to the miner in order to expect it to be included in a
block; since IoT applications often require devices to exchange many small data
messages, the costs of interacting with the blockchain can become prohibitively
high.

Chapter 1. Introduction 7

1.4 Motivation and research questions

Traditional blockchains and smart contracts don’t scale well in terms of through-
put. The number of transactions that a public blockchain can process in a given
time is often low, making it unsuitable for many applications.

Blockchain smart contracts would provide a suitable environment for executing
logic for the IoT, where many untrusting devices are required to perform com-
plex interaction. However, the low throughput and high costs associated with
blockchain interaction make them practically unsuitable for this task. Solutions
for improving the performances of distributed ledgers and solutions for reducing
the burden on the blockchain while executing smart contracts and the costs as-
sociated with it without compromising the properties guaranteed with the use of
blockchains in the first place have been proposed. However, the proposed solu-
tions do not address the IoT, where it is required to execute logic on lots of data.
Therefore, this thesis’ research question can be summarized as follows:

e Research Question: Can we have a scalable solution for IoT smart con-
tracts while maintaining a high level of security in smart contract execution?

1.5 Thesis contribution

The main contribution of this thesis lies in the specification of Dany, a second
layer protocol that enables blockchains to support smart contracts that require
the elaboration of lots of data without incurring in massive scalability issues.
Dany provides a platform for addressing problems related to the integration of IoT
and blockchains limiting the issues that can come out from applying well known
blockchain solutions.

1.6 Thesis organisation

The thesis is organised as follows:

e Chapter 2 provides a summary of the state of art regarding scalability solu-
tions for distributed ledgers.

e Chapter 3 provides the description of a use-case scenario in which solution
requires the integration of IoT with the blockchain.

e Chapter 4 describes Dany: a novel protocol for executing scalable smart
contracts.

e Chapter 5 describes the implementation of the Dany protocol.

e Chapter 6 discusses the results obtained by running an implementation of
Dany.

e Chapter 7 provides conclusions and future directions.

Chapter 2

State of art on scalability
solutions

As blockchain technologies become more and more popular, scalability issues be-
come more evident as well.

Croman et al. [22] state that scalability is a term that doesn’t relate to a
singular property of a system, but it is a term that relates to several quantitative
metrics. The metrics mentioned for the Bitcoin blockchain include among others:

e Maximum Throughput. The maximum rate at which the blockchain can
confirm transactions.

e Latency. The time taken for a transaction to be confirmed.

e Bootstrap Time. The time taken for a new node to download and process
the history necessary to validate new transactions.

e Cost per confirmed transaction. The cost required to the whole system
to commit and validate a transaction.

When talking about transaction throughput, public blockchains are able to
process a small number of transactions per second; this is especially evident when
compared to centralized solutions enabling electronic payments.

Geordiadis [32] found that the exact upper bound of the transaction through-

put of the bitcoin protocol was 27 tx/s in 2019. Bez et al. [10] used a synthetic
test environment for ethereum to reach the conclusion that the Ethereum version
active during their research could reach a maximum transaction throughput of
approximately 15 tx/s. Significantly increasing the size of a block, or minimizing
the time required for a block to be mined, may appear as possible improvements
to the problem of low throughput in blockchains. However, these solutions cannot
be adopted light-heartedly because of the verifier dilemma [43].
The verifier dilemma states that in blockchains that allow miners to create ex-
pensive blocks (blocks that either contain many transactions or computationally
expensive transactions) honest miners are vulnerable to exhaustion resource at-
tacks by malicious miners. In this attack, a malicious miner adds one ore more
computationally expensive transactions in a block. These transactions do not cost
any gas fees to the miner because all gas fees are collected by the miner of the
block. Other miners, however, incur in a dilemma: Should we verify the large block
or not?

Chapter 2. State of art on scalability solutions 9

If they do not verify it, they risk to mine a new block that will be later invali-
dated. If they verify it, however, they will take a longer time to do so, making
them less likely to win the mining race. Minimizing the time required for a block
to be mined incurs in a similar problem since now miners have less time available
to validate a received block before being able to start mining the following one.
The problem of scalability is often seen as part of a trilemma (Blockchain trilemma
) that states that it is hard to design a blockchain that achieves optimal levels of
three desirable properties of blockchains simultaneously, namely, scalability, secu-
rity and decentralization.

However, solutions to mitigate the problem of scalability while trying to main-
tain at acceptable levels the other two properties of the trilemma have been de-
vised. These solutions can be divided into two categories: On-chain solutions
and Off-chain solutions. The solutions that are described as On-chain solutions
are those solutions that involve the redesigning of the consensus protocol used
by the blockchain. On-chain solutions to scalability include consensus protocols
alternative to proof-of-work protocol, such as Proof-of-stake protocols. Off-chain
solutions, instead, do not require a redesigning of the underlying consensus pro-
tocol: They can be used on top of the blockchain of reference which will act as an
adjudicator when unexpected behaviours occur.

2.1 On-chain approaches to scalability

On-chain approaches to scalability are those approaches that require either changes
in the codebase of the distributed ledger network, or a complete redesign of it.
This kind of solutions include adopting a consensus protocol alternative to PoW,
partion the data stored in the blockchain into multiple shards stored by different
groups of nodes, and adopting distributed ledger technologies alternative to the
blockchain.

2.1.1 Consensus protocols

The first consensus protocol used in a public blockchain is the Nakamoto con-
sensus, implemented in the Bitcoin blockchain [46]. The Nakamoto consensus
protocol is a Proof-of-work protocol, which means that consensus is achieved on
the chain of blocks that required more computational power to be generated, mak-
ing it infeasible to change the history of the blockchain unless the majority of the
computational power of the network is owned by a malicious user or by a set of
coordinated malicious users. In particular, the Bitcoin consensus protocol requires
nodes participating in the consensus protocol (miners) to create blocks by finding
a nonce that, when hashed with other block information, including information
about the previous block (Fig 2.1 shows how blocks are linked to each other in
Bitcoin), returns a value containing a number of leading 0 bits. Finding the
nonce that satisfies this requirement is computationally expensive, but, checking
whether it is correct, requires very little computational power. Every node that
receives blocks generated from the network will choose the longest chain as the
"real” blockchain and can easily prove that the nonce of the blocks satisfies the

10 Chapter 2. State of art on scalability solutions

Block Block
Prev Hash | | Nonce| Prev Hash | | Nonce|
Lo J L [] Lo J L []

FIGURE 2.1: Picture taken from [46]. Blocks in the bitcoin net-

work are linked to the previous one by referencing the hash of that

block, and they contain a nonce proving that computation has been
performed for its creation.

requirements.

Proof-of-work is considered to be a very secure class of consensus algorithms for
blockchains. However, these type of blockchains require massive costs to be main-
tained. Other consensus protocols have been proposed and they mainly fall into
two categories: Proof-of-stake and proof-of-authority consensus protocols. Less
popular alternative to these classes of consensus protocol have also been proposed,
such as proof of space [47] and proof-of-elapsed time [12].

Proof-of-Stake consensus protocols

In proof-of-stake consensus protocols, block proposers are not required to perform
heavy computation to have the chance of proposing the new block, rather, they are
chosen based on the amount of cryptocurrency they own or they have staked on
the network. The costs of maintaining a proof-of-stake blockchain are thus mini-
mal compared to proof-of-work blockchains. However, doubts about the security
assumptions of some of these consensus protocols have been raised. Ouroboros
[35] is a proof of stake consensus protocol stated to be secure under the following
conditions:

e The network is synchronous.

e A number of honest stakeholders are available to participate in the consensus
protocol as needed in an epoch.

e Stakeholders do not remain offline for long periods of time.

In Ouroboros, time is divided into units called slots. At most one block can be
published at each slot by a leader node.
The committee members appointed to run the protocol for selecting the leader
of each slot, along with their relative stake, is updated at each epoch, which is
a time interval comprising several slots, and the probability of a stakeholder to
be selected as the leader of a slot depends on its stake. During an epoch, the
stakeholders run a multiparty coin flipping protocol [52] to select, for each slot,
its leader. The coin-flipping protocol adopted by Ouroboros allows to tolerate a
number of adversaries trying to interfere with the protocol: as long as the stake
is owned by an honest majority, attackers cannot meaningfully interfere with the
leader selection mechanism.

Chapter 2. State of art on scalability solutions 11

Since selected slot leaders should be online, and this may not be always possible
for little stakeholders, Ouroboros implements a delegation scheme allowing stake-
holders to delegate other nodes to sign messages on their behalf using a proxy
signing key. The proxy signing key can be revoked at any time and they can also
be issued with limitations, allowing delegators to decide in advance which is the
range of slots a delegate can use the proxy keys.

Algorand [17] is a blockchain that requires nodes minimal computational power
to actively participate in the generation of blocks and that can process way more
transactions per seconds than Bitcoin at a lower latency. Algorand is proven to
fork with extremely low probability, making it possible to practically consider all
the transactions included in a valid block as final (differently from bitcoin and
proof-of-work protocols in general). Even in case of network partitions, although
forks may happen, they are assured not to be longer than one block in length. In
Algorand, a block is assembled by a leader node [, that is selected at each new
block by means of a verifiable random function [44]. Blocks are then validated
by a set of verifiers (SV,) which members, for the r-th block, depend on a value
(),_1 contained in the previous block. This quantity has the property of being
unpredictable and not influentiable by a very powerful adversary as the one de-
scribed in [44]. A verifiable random function can be intuitively implemented as
a mapping m — H(sig;(m)) where H() is an ideal hashing function, and sig()
is an ideal signature function; The correctness of the mapping can be proved by
providing sig;(m). Thanks to the verifiable random function, the quantity @, can
be generated for each new block as the hashed signature, produced by the leader
node, of Q,_1 (@, = H(sig, (Qr—1))). In Algorand, determining whether a user is
a verifier or not depends both on the @), quantity and the number of coins owned
in the system: the higher the amount of money owned, the higher the probability
that you can satisfy the requisites for being in the SV, set. For its dependence on
the money owned in the network, Algorand’s consensus protocol can be considered
related to Proof-of-stake protocols, even though it doesn’t require participants to
stake assets in order to become a participant of the consensus protocol.

Gasper [14] is the idealized version of the Proof-of-stake consensus protocol

adopted by Ethereum 2.0. Gasper is constructed by combining Casper-FFG [13]
and the LMD-GHOST fork choice rule [60]
Casper-FFG is a proof of stake finality system, which allows a network to prove
that certain blocks are final and therefore cannot be superseded by a competing
fork. In Casper-FFG there are blocks that are called checkpoints. A block is
a checkpoint if its block-height in the blockchain is a multiple of a certain pre-
determined number. Checkpoints are the blocks that can be finalized in Casper-
FFG. To move from a finalized block to a more recent one, stakers have to commit
attestations stating their will to move from the previous checkpoint to another
one in the same chain. A checkpoints block B is called justified when there are
attestations voting from A — B , with A being another justified block, with a
total weight of at least two thirds of the total validator stake. If there are sufficient
attestations for A — B with B being the checkpoint immediately following A, and
A is already justified, then A is also finalized. The genesis block is justified and
finalized by default.

12 Chapter 2. State of art on scalability solutions

To deter stakers from creating attestations aimed at finalizing different concurrent
blocks, in Gasper other participants are allowed to submit the attestation proposed
by the malicious staker proving their malevolence slashing thus their deposits.
Since Casper-FFG does not deal with fork-choices, Gasper needs a fork choice rule
to determine which is the canonical chain in case of forks. This is achieved with
a slightly modified version of the LMD-GHOST fork-choice rule that states that
the canonical chain is the chain with the largest number of attestations. Block
generation is also not specified either in Casper-FFG and LMD-Ghost. In order
to deal with block generation, for each epoch, the stakers are pseudorandomically
assigned to a committee; each committee is then assigned to a single slot in the
epoch and the first validator in the committee is required to propose a block which
is then attested by the other members of the committee.

Proof-of-Authority consensus protocols

Proof-of-authority (PoA) [24] is a family of consensus algorithms particularly
suited for consortium and permissioned blockchains whose relevance is due to the
improved performances of its algorithms when compared to non-PoA consensus
algorithms, especially PoW algorithms. In Proof-of-authority algorithms, only a
set of pre-registered authorities (validators) are allowed to participate in the block
proposal mechanism. This is often done by making validators take turns for cre-
ating (mint) blocks and by employing either a block finalization protocol or an
appropriate fork-choice rule to reach a consensus on which is the authoritative
chain. Two prominent consensus algorithms falling in this category that are im-
plemented in the Ethereum client Besu are Clique [55] and IBFT 2.0 [51].
Clique [55] is a proof-of-authority consensus algorithm available in Besu. In
Clique, a validator can assemble a block (mint a block) by simply signing it and
propagating it to the network. Clique validators are supposed to take turns in
proposing blocks and the protocol deterministically determines the preferred pro-
poser of a block. However, if the preferred proposer does not propagate the block
in time, other validators may propose their blocks after waiting an amount of
time depending on their position in the list of validators and on the height of
the chain. Validators are however allowed to propose a block only if they have
not minted any of the floor(SIGNER-COUNT/2) + 1 previous blocks, where
SIGNER_-COUNT is the number of registered signers in the blockchain. Since
multiple validators may propose conflicting blocks to be added to the head of the
chain, forks may appear and should be handled. To handle forks, Clique selects
the fork with the highest cumulative score as the main chain. The score of a block
depends on whether it has been proposed by the preferred validator for that block
or by a different validator, with blocks proposed by the preferred one having a
higher score number than the other ones.

IBFT 2.0 [51] (Figure 2.2 is a Proof-of-Authority consensus protocol inspired
by the PBFT consensus algorithm [16] that provides immediate finality, which
means that a transaction, when included in a valid block, will not be superseded
by any conflicting transaction. The protocol is proved to work correctly in a par-
tially synchronous network when at most 1/3 of the total amount of validators are
byzantine. In IBFT 2.0, the nodes participating in the generation of blocks are

Chapter 2. State of art on scalability solutions 13

called walidators. A set of pre-established validators is contained in the genesis
block of the blockhain, but they can be added or removed thanks to a voting
system. In order to generate a new valid block, a multiple-phase protocol is run
among the validators which will eventually allow validators to accept a block and
to assemble a certificate certifying the validity of the block. In the first phase of
the protocol, a validator p (proposer) is selected among the set of validators of
the network possibly in a round-robin fashion. Validator p will then broadcast
to the other validators a propose message signed by himself containing informa-
tion about the new block and a round change certificate. When non-proposing
validators receive the prepare message, they check its correctness and will later
multicast to all the validators a prepare message signed by him, containing, along
with other information, the hash of the block and the round-change certificate sig-
nalling other validators their willingness to accept the previously proposed block.
When a validator v receives at least a quorum of agreeing prepare messages (2/3
of the validators), then v will assemble a commit message aimed at creating a
finalisation seal for the block. The commit message contains in fact a commit seal
which is the signature of validator v over the proposed block and the round num-
ber (which is 0 if it was to reach the commit phase in the first round). Once the
commit message has been assembled, it is multicasted to the set of validators, just
like the previous messages. By obtaining at least a quorum of different commit
seals for the same block, a validator can assemble a block finalisation proof and,
in this way, end the finalisation protocol by multicasting the block and the proof
to the other validators.

Since there may be situations in which a block finalisation proof cannot be cre-
ated, for instance, because the proposer is byzantine, then the protocol allows to
change the proposer by creating a round change certificate. Similarly to the other
parts of the protocol, when a validator has reasons to believe that the finalisation
protocol will not be concluded successfully in the current round, a round-change
sub-protocol run among the validators will be run. The objective of this sub-
protocol is that of assembling a round-change certificate that will be used in a
subsequent run of the block-finalization protocol to prove that the previous round
did not end successfully and that a new proposer has been selected.

2.1.2 Sharding

Sharding is a technique originally adopted for scaling large databases by parti-
tioning them into separate units called shards, that can be separately stored into
multiple machines. In traditional blockchains, the entire sequence of blocks has
to be stored by each node participating in the consensus protocol, making the
storage requirements of a node that wants to participate in the blockchain always
higher, no matter how many nodes participate in them. Transaction processing is
also not parallelized, since each node has to process every transaction committed
to the blockchain, and this means that throughput cannot be increased with new
nodes joining the network. Dividing the blockchain into multiple separated chains
seems, at first sight, a good idea for decreasing the storage requirements of nodes
and for increasing the throughput of the network. However, in a decentralized

14

Chapter 2. State of art on scalability solutions

s

PROPOSER VALIDATORD -+

VALIDATOR 1 VALIDATOR 1

VALIDATOR2 VALIDATOR2

VALIDATOR3 VALIDATOR3 -

VALIDATOR N-1 VALIDATOR N-1

PROPOSAL H PREPARE H COMMIT - —3 ROUND CHANGE
WAIT FOR 2F+1
N=3F+1 VALIDATORS. ROUND CHANGE
WHERE F IS THE TOLERATED MESSAGES
NUMBER OF BYZANTINE NODES

FiGure 2.2: IBFT 2.0 block finalisation protocol: A finalized block
is generated with a three phase protocol. In the proposal phase, a
proposer node send a propose message to the other validator nodes;
when a validator receives the propose message, it enters the prepare
phase and will send prepare messages to all the other validator
nodes; a validator enters the commit phase when he has received
a quorum of agreeing prepare messages, in this phase he will send
to the other validator nodes a commit message for the proposed
block. When a validator receives a quorum of commit messages,
he can assemble a block finalisation proof. Whenever a validator
cannot move to the following phase within a time limit, will start
a sub protocol aimed at creating a round change certificate, that
will be used to designate a new validator node as the proposer for
the current block.

Chapter 2. State of art on scalability solutions 15

environment with the possibility of Byzantine actors, such as the environment
on which blockchains operate, sharding solutions taken from the world of tradi-
tional databases do not work, meaning ad-hoc solutions for blockchains had to be
designed. A first sharding protocol for blockchains was proposed by Luu et al.
[42] with the name of Elastico. Following that, more efficient sharding solutions
for blockchains have been proposed, such as Omniledger [37] and RapidChain [59].

Omniledger [37]: is proposed as a distributed ledger that aims to solve scal-
ability problems with the use of shards. Shards in Omniledgers are made up of
groups of validators with the role of processing only their assigned subset of UTXO
transactions. To deal with the possibility of having some shards with a majority of
malicious validators, single validators are not allowed to select the shard they want
to participate in, but they are assigned to a random shard after each epoch. In
order to ensure that the assignment of validators to shards is truly unpredictable
and not influenceable by malicious validators, the generation of the randomness is
achieved by running a multi-party protocol called RandHound [53]. Since Rand-
Hound operations need to be orchestrated by a leader node, the leader node is
better to be unpredictable as well, and this is achieved with a sub-protocol in
which validators compute a ticket, which is the result of signing with their private
key data pertaining to the state of the blockchain, and multi-cast them, allowing
nodes to select deterministically the leader which will be the validator produc-
ing the lowest-value valid ticket. To enable cross-shard transactions, Omniledger
uses a protocol (Atomiz) that allows to atomically process transactions targeting
multiple shards by following the following steps:

1. The client that is requesting a transaction gossips a cross-shard transaction
on the network, eventually reaching every shard the transaction is targeting.

2. When the cross-shard transaction is received by the leader of a shard con-
taining an output spent by the transaction, if the transaction is valid it sends
back a proof-of-acceptance message, momentarily locking the output. If the
transaction is invalid, a proof-of-rejection is sent instead.

3. If the client receives from every shard leader a proof-of-acceptance, then
he will be able to assemble an unlock-to-commit transaction and commit
it to any shard involved. Similarly, if the client receives at least a proof-
of-rejection, he will be able to unlock the locked funds by propagating an
unlock-to-abort transaction.

The consensus protocol used among validators in a shard is called ByzCoinX, an
enhancement of ByzCoin [36], originally built on PBFT, allowing shards to par-
allelize block commitments at a fast rate.

RapidChain [59] is a sharding protocol aimed at loosening the limitations of
previous sharding protocols; in particular, it is designed to limit the communi-
cation overhead inherent in previous protocols and it increases the number of
byzantine validators the protocol can support up to 1/3 fraction of its partici-
pants, which is higher, for instance, than Ominledger’s Byzantine fault tolerance,

16 Chapter 2. State of art on scalability solutions

since the latter supports only 1/4 fraction of faulty validators out of the entire val-
idator pool. RapidChain also addresses the problem of the generation of an initial
common randomness that may be insecure. Generally, this common randomness
is provided in the form of a genesis block, while in RapidChain it is generated
by running a bootstrapping protocol that requires the exchange of O(ny/n) mes-
sages, where n is the number of participants of the protocol. RapidChain protocol
can be divided into three main components: bootstrap, consensus and reconfig-
uration. The first component run is the bootstrap and then the protocol works
in epochs where each epoch consists of multiple iterations of consensus followed
by a reconfiguration phase. During the bootstrap phase, the initial set of partic-
ipants run a committee selection protocol among them to select a committee of
nodes called root group. The members of the root group are responsible of gener-
ating random bits that will be used for establishing a reference commitee whose
role is that of dividing the participants into committees responsible for each shard.
Intra-committee consensus is achieved thanks to a synchronous consensus protocol
making use of a gossiping protocol designed for gossiping large messages inspired
by the IDA protocol in [5]. RapidChain adopts a 4-phase synchronous consensus
protocol, instead of a classical PBFT protocol that guarantees consensus even in
a partially-synchronous network, because it decreases the amount of data to be
exchanged to reach consensus. During the course of an epoch, a node that wants
to join the consensus protocol needs to solve a PoW puzzle dependent on the ran-
domness generated for that epoch and send a transaction containing solution of
that puzzle with the public key they are going to use. If the solution is sent before
the end of the epoch, then the transaction is accepted and the node is going to be
part of the validator set for the next epoch. At the end of an epoch, the protocol
goes into the reconfiguration phase. During the reconfiguration phase, nodes per-
form a protocol to generate a new randomness r;,; which will be used as a seed
for randomly assigning new nodes to different committees and to choose the nodes
to evict from each committee in order to assign them to different committees.

In order to enable cross-shard transactions, RapidChain developers observed
that Omniledger cross-shard protocol that requires the user proposing a transac-
tion to run a protocol that will eventually allow him to assemble a proof proving
the possibility of committing that transaction, incurs in a large communication
overhead. Therefore, RapidChain adopts a different approach in which a users can
simply send a transaction to any committee which will then route the transaction
to the output committee (The committee responsible for committing that trans-
action outputs to their own shard). The output committee leader will then create
additional transactions each of which spends an input of the original transaction
and will route them to the committee holding the inputs of these transactions.
If these additional transaction are added successfully to the right shard, then the
output committee will commit an additional transaction spending the outputs of
the transactions previously created.

Chapter 2. State of art on scalability solutions 17

2.1.3 10T blockchain ecosystems

A number of native blockchain solutions aiming at solving specific issues related to
the Internet of things world have been devised. The solutions vary not only in the
implementation details, but most importantly on the problems they try to solve.
Two notable IoT blockchain solutions for different issues related to the world of
the IoT are IoTeX [56] and Helium [33]

TIoTeX [56] is a blockchain ecosystem devised especially for the IoT. The pro-
posers of IoTeX claim that benefits can arise from the interaction of the IoT and
the blockchain. In fact the blockchain provides the property of decentralization,
partially addressing the privacy concerns arising from having a centralized party
monopolizing the market. Blockchains, also, by providing smart contract capa-
bilities, allows to extend the functionalities of IoT devices that are often shipped
with hard-coded logic included. However, the interaction of the IoT with the
Blockchain has some challenges to be addressed, including privacy challenges and
scalability challenges. IoTeX aims at providing a solution for integrating the real-
world data of the IoT with the blockchain trying to address the aforementioned
challenges. They do so by creating an ecosystem of blockchains, in which multiple
blockchains, called subchains, are connected to a root chain. Subchains should
be specialized to manage only certain kind of IoT data that is of interest in the
ecosystem improving upon the scalability of the ecosystem: if all the IoT data
had to be managed by a single blockchain, its size would increase at a too fast
rate. The root blockchain that connects all of the subchains allows the blockchains
of the ecosystem to communicate when needed. The root blockchain is designed
as a UTXO-model blockchain because it is more suitable for applying existent
privacy-preserving techniques such as ring signature, and ZK-SNARKSs for hiding
information about the sender of a transaction, the receiver, or other information.
In order to allow resource constrained IoT nodes to participate in the consensus
of the blockchain, IoTEX implements a delegated proof-of-stake consensus algo-
rithm. In delegated proof-of-stake consensus protocols, participants are allowed
to choose delegates to represent their portion of stake in the network, freeing thus
low-resource IoT nodes them from executing the most resource exhausting parts
of the protocol.

Helium [33] is a decentralized wireless network whose objective is that of en-
abling devices anywhere in the world to connect to the internet and to geolocate
themselves without the need of power hungry hardware. The way Helium achieves
this is by creating a blockchain whose miner nodes are devices providing wireless
connectivity in a certain area. These miners run the blockchain using a consen-
sus protocol called Proof-of-coverage protocol, that requires them to create proofs
that they are providing network coverage in a certain area before being hopefully
elected to be part of an asynchronous byzantine fault tolerant consensus group
responsible of generating blocks in a given epoch. The Helium blockchain pro-
vides miners an incentive to provide network coverage, in fact, devices requesting
to send or receive data through the internet need to commit transaction that will
cost them fees that are collected by the miners.

18 Chapter 2. State of art on scalability solutions

2.1.4 Other Distributed Ledger technologies

Blockchains are not the only way to implement a Distributed ledger. In fact,
it has been shown that distributed ledgers may benefit from being implemented
without resorting to the implementation of a blockchain. Directed acyclic graphs
are often presented as an alternative to blockchains especially in situations where
many small IoT devices are required to interact with a distributed ledger.

Directed acyclic graph

In a Directed acyclic graph (DAG) distributed ledger (Figure 2.3), transactions are
not bundled inside an ever growing list of blocks, instead, they are stored as vertices
of a graph. In DAG distributed ledgers it is often the case that transactions do not
require the intervention of external miners or validators to be added to the ledger;
rather they are committed immediately by the issuer. This kind of distributed
ledgers tend to be more scalable than other distributed ledger technologies mainly
for the following reasons:

1. Transactions can be added to the DAG in an asynchronous way, allowing for
higher throughput levels.

2. Storage requirements are lower since nodes participating in the network are
generally not required to keep in storage the entirety of the DAG.

3. Committing a transaction is often less expensive, both in terms of compu-
tational power required than in terms of fees to be payed.

DAG distributed ledgers include Nano [41] and Byteball [19], but the most popu-
lar one is IOTA [50].

IOTA [50]: is a cryptocurrency especially suited for machine-to-machine pay-
ments in which transactions are stored in the Tangle, a directed acyclic graph for
storing transactions. In IOTA, a node can issue a transaction by referencing (val-
idating) it to two other non conflicting transactions already in the tangle, chosen
with a tip selection algorithm. Transactions referenced in such a way increase their
chances of being preferred in case multiple conflicting transactions appear in the
tangle. In fact, the tangle does not guarantee that it does not contain conflicting
transactions, however, in case conflicting transactions exist, nodes need to agree
on which transaction is going to be orphaned. The transactions orphaned in the
tangle are the transactions that will likely not be validated by any incoming trans-
action coming from a valid node. Deciding which of the conflicting transaction a
node should make an orphan is done by running multiple times the tip selection
algorithm: the transaction that is selected fewer times is the orphaned one. The
tip selection algorithm is the algorithm used by nodes to select the transactions to
validate when issuing a new transaction. The correct specification of the tip selec-
tion algorithm is crucial for guaranteeing the safety of the system and in IOTA it is
implemented as a Markov Chain Monte Carlo (MCMC) algorithm which protects
the network from attacks such as the parasite chain attack: an attack in which

Chapter 2. State of art on scalability solutions 19

FiGURE 2.3: Example of a directed acyclic graph: In distributed

ledgers based on DAGs each transaction can be represented as a

vertex: the edges that connect a transaction to another represent
the transaction validated by the former.

a user builds a chain with the objective of validating a transaction that conflicts
with another one previously stored in the tangle.

2.2 Off-chain approaches to scalability

Off-chain approaches to scalability are those approaches that can be implemented
on top of an existing blockchain without having to change any core component of
the blockchain. These solutions usually allow users to perform transactions that
will be elaborated and stored outside the blockchain while not having to trust
any third party. Off-chain solutions to scalability include payment channels, state
channels, secure delegation of the execution of smart contracts, and sidechains.

2.2.1 Payment channels

Payment channels offer a solution to scalability problems of the blockchain by
allowing users to exchange multiple financial transactions while committing only
a few pieces of information on-chain. In payment channels, parties are usually
required to lock funds on the blockchain (channel setup) that can be retrieved
when certain conditions are met (closing channel, Figure 2.4). These conditions
usually include committing proofs that both parties agree to close the contract
and redistribute funds in a certain way, or, if a party is uncooperative, to execute
a dispute resolution mechanism that rewards the honest participant. After locking
the funds, transactions can be exchanged by the parties without committing them
to the blockchain.

Payment channels proposed for the bitcoin network include the Lightning net-
work [49] and the protocol described by Decker et al. [25].

Bitcoin transactions are made of inputs and outputs: The inputs are references
to other transactions’ outputs and provide the funds to spend in the transaction;
the results of a transaction contain the instructions for using the bitcoins associ-
ated with them. The combined amount of bitcoins associated with a transaction’s
outputs cannot exceed the number of bitcoins referenced by its inputs. Transac-
tion outputs can be referenced only once by another transaction input, preventing

20 Chapter 2. State of art on scalability solutions

Channel q 5 Closing

[]
? 4 setup A—>8 B> a channel e *
3 , o
A B

FIGURE 2.4: Example of a payment channel. Tokens are locked
by both parties in the channel setup phase, they will then be able
to exchange multiple transactions off-chain and eventually will be
able to retrieve on-chain their balance in the closing channel phase.

b3
[os]
I
m
b3
m
=5

o
w

3 4 5

N
@
-

thus double spending.

In Bitcoin, payment channel are often instantiated with the aid of Timelocks
associated with transactions; a timelock is a primitive that specifies either the
minimum Unix timestamp or block height after which the transaction can be in-
cluded in a block. This means that a transaction with a certain Timelock in the
future can be superseded by a transaction with a lower timelock spending the
same outputs. In a unidirectional payment channel, time-locked transactions can
be used for setting up an expiration date to the payment channel, after which,
locked money will be refunded. A refund transaction with a specified timelock can
be assembled by the parties to ensure that funds will not be locked indefinitely in
the output of the transaction funding the payment channel but will eventually be
refunded if the receiver end of the payment channel doesn’t commit a more recent
transaction. Both Lightning protocol [49] and Decker et Al. [25] improve upon
payment channels by allowing the setting up of duplex micropayment channels on
Bitcoin, they also allow the routing of payment through multiple hops, allowing
users that did not set up an on-chain payment channel to use a route of payment
channels connecting one end to the other.

2.2.2 State channels

State channels expand the capabilities of payment channels allowing the execution
of smart contracts off-chain. State channels are implemented in a similar way
to payment channels: opening a channel requires locking funds in a blockchain
smart contract and transactions are exchanged by the participants outside the
blockchain. The main difference lies in the transaction data: these transactions
are not necessarily simple financial transactions, but they can carry other pieces
of information, allowing the execution of custom smart contract logic outside the
blockchain.

Dziembowski et al. [28] proposed a formal construction of general state
channel networks. In their proposal, state channels are either ledger channels or
virtual channels: Ledger channels are state channels that are created by commit-
ting a state channel contract on the blockchain; virtual state channels are channels
built on top of two other state channels connecting the two ends of the channel to
a third intermediate party, these channels do not require a smart contract to be
deployed on the main chain. Following a recursive approach, virtual state channels

Chapter 2. State of art on scalability solutions 21

can be created on top of other virtual state channels, enabling a party to be linked
with any other party for which there exist an indirect path of ledger channels con-
necting them. Interaction with the smart contract is performed off-chain by the
parties by exchanging signatures on new states of the smart contract without in-
teracting with the blockchain at all. Disagreements occurring in a ledger channels
are resolved by contacting the channel smart contract: the channel smart contract
redistributes the funds after receiving the latest agreed state from the parties; if
a party submits an old state, the other one can prove him wrong by submitting
a more recent one. Disagreements occurring in a virtual channel require inter-
acting with the intermediate party using the channels each party has previously
established with it.

Tom Close proposed Nitro [20], a protocol for constructing arbitrary state
channel networks. Nitro allows the construction of state channels that allow par-
ties to fund them and retrieve the coins owed to them at any moment in time.
Nitro also allows the construction of secure virtual channels that are funded by
other state channels, allowing parties create channels among without interacting
with the blockchain if at least an intermediary exists. Nitro allows the construc-
tion n-party state channels, allowing the off-chain execution of multi-party smart
contracts.

Force Move [21] is a protocol designed for running a restricted set of n-party
state channels. Setting up a Force Move state channel requires deploying an ad-
judicator contract that is responsible for holding the funds of the state channel,
redistributing them when necessary, and solving disputes; and a library that spec-
ifies the rules of the smart contract. Once the state channel is opened, the parties
will be able to update the state of the contract by signing a new state that is,
according to the library previously mentioned, a legal transition from the previous
one. The order in which parties are allowed to interact with the smart contract,
however, is predetermined, limiting thus the range of applications developable with
the Force Move protocol. This limitation enables the protocol to offer mechanisms
to solve disputes arising in a n-party state channel. In fact, if a participant decides
to not interact with the contract when it is its turn, then the other participants
can commit n consecutive states, each signed by a different participant, to the
adjudicator, proving that the last committed state is a valid state, and forcing
the unresponsive participant to respond, either with a new valid state before a
timeout expires, or with a proof that the committed state is not the most recent
one. If the unresponsive participant does not respond with a valid move in time,
then the contract closes and the locked funds are redistributed according to the
rules specified in the blockchain library.

2.2.3 Delegated computation

Delegating the computation of smart contracts to an external party, or to a set
of external parties, is a possible improvement to the problem of scalability in
blockchains. Delegating the execution of smart contracts may be necessary for
those smart contracts whose logic is not supported by the blockchain of refer-
ence and also proves beneficial for computationally expensive smart contracts that

22 Chapter 2. State of art on scalability solutions

would require paying very high fees if they were to be executed on the first layer.
Blockchains owe their importance to decentralization, and smart contracts ex-
ecuted on the blockchain are deemed to be secure by the participants exactly
because the result of their execution is not centralized. This means that delegat-
ing smart contract execution to an external third party should be done carefully
and require designing solutions that guarantee the correct execution of smart con-
tracts. Solutions in which the execution of smart contracts is delegated to external
parties include the following:

YODA [23] is a solution for enabling off-chain execution of computationally in-
tensive smart contracts (CIC). In YODA only a randomly selected subset of nodes
(Execution set) compute the smart contract and publish a digest of the result on
the network, then the likelihood of each proposed solution is determined using
an algorithm run by the miners which result depends on the number of digests
received and the number of byzantine nodes tolerated in the system. When the
likelihood computed for a specific proposal exceeds a certain threshold, then that
proposal is considered the correct one, otherwise, a new execution set is chosen
until the likelihood of a specific hypothesis doesn’t exceed the threshold. YODA
provides thus a solution to executing complex smart contracts, with minimal bur-
den on the main blockchain, however, the likelihood of accepting a wrong solution,
while minimal, still exists, if a large portion of YODA nodes behaves maliciously.
ACE [57] is a protocol that allows the execution of complex smart contracts by
delegating their execution to a set of service providers (execution set). A smart
contract in ACE has to specify which service providers are part of its execution set
and how many agreeing service providers are needed to accept a proposed result.
The salient feature of ACE is that it also allows the execution of interconnected
smart contracts, which are smart contracts that call other smart contracts run by
different execution sets. A state change resulting from the execution of a smart
contract that does not involve other smart contracts is accepted by the blockchain
if a number of agreeing state changes are committed to the blockchain by the
previously appointed service providers. Users request the execution of a smart
contract by committing a transaction on-chain. Service providers are required to
listen to the blockchain for intercepting transactions requiring the execution of a
smart contract they are responsible for. When a transaction targets the execution
of a smart contract that involves other smart contracts, all the execution sets of
the involved smart contracts are required to execute their code. To do so, the
user that requests the execution of a smart contract can pre-execute locally its
code in order to check what are the involved smart contracts, then he will commit
to the blockchain transactions targeting every involved smart contract. State up-
dates will be accepted by the miners only if the state changes committed by the
execution sets are coherent and are committed by a quorum of each execution set
involved.

Arbitrum [34] is a system that allows the execution of scalable smart contracts.
Arbitrum smart contracts are executed by a pre-appointed set of parties called
managers. Arbitrum requires a single honest manager to ensure that the execu-
tion of the smart contract is correct (any-trust guarantee). When the execution
of a smart contract is requested by a party, each manager computes the resulting

Chapter 2. State of art on scalability solutions 23

state-change and, if every party agrees on the result of the computation, it is com-
municated to the blockchain along with the signature of every manager and it is
accepted by it if the preconditions stated in the message hold: these state-change
messages are called unanimous assertions. When unanimous assertions cannot
be assembled, managers are allowed to publish a disputable assertion signed by a
single manager. Once a disputable assertion is published, it can be disputed by
ohter managers. To do so, a bisection protocol is employed, in which the asserter
and the disputer compete to prove the other wrong. At each step of the protocol,
the asserter is required to divide the previous assertion into two equally complex
assertions. The disputer will chose the sub-assertion he wants to dispute and the
protocol continues, with the asserter dividing that sub-assertion and letting the
disputer chose one division, until one of the parties doesn’t respond within a cer-
tain time limit, or the assertion has been divided so many times that the disputer
is required to compute a single operation whose correct result can be proved to
the blockchain.

2.2.4 Sidechains

Sidechains and Childchains have been proposed as a solution to scalability issues
related to blockchains and to reduce the costs of fees to be paied when moving
crypto assets. The main idea of sidechains is that of connecting two blockchain
toghether allowing them to transfer assets from one to the other and viceversa.
Adam Back et al. [8] proposed the technology of pegged sidechains for transfer-
ring assets from one blockchain (parent chain) to another (sidechain). In their
work they observed that the cryptocurrency is conceptually independent from the
blockchain providing it:

The core observation is that “Bitcoin” the blockchain is conceptually independent
from “bitcoin” the asset: if we had technology to support the movement of assets
between blockchains, new systems could be developed which users could adopt by
simply reusing the existing bitcoin currency (8]

They call blockchains that can receive the currency of another one as pegged
sidechains and provide a set of properties they should satisfy which are:

e Sidechain should allow to move assets back to the parent blockchain by the
owner of the assets;

e Assets should be moved without counterparty risks;
e Transfers between blockchains should be atomic;
e A bug in one sidechain should not impact the parent chain;

e Blockchain reorganisations should be handled cleanly, even during transfers;
any disruption should be localised to the sidechain on which it occurs. In
general, sidechains should ideally be fully independent.

24 Chapter 2. State of art on scalability solutions

Parent blockchain Sidechain

Send to SPV.locked output
Wait out confirmation period
Wait out oon_tesl period

SPV Proof

(intra chain transfers)

Send to SPV-ocked output
Wait out confirmation period

SPV Proof

Contest period begins
Contest period ends
(Failed) o
“-SPV Reorganisation Proof—
Contest period ends
(Tailed)

Wait out contest period

New SPV proof

Wait out contest period

({intra-chain transfers)

FIGURE 2.5: Example of a communication with a pegged sidechain
as described in [§]

e Users of a blockchain should not be required to track pegged sidechains they
don’t use.

The solution proposed for enabling the instantiation of sidechains is called the
two-way peg. A two-way peg is a mechanism that allows assets to be moved from
one blockchain to another. The proposed two-way peg mechanism involves the
use of symplified payment verification proofs (SPV-proofs). An SPV-proof is an
ideally short piece of data that provides proof that a certain amount of tokens have
been SPV-locked in a certain blockchain. To do so in a Bitcoin-like blockchain, the
SPV-proof has to contain a list of blockheaders used for demostrating the proof-
of-work and a proof that the transaction was commited in one of the blocks. Since
forks can happen in these kind of blockchains, a sidechain receiving the tokens of
a parent chain requires the SPV-proof to prove that the transaction has also been
buried under a sufficient number of blocks. After that, the token is still made
available in the sidechain since a contest period has to be waited in which any user
can contest the SPV-proof provided by providing a proof that a block reorganisa-
tion has occurred, meaning that a portion of the blockchain locally stored in one
node has been overtaken by one in which more proof-of-work work has been done.

Another solution that can be classified in the sidechain solutions category
is Plasma [48]. Plasma is a framework that allows financial transactions and
computation to be outsourced from a blockchain (root chain or parent chain)
to another blockchain (child-chain) in order to reduce the burden on the root
blockchain and possibly reducing fees. In Plasma, a child chain can be connected
to a parent chain by means of a smart contract deployed on the parent chain.
The smart contract has the role of enforcing the consensus rule of the child chain
and allows users to move their funds from the parent chain to the child chain by
and viceversa. Plasma child-chains periodically commit merkelized commitments
about the blocks they are producing to the parent chain, allowing the parent
chain to be freed from the burden of processing the the transactions commited

Chapter 2. State of art on scalability solutions 25

in the child chain. Child chain security is ensured by allowing users to perform
an interactive game in which they can prove to the parent-chain whether certain
funds that are about to be withdrawn have already been spent or not. Users
are in fact required to keep track of the child-chains they are interested in; as
long as they can keep track of them their funds will not be stolen. While moving
the computation to a faster and less-decentralized blockchain is already a good
solution for scalability issues, Plasma allows the construction of child-chains on top
of other child-chains, allowing the creation of trees of blockchains for improving
scalability.

2.2.5 Diversity

Diversity [15] is a second layer solution we proposed in 2021 addressing the problem
of scalability for the execution of smart contracts in the IoT.

Diversity assumes that a set of users are interested in running a smart con-
tract off-chain that requires the elaboration of streams of data provided by a set
of predetermined IoT devices that in Diversity are called sensors; the elaboration
of such streams may result in actions to be performed on a specific blockchain,
these actions can be either the logging of data on the blockchain or a redistri-
bution of funds previously locked on a on-chain smart contract. In order to do
that, Diversity requires users to commit to a blockchain of reference a smart con-
tract specifying a set of devices responsible of performing the elaboration of such
streams (intermediate nodes); a set of sensors providing the data to be elaborated:;
and the specifics of the elaboration to be performed, which includes the way in
which intermediate nodes should assemble windows of data from the streams they
are receiving, and the function to be applied to such windows (off-chain func-
tion), which is the function that will determine whether a window has triggered
a blockchain action and what this action is (e.g., moving funds previously locked
on the smart contract or logging data on the blockchain).

Once the smart contract is deployed on chain, the referenced intermediate
nodes will start assembling the windows according to the specifics of the smart
contract and at the end of the window period, it will execute the off-chain func-
tion. Once the off-chain function has been executed, the intermediate nodes will
run a protocol among them (fig 2.6) in order to generate a proof that a unani-
mous agreement has been reached on the result of the computation; This protocol
ensures two properties:

e A blockchain action will be performed if and only if unanimous agreement
could be reached;

e Lazy intermediate nodes will not be able to generate the proof if they didn’t
actually perform the computation;

In order to guarantee this, intermediate nodes are required to perform three phases,
namely (i) proof of computation; (ii) computation agreement checking and (iii)
SC update; In the proof of computation phase, every intermediate node assembles

26 Chapter 2. State of art on scalability solutions

a message (proof of computation message):

pri = H(f (wilt)]|Seal[1Ds)[tl|al | H (wit]) - i (2.1)
where:
e H() is an hash function;

e f() is the off-chain function;

e w;[t] is the t-th window assembled by the intermediate node i;

St is a secret, this is used by the intermediate node to prove later on that
it computed the off-chain function and thus is not lazy;

1D; is a unique identifier of the intermediate node;

t specifies the index of the window on which the computation was performed;

a is the address of the on-chain smart contract;

11 is the signature of node i on the message.

This message will be used in the remaining phases to prove that the node really
performed the computation without learning it from other intermediate nodes. At
the end of the proof of computation phase, every intermediate node broadcasts to
every other intermediate node the message p;; and, when it receives the proof of
computation of other nodes, it will append its own signature to it and send it back
to the sender. Once an intermediate node has received the proof of computation
of all the other intermediate nodes, the agreement checking phase starts. In this
phase, every intermediate node broadcasts to the other nodes a message ¢, ; signed
by itself:

cri = [f(wilt)]|Sa] - (2.2)

This message allows other intermediate nodes to know what is the result
f(w;[t]) computed by the intermediate node i for the t-th window. The mes-
sage c;; and the message py; allow intermediate nodes to prove whether node
1 was lazy or not. In fact, every intermediate node that receives a message
cti = [f(w;[t])||Ses] - @ can hash its content f(w;[t])||S:; in order to check whether
it agrees with the p;; previously received or not, proving thus that the node has
not been lazy.

Once a node has received every agreement-checking message and proof-of-
computation message, he can begin the smart contract update phase. In the smart
contract update phase, a node can perform a blockchain action by committing to
the blockchain a proof that unanimous agreement has been reached on a given re-
sult f(w;[t]). This is done by sending to the blockchain the proof-of-computation
message signed by every intermediate node, and its own agreement-checking mes-
sage Ct;.

Chapter 2. State of art on scalability solutions

27

Pri1 = HOFCWiq[t) II St,iqll 1Di1) [l a [t [H(Wi4[t])

cti1= f(Wi1ltD) Il St,i1

i1 i2 i3
Proof of computation of i1
Pt,i1:11 5| Ptiriti2 5
< — Pt j1:i1:i2:i3
Pt jq:itii2:i
: >
agreement checking of i1
Ctiq:i1
t,i1 > >
smart confract update of i1
Pyj1:i1:02:03 || ¢y jq:i

ETH

Proof at
time t

Pt=
Pt j1:11:12:13 || ¢t j4:i1
Pt :i2:i3:1 || ¢y jpri2

T pt’i2:i3li1ii2 || Ct‘i3li3

FIGURE 2.6: Three phase protocol of Diversity

Chapter 3

Pollutant emission control system

This chapter presents an industrial IoT case scenario in which the use of blockchain
technologies has been deemed appropriate for providing specific guarantees to the
parties involved. Discussing this case study will make it clear how certain IoT
case studies may benefit from the introduction of blockchains.

Furthermore, it also provides a useful starting point for understanding the kind of
problems that Dany can address.

3.1 Pollutant emission control case study

The incineration of waste for producing energy significantly contributes to the
total energy supply of the European Union. The waste-to-energy process that
incinerators perform, involves the burning of waste products and this results in
the generation of polluting substances.

Incinerators can have a significant impact on the dispersion of pollutants in the
air, so their behaviour is regulated by law. In fact, the Italian and european emis-
siton requlations establishes thresholds on the concentration of carbon monoxide
that can be emitted. The law limit values of carbon monoxide concentration are
150mg/Nm3 , 100mg/Nm3 and 50mg/Nm3 as an average value over 10 minutes,
30 minutes and 1 day.

These values are calculated using a normalization formula:

21 — Os

Es—= 22— Y%
T Om

Em (3.1)

in which Fs is the concentration of emission calculated to the reference oxygen
content; Em is the concentration of measured emission; Os is the reference oxygen
concentration (11%) and Om is the measured oxygen concentration. In order
to determine whether the incinerators are behaving correctly, meaning that their
pollution emission rates are below the law limit values, it has been decided to
measure their emissions every 5 seconds and using these measures it is possible to
calculate the minute average emission (FE,,;,) using the following formula:
Z? ESZ'

Epin = =——— 3.2
- (32)

in which E's; is the instantaneous emission measured every 5 seconds, and n is
the number of readings performed in a minute (12 in our case). The E,,;, value

28

Chapter 3. Pollutant emission control system 29

thus calculated is used for implementing an emission control policy that will make
sure that incinerators do not exceed the law limit values of pollution emissions.
The measured values of carbon monoxide concentration is also of interest of an
health authority body that will use the measured values in order to check when
the law limit values are exceeded and place fines to the incinerator owners pro-
portional to the number of times these values have been exceeded.

In this situation we have three entities that are interested in the same data, which
are the wncinerator owner the health authority body, and the energy consumers
(i.e. industries) that are interested in certifying that the energy they use is green.
Both the incinerator owner and the health authority have strong reasons for not
trusting each other. In fact, the incinerator owner would gain an advantage by
hiding or counterfeit readings showing that his incinerators have polluted more
than it is permitted by law. On the other hand, the health authority may not be
trusted by the incinerator owners since it would get an economic incentive from
placing unjust fines. Legally, the reading data should be kept for 5 years, there-
fore a question arises: who should keep the reading data? In a first version of the
system, a third party, which was the company that installed the sensors, had the
role of managing the reading data and exposing them to the parties involved in
the case scenario in order to allow them to perform their activities.

This solution was found inappropriate by the incinerator companies and the health
authority that would prefer the use of a blockchain for its properties of immutabil-
ity and decentralization: a blockchain solution would also allow external industries
interested in the data to have the same guarantees on the data required by the
health authority and the incinerator owners (Figure 3.1).

[4 WRITE SENSOR DATA ===

/) - Il
SENSOR - KB J \» HEALTH AUTHORITY
PROVIDER : i LT .

J/ READ 5 *-~$i »
@ r .

SENSOR : P
DATA i S g .

4 S
INDUSTRIES

T e ek

INDUSTRIES

FI1GURE 3.1: Graphical description of the pollution case study

3.2 Blockchain solution

Using a public blockchain, such as Ethereum, to hold the sensor reading data and
to execute the smart contract responsible of fining the incinerator owners in case
of misbehaviour, is unfeasible. In fact, monitoring a single incinerator would re-
quire committing to the blockchain around 500 transactions every 5 seconds. The
transaction throughput of Ethereum is estimated to be around 10 tx/s, which is
too low for our application. Even if we were to adopt other public distributed

30 Chapter 3. Pollutant emission control system

ledger with higher throughputs we would still incur in the problem of fees. Sub-
mitting transactions to public blockchains requires the submitter to pay a fee that
is proportional to the computational efforts required to execute the code that the
transaction triggers on the blockchain. We estimated that a single incinerator sys-
tem would be responsible of producing 125TB of data in 5 years; committing this
amount of data to a public blockchain, if possible, would cost millions of dollars.
For these reasons, the solution involving the use of a public blockchain has been
discarded, however, custom consortium blockchains can provide a solution to the
problems inherent public blockchains; in fact, consortium blockchains can be con-
figured to support high transaction rates without any fees.

3.3 Evaluation of a local blockchain solution with
Hyperledger Besu

Hyperledger Besu [1] is an Ethereum Client that enables users to design their
own blockchain solution. Hyperledger Besu supports various consensus protocols
including Proof-of-Work protocols, proof-of-stake protocols and proof-of-authority
protocols. In order to understand the feasibility of a permissioned blockchain
solution to the problem of data management in the pollutant emission control
case study, we have decided to use Hyperledger Besu for implementing multiple
consortium blockchains with varying parameters in order to perform tests on them
that would help us understand whether these blockchains would be able to handle
the high transaction throughput that the pollutant emission control case study
requires.

3.3.1 Blockchain configurations

The configurations of the blockchains vary in the following parameters:
e Consensus protocol: either IBFT 2.0 or Clique.

e Validator number: The number of nodes that are registered as validators
in the blockchain (10, 15 and 20).

The block gas limit, which represents the total amount of gas that can be
consumed in a given block, has been set to the maximum value allowed by Besu
in every tested blockchain. The block period, which is the minimum amount of
seconds that a validator has to wait in order to propose a new block, has been set
to 1, which is the minimum allowed by Besu. Every node of the blockchains has
been deployed on a single physical machine and cross-node communication was
enabled via host networking. The host machine has the following characteristics:

e Operating System: Ubuntu 20.04.3 LTS,
e CPU: 2 CPU: Intel(R) Xeon(R) Gold 6256 CPU @ 3.60GHz,
e RAM: 128GB

Chapter 3. Pollutant emission control system 31

3.3.2 Benchmark configuration

The benchmark runs were performed with Hyperledger Caliper, a blockchain per-
formance benchmark framework. The tests performed with Caliper involved send-
ing loads of transactions to a single validator node of the network at fixed rates.
The send rates used in our tests are around 1, 5, 10, 20, 30, 40, 50, 100, 250 tx/s.
Each combination of blockchain configuration and send rate was targeted once in
a benchmark run, meaning that a total of 54 benchmark runs were performed.

The transactions were contract method calls calling the open method of the
simple.sol smart contract (Code 3.1), provided by default by Caliper. The metrics
obtained by running the tests are:

e Transaction throughput (TPS): the number of transactions successfully
committed to the blockchain per second.

e Transaction latency: The amount of time a transaction takes from the
moment it is sent to a node to when it is successfully committed to the
blockchain.

Algorithm 3.1 Benchmark smart contract

1 pragma solidity >=0.4.22 <0.6.0;

contract simple {
mapping(string => int) private accounts;

6 function open(string memory acc_id, int amount) public
payable {
7 require(int(msg.value) = amount, ’No commitment made
by the caller.’);
8 accounts[acc_id] = amount;
9 }

11 function query(string memory acc_id) public view returns (
int amount) {

12 amount = accounts[acc_id];

13 }

14

15 function transfer(string memory acc_from, string memory
acc_to, int amount) public {

16 accounts[acc_from] — amount;

17 accounts[acc_-to] += amount;

18 }

3.3.3 Benchmark results

The results obtained from the benchmark runs are shown in Figures 3.2a 3.2b 3.3a
3.3b. It is possible to observe that both the average transaction throughput and
transaction latency are affected by the number of validators in the network, with
performance decreasing as the number of validators of the networks increase. It

32 Chapter 3. Pollutant emission control system

IBFT 2.0 - Average transaction latency

13

Validators
— 10
1z 15
. — 20
u
- 11
=
I
& 10
1 E]
=]
@
E 09
0.8
07
o 50 100 150 200 250
Send rate {TPS)
(a) IBFT 2.0.
Cligque - Average transactions latency
Validators
0951 —— 10
15
_ a4 — 20
=
2 08s
i
K
w 080
g
o
z 075
0.70
065

0 50 100 150 200 250
Send rate (TPS)

(B) Clique.

FI1GURE 3.2: Average transaction latency measured in IBFT 2.0
(A) and Clique (B) blockchains with varying send rates and val-
idators number.

is also possible to observe that the average transaction latency increases as the
send rates increases, even though it is always very low (lower than 1 second). The
transaction throughput of the blockchains tends to approximate the benchmark
run transaction send rate, with a slight decrease in performances as the send rate
increases up to around 250 tx/s. Unfortunately, it was not possible with our
setting to use higher send rates in order to reach an upper limit on transaction
throughput.

Chapter 3. Pollutant emission control system 33

IBFT 2.0 - Throughput

250

Validators
— 10
200 15
20
o
[=W
= 150
=
—
=9
£
= 100
2
E
50
0 : : : : :
o 50 100 150 200 250
Send rate (TPS)
(A) IBFT 2.0.
Cligue - Throughput
250
Validators
— 10
5 200 15
2 20
]
(=]
w150
[=W
=
B
=1
£ 100
[=1]
=
£
50
o

o 50 100 150 200 250
Send rate (TPS)

(B) Clique.

FIGURE 3.3: Average throughput of IBFT 2.0 (A) and Clique (B)
blockchains with varying send rates and number of validators.

3.4 Evaluation of a distributed blockchain solu-

tion using Hyperledger Besu

In the work we published Performance analysis of a BESU permissioned blockchain
[45], we gained additional information about the performance of real-world con-
sortium blockchains. In particular, we tested a real permissioned blockchain hav-
ing four validator nodes dislocated in different regions of Italy using Hyperledger
Caliper and a Custom benchmark tool developed by us. The custom benchmark
tool we designed allowed us to gain insight into the abnormal behaviours detected
that we couldn’t inspect with Hyperledger Caliper.

3.4.1 Blockchain configuration

The blockchain network tested is built up as a private permissioned network. Per-
missioning is implemented by the Consensys Dapp mechanism where new nodes

34 Chapter 3. Pollutant emission control system

can be onboarded if added into the permissioning smart contracts by administra-
tors. Administrator can be registered as well and can manage the inclusion of new
nodes or new administrators with their cryptographic credentials. The consensus
protocol used is IBFT 2.0 with four validator nodes. Nodes are run by different
and independent organizations which may adopt different access policies and fire-
walls and different machines and software. They are geographically distributed
in different sites so that internet interaction can play a true role in the exchange
of information among them. Every organization implements a node by means of
the same docker-container technology but BESU versions run by the nodes can be
different.

3.4.2 Hyperledger Caliper

Hyperledger Caliper [2] is a blockchain performance benchmarking tool for Hy-
perledger Besu and other Ethereum-like blockchain technologies. Caliper allows
to set up a workload specifying the nodes to which send requests (via web socket)
and information about the transaction load. Transaction loads are completely
customizable, allowing the user to define the fields of the transactions that will
be sent, as well as the number of transaction in the load and the send rate: the
number of transaction to submit per second. The metrics measurable with Caliper
are:

e Read latency: the time elapsed between a request is submitted and a reply
is received;

e Read througuput: the total amount of read operations successfully submit-
ted for which a reply has been received per second;

e Transaction latency: the amount of time a transaction requires to be part
of the blockchain;

e Transaction througuput: the rate at which valid transactions are committed
to the blockchain.

3.4.3 Custom benchmark tool

The custom java benchmark tool we developed allows us to send custom ethereum
transactions to a node at a steady configurable rate and retrieve various met-
rics. The application allows us to configure various parameters to be used in a
benchmark run, including:

e Transaction send delay: Number of milliseconds the application waits in
order to send a new transaction after sending the previous one;

e Transaction number: number of transactions to be sent in a given run;

e Timeout: the number of milliseconds after which a transaction is considered
to be not included in the blockchain if its transaction receipt hasn’t been
received;

Chapter 3. Pollutant emission control system 35

o Communication protocol: The protocol employed for communicating with
the node (either HTTP or Web socket);

e Node address: The node IP address and port number used to communicate
with the blockchain node;

e Sender key: Ethereum account private key used for signing transactions.

The transactions that can be sent by the application are either simple value trans-
fer transactions or smart contract method calls, more specifically, the smart con-
tract method call that the application natively supports is the transfer method of
the ERC20 smart contract. In case the application is run in the smart contract
method call mode, the application will first commit a new ERC20 smart contract,
wait for its inclusion in a block, and then will start sending the method call trans-
actions. After a benchmark run, the application outputs the average transaction
delay — which is the average number of milliseconds elapsed from when a transac-
tion has been sent to when it has been included in a valid block and the number
of blocks that have been generated during the run. Furthermore, for every trans-
action committed successfully, the application outputs information regarding the
transaction and the block that contains the transaction. This information con-
tains: block number; the timestamp when the transaction was sent to the node;
the timestamp of the block; the ethereum address of the validator that proposed
the block; the transaction delay.

3.4.4 Benchmark tests performed

The tests performed involved the use of Hyperledger Caliper and of the Custom
benchmark tool. Both tools were used to send loads of transactions targeting
a particular smart contract deployed on the network at fixed rates. The smart
contract targeted with Caliper is the simple.sol (code 3.1 smart contract that
comes by default with the tool, while the smart contract called with the custom
benchmark tool is the IERC20 smart contract, and the method called was the
transfer method.

Caliper results

Hyperledger Caliper shows measured metric values for three different blockchain
interactions: open, query, and transfer. The open and transfer tests are performed
with gas-consuming transactions to the smart contract. The query test is a call to
the view function of the smart contract. Transactions were sent for a programmed
time of 100 seconds at the different send rates of 0.2, 1, 2, and 10 transactions per
second (TPS). An additional test at the rate of 100 transactions per second was
set up but was not carried out by the tool. Caliper metric results are summarized
in Tab. 3.1 where we report the results of the transfer test.

The results show how the average latency time of the transactions tends to
increase with the increase of the send rate. This value should not depend on the
number of transactions and should be close to half the block time (which in our
case is 6 seconds). However, it seems that the throughput is close to optimal.

36 Chapter 3. Pollutant emission control system

TABLE 3.1: Results of the execution of Hyperledger Caliper tests
at four different transaction send rates. Only the results relating
to the transfer tests are reported.

Tx Send Rate (TPS) | 0.2 1 2 10
Maximum latency (s) | 5.20 6.66s 12.39 13.42
Minimum latency (s) | 0.23 0.64 0.69 0.97
Average latency (s) 270 3.58 641 7.23
Throughput (TPS) 02 09 1.9 9.5

TABLE 3.2: The blocks metrics of the test 1 are reported in each
column of the table for a different value of the transaction sending
rate.

Tx Send Rate (TPS) |02 1 2 10 100
Number of Tx 20 100 200 1000 10000
N. of Blocks 16 17 19 19 24
Total Block Time (s) 90 96 108 108 139
Average block time (s) | 6.0 6.0 6.0 6.0 6.043

Caliper therefore allows us to detect an anomaly in latency metrics but does not
provide further information to understand finer details.

Custom tool results

We configured the Custom tool to send transactions using WebSocket as a proto-
col, to use the closest node (in our case, the local host) as destination, and to use
a single sender key. We set proper values for the parameters in order to have

transaction number /transaction send delay = 100

in other words, transactions were sent for a programmed time of 100 seconds.
Different values for transaction send delay were set in order to send transactions
at the different send rates of 0.2, 1, 2, 10, and 100 transactions per second (TPS).
We performed the test twice (i.e., test 1 and test 2 in the following) to verify
the repeatability of the observations. After running the tests, our custom tool
produces the results in the form of serialized data on a file that can be easily
processed. All of the data shown below are the results of processing the custom
tool’s data without the need for any additional queries to the blockchain.

Tab. 3.2 and Tab. 3.3 report the block metrics of the two tests performed with
the same configuration of the tool. In these tables we can read for each send rate:
the number of blocks created during the test; the total time elapsed between the
first and last block created; and the average block time.

Thanks to the reports generated by our Custom Java Benchmark tool, we can
understand how the blockchain network acquires transactions and how and when
these are inserted into new blocks. For both tests, the average block time is stable
for any TPS (6 seconds).

Chapter 3. Pollutant emission control system 37

TABLE 3.3: The blocks metrics of the test 2 are reported in each
column of the table for a different value of the transaction sending
rate.

Tx Send Rate (TPS) |02 1 2 10 100
Number of Tx 20 100 200 1000 10000
N. of Blocks 17 18 18 19 25
Total Block Time (s) 96 102 102 108 144
Average block time (s) | 6.0 6.0 6.0 6.0 6.0

TABLE 3.4: Test 1. The values of the transaction confirmation
delays are reported in each column of the table for a different value
of the sending transaction frequency parameter.

Tx Send Rate (TPS) | 0.2 1 2 10 100

Maximum latency (s) | 5.99 6.289 12.235 13.001 22.112
Minimum latency (s) | 0.897 0.190 0.402 0.337 4.720
Average latency (s) 3.405 3.206 5.246 6.759 12.638
Throughput (TPS) 0.208 0.997 1.779 8.927 69.136

The tool allows the evaluation of latency metrics and to compare the results
with the measurements made by Caliper. The transaction latency (i.e., the time
interval between the instant of sending the transaction and the instant of confirma-
tion) allows us to verify when the transactions are correctly inserted in the blocks.
The latency is expected to be a local maximum if the transaction is requested
immediately after creating a block. Conversely, minimal latency is expected if the
transaction is sent close to the creation of a new block. Furthermore, an average
latency of close to 3 seconds is expected for each test (or half of the block time
established during the blockchain’s genesis, which in our case is 6 seconds). As for
the number of transactions per block, each block is expected to contain the same
number of transactions, except for the first block and the last block. Any notice-
able difference between expected and measured data is worth further investigation
and can be traced back to network node operational anomalies.

The Tab. 3.4 and Tab. 3.5 show the latency measures of test 1 and 2 respec-
tively. The results confirm the values of the Hyperledger Caliper metrics obtained
for the transaction send rates up to 10 TPS.

In both tables, for rates up to 10 TPS, the minimum delay remains below one
second. At a rate of 100 TPS the minimum delay increases considerably up to
4.7 and 2.8 seconds for test 1 and test 2 respectively. For the rates of 2, 10, and
100 TPS, a significantly higher than expected average latency is observed, and,
for both test 1 and test 2, the average latency increases with higher send rates.

Therefore, an anomaly is found for the transaction send rates of 2 transaction
per second and above. The data produced by our Custom benchmark tool allows
the examination, transaction by transaction, of the latency, the block number,
and the block’s miner. This allows for delving into the reasons for the increasing
in the latency. To investigate the causes of this anomaly, we consider the smallest
sending rate that causes anomalies and the highest send rate, i.e. 2 TPS and 100

38 Chapter 3. Pollutant emission control system

TABLE 3.5: Test 2. The values of the transaction confirmation
delays are reported in each column of the table for a different value
of the sending transaction frequency parameter.

Tx Send Rate (TPS) | 0.2 1 2 10 100

Maximum latency (s) | 6.917 6.664 12.196 12.774 18.528
Minimum latency (s) | 0.833 0.567 0.289 0.377 2.835
Average latency (s) 3.781 3.596 5.092 6.580 10.712
Throughput (TPS) 0.199 0960 1.855 8.879 66.454

TPS. By looking at the data provided by our tool, we were able to understand
what caused these anomalies. In fact we could observe that with the send rate
of 2 TPS what happens is that two validators seem to propose blocks with more
transactions than the other two validator (Figure 3.4), the situation became even
worse in the 100 TPS scenario, since the validators that were producing smaller
blocks in the previous test were now producing empty blocks (Figure 3.5).

30

25

20
+]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

=
w

=
=}

Number of transactions

Block number (+630868)

FIGURE 3.4: Number of transactions per block in the test 1 at a
transaction send rate of 2 TPS.

3.5 Discussion

The results observed from our benchmark runs performed in the locally deployed
blockchain suggests that a permissioned blockchain can be used for managing the
data generated by a single incinerator. However, these results were obtained in
a synthetic environment in which network delays are not taken into considera-
tion; performances are likely to degrade in a real-world scenario where nodes of
the network are geographically distant and communication between them is not
instantaneous. It is also not clear what would be the maximum number of incin-
erators our blockchain solution can handle, since in our setting we were limited to
sending transaction at a maximum rate of around 250 tx/s, which is not enough
for reaching saturation in any of the explored blockchain configurations.

A more extensive performance analyis on Hyperledger Besu used for private blockchains
has been conducted by Caixan Fan et al. [30]. Their testes consisted, simarly to
ours, in sending loads of transactions with Caliper to Besu blockchain nodes that

Chapter 3. Pollutant emission control system 39

1200

1000
8l
6
4
2
ol |

01 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23

MWumber of transactions
8 8 51

8

Block number (+413905)

FIGURE 3.5: Number of transactions per block when sending trans-
actions at 100 TPS.

were deployed on the same machine. Their setting enabled them to send up to
1,500 transaction per second addressing the same simple.sol smart contract used in
our tests. The maximum throughput reached by the most performant blockchain
configuration was less than 500 tps, with degrading performances as the complexity
of the computation triggered by the transactions increased. These results suggest
that a straightforward consortium blockchain solution to the pollution manage-
ment case scenario is not ideal if the number of incinerators to be monitored is
large. The tests we performed on the real-world permissioned blockchain suggests
that in real world scenarios the high throughput of permissioned blockchains de-
tected in a synthetic environment may not be achievable. These results suggest
us that devising a scalable solution for executing smart contracts in case scenarios
where the number of transactions to be processed is high, would provide a suitable
solution for these case scenarios.

Chapter 4

Dany

This chapter describes Dany (Decentralized stAte chaNnel sYstem), a solution
for executing secure and scalable smart contracts particularly suited for the IoT.
Smart contracts that require the elaboration of continuous streams of data cannot
be implemented in a straightforward approach in many blockchains, in fact, such
smart contracts would put an unnecessary burden on the blockchain. The data
processed by a blockchain smart contract is embedded in transactions and the
throughput of blockchains is often quite low, making it impossible to process all
the incoming data. This is especially true in public blockchains since they tend to
have lower throughputs than private ones, making them unsuitable for executing
[oT smart contract, especially if multiple similar smart contracts are deployed
in the same chain. Another problem faced by IoT smart contract is related to
transaction fees: sending transactions to a blockchain smart contract, such as an
Ethereum smart contract, costs fees that are generally proportional to the amount
of data sent and the computational power required to execute the triggered smart
contract procedure. In order to solve these problems it is possible to off-load the
execution of the smart contract from the blockchain layer to another layer that will
interact with the blockchain in few occasions. The solutions that implement this
approach are called either off-chain solutions or second-layer solutions. Second-
layer solutions, however, are not to be implemented naively since they should
provide security guarantees similar to those of traditional smart contracts while
providing at the same time scalability improvements. With Dany we provide a
second-layer solution in which the computation of smart contracts is off-loaded to
a second-layer that we call the intermediate node layer. The intermediate node
layer is composed of devices (intermediate nodes) that are required to execute a
smart contract that processes data coming from a third layer called sensor layer.
Smart contracts state updates will be performed off-chain only if a unanimous
agreement can be reached by the intermediate nodes. If a unanimous agreement
cannot be reached, then a dispute resolution protocol allows them to prove to the
blockchain what is the correct state. This means that Dany provides an any-trust
guarantee, that is a single honest intermediate node is enough for enforcing the
correct execution of the smart contract.

The solution described in this chapter is a further development of Diversity,
that was first presented in Cacciagrano et al [15].

40

Chapter 4. Dany 41

sensor second blockchain
layers layer layer

? mm
NN
© © | T EEES s wen
E EE Blockchain
O O + Intermediate —————— >
EEE
O O Baame = B B B | ~oo» Intermediate ——— % one
O L smart
contract

FIGURE 4.1: Dany architecture

4.1 Dany at glance

Figure 4.1 shows the architecture of the Dany system. This has a three layered
architecture that is composed of the following layers: (i) a main blockchain; (ii) a
set of distributed intermediate nodes; (iii) a set of IoT sensor devices.

The blockchain layer can contain one or more on-chain smart contracts. The
use of Dany requires that a set of users specifies a smart contract. This specifies a
logically centralised state machine that takes as an input a stream of sensor data
and performs a transition from its current state to the next one. This transition
may cause an action to be performed by using the on-chain smart contract. This
can move funds on the reference blockchain.

Each user that has been involved in the smart contract definition can propose
an intermediate node. Intermediate nodes constitute a distributed layer of devices
that read the on-chain smart contract and execute it in a decentralised fashion.
In the rest of the thesis, the local copy of the on-chain smart contract is referred
to as off-chain smart contract. The basic idea is that the intermediate nodes
should simulate the state machine that is defined in the on-chain smart contract
in a decentralised fashion (this decentralised execution defines the state channel).
More precisely, a Dany secure protocol ensures that the local state of each honest
intermediate node will be the same as the logically centralised one.

The sensor layer is composed by a set of sensors that forward data to the
intermediate nodes. Sensors are assumed to be trusted. The origin of sensor
messages can be always authenticated and their integrity proved.

In the next sections we explore all the layers in detail.

4.2 Sensor layer

The sensor layer is composed of devices that we call sensors. A sensor in Dany
is assumed to be a device with a small amount of memory and limited CPU
computation capabilities. A sensor has connectivity and cryptographic capabilities

42 Chapter 4. Dany

since is able to send signed messages to the Intermediate nodes. Sensors in Dany
are assumed to be trusted, which implies the following:

e Sensors do not have a byzantine behaviour, meaning that a sensor does not
send different readings to different intermediate nodes.

e Sensors cannot be tampered with (e.g., they are tamper-proof devices).

Sensors are referenced by Dany smart contracts stored in the blockchain layer
and send messages to every intermediate node referenced in those same contracts.
The sensor layer can be considered a trusted source of information. Dany assumes
that the connection between the sensors and the intermediate nodes is unreliable,
meaning that sensor messages can be lost during transmission. In fact, we designed
Dany in such a way that it should be able to provide liveness and safety even in
the case of unreliable sensor message communication.

Intermediate i1

s
mmm ""‘—daw '"dsl'"dz' ""da ﬁ
] @ P
w'sy [[[wlea |
mZy | mfp |mf3 | miy m?g | mig | m?y mg | mPy

wly W'y W'y

B EAEALA LA LA LA EACAEA A MEA EA EAEA EA

My [, [[e [s [% [%] My oy [| s [[s | e |2 [g [s
My |md‘Imdzlmds|md‘|md5|md5|md7|mdﬂlmds| Mg |m?y | m?5 | m%y | mPy | m®5 | mfg |m?s |mg | mg
¥ v
Intermediate i2
w1 a2 a3
[J e [s [[mr o []
@ 3 &
Wy [wrp | [v |
m?y | m?y)&("‘zd m’s | m?g | m¥7 m?s | my
Wy w2, w2

3
EA A LA LA LA LA N EAEAEA LN EABA B EA L

FiGUurE 4.2: Windows and traces generated by sensors and re-
ceived by intermediate nodes: Sensors d and z generate the traces
M, and M, respectively. These are received by intermediate nodes
11 and 2 who divide them into windows and merge them. Interme-
diate nodes may lose some sensor messages, possibly making their

merged local windows different, e.g., w} is different from w?

4.2.1 Sensor messages and windows

A message sent by a sensor d to an intermediate node can be described as a tuple:

Chapter 4. Dany 43

Md,q = <idd7 q, datad,qa tqa typed>0d (41)

where:
e ¢ is a sequence number;

e idy: is the public key of the sensor, or any other information that can identify
univocally the sensor;

e datay,: is the data payload sent by the sensor;
e 1, is the timestamp when that sensor message was sent;

e typey: represents the type of data transmitted by the sensor (e.g., humidity,
temperature, etc..);

e 04 is the signature of sensor d.

A sensor generates a sensor trace that is a stream of sensor messages. We
use 74 to denote the sensor trace generated by d and mgp - ... maq - Magi1,- -
denotes the sensor messages in r4. We specify here that each message contained
in a stream of sensor messages 74 is an element of My, with M, being the set of all
possible messages coming from the sensor d. The sensor messages are broadcast
to a set of intermediate nodes {1, ..., %, }. These use the trace r4 to run all smart
contracts that include the sensor d. It is worth mentioning that the timestamp
ty of a message mgq, can also be used for ordering the sensor messages obtaining
a trace that is rq. For the sake of presentation we often use mg; to denote the
message mq, that is we replace the sequence number ¢ with its timestamp ¢.
Figure 4.2 shows the sensor traces r4 and r, that are related to the sensors d and
z. These are sent to the intermediate nodes 7; and 5.

Traces coming from different sensors can be merged into a single one. Merged
traces are used by the intermediate nodes for executing Dany smart contracts.

Definition 1 Let rg and r, be two sensor traces that are related to the sensors
d and z. A merged trace that is denoted with rq ® 1, is a sequence of sensor
messages such that:

1. each message in the traces rq and r, appears exactly once in the merge rq &
ra

2. a message mgq, 1, S in the merge rq @ 1, iff mq, 1, s either in rq or r;

3. if ma, s, and mg, 1, are two messages in Tq © 1. and t; <t then mg,
appears before mg, 4, in the merge;

4. if ma, s, and mq, 4, are two messages rq & r, with t; =t and idg, < idg,
then mq, ;. appears before my, 4, in the merge rq © r.;

44 Chapter 4. Dany

We can generalise the merge operation to a set of sensor traces. Suppose that we
have a set of sensors D and di,ds, ...d;, are element in . Then we denote with
rp = @Z:l rq, (di € D) the merge of all sensor traces. We use r instead of rp
when the set of sensors D is clear from the context.

We also define Ry as the set of all possible traces that can be generated by a
sensor d. Let My be the set of all sensor messages that can be generated by sensor

d, R4 can be defined as follows:

Ry= M (4.2)

Where % is the kleene star operator. From this definition, we can define Rp, which

is the set of all possible merged sensor traces that can be generated by the sensors
in aset D = {dy,ds...dp}:

|D|
Rp = {@ tr; 1 tr; € Rdz} (43)

i=1
As we are going to see in section 4.3, Dany smart contracts are defined over
finite sub-strings of traces. We denote with Rp,, the set of all possible substrings
of the traces that can be generated by the nodes in D with a maximum lenght n.

4.3 Blockchain layer

The Dany system assumes that a set U of users {uy, us, ...u,,}, are interested in
running a state channel whose state transitions depend on the messages on the
traces produced by a set of sensors D = {dy, ds, ...d}. The behaviour of the state
channel can be described by a state machine that given a certain input returns a
new state, which in our case will represent both the amount of money owned by
every user in U, and a numeric value that we call state variable. The amount of
cryptocurrency of the channel owned by every user in U is called redistribution.
A redistribution ey to a set of users U = {uy,usg,...u,, } can be described as an
m-tuple:

ev = ((u1,a1), (ug, a), ...(Um, am)) (4.4)

where each element a; is a positive integer representing the amount of cryptocur-
rency owned by user u;.

In order to instantiate a state channel, it is necessary to deploy first a Dany
smart contract SC on a blockchain that specifies both the state machine, as well
as the information about the the windows to be used as input to the transition
function of the state machine, and the devices responsible of physically running
the state channel.

A Dany smart contract SC' can be described as a tuple:

SC = (I,D, K, Ty, T,y, Ny, SM) (4.5)

where:

Chapter 4. Dany 45

e [: is a set of intermediate nodes I = {4y, is, ...i,, }, responsible of running the
state channel;

e D: is a set of sensors;

e [: is a positive integer representing the stake, which is the amount of cryp-
tocurrency locked used to give an incentive to intermediate nodes to behave
honestly;

e Tj: is the timestamp at which the state channel execution starts;

e T, is the window duration: windows of sensor messages are the input of
the transition function;

e N,: is the number of windows the state channel processes;

e SM: is the state machine specifying the behaviour of the state channel.

The state machine SM can also be described as a tuple SM = ((SxE), (so, €0), Rpn, F)
where:

e S x F is a set of states, where S is a set of values and FE is a set of redistri-
butions;

e (s0,€9) is the initial state of the state channel, with sy € S and ey € F;

e Rp, is the input alphabet, which is the set of all possible merged sensor
traces of sensors in D with maximum length n;

o [: it is the transition function, mapping elements in S x X Rp ,, to elements
in S x FE.

The state channel execution specified by the Dany smart contract is performed
by the intermediate nodes in I: these devices should be receiving messages from
the sensors in D that they will use to assemble windows of sensor messages to be
used as the input of the state machine transition function in order to make the
state channel transition from one state to another. A window w(rg, Ty, Toy, n) is
the n-th substring of a sensor trace r4 where T and T, are the times included in
the state machine definition. w(rq, To, T\, n) contains all messages mg; such that
To+nxT, <t<Ty+ (n+1)x T, Forthe sake of presentation we denote a
window of sensor messages with w,, when r4, Ty and T, are clear from the context.
Ideally, the state channel execution specified by a Dany smart contract starts at
time Tp, waiting until time Ty + T, is reached in order to allow intermediate nodes
to be able to assemble the first window w(ry, Ty, Tr,, 0) which will be used by them
to execute a protocol that will result in the state channel transitioning from a
state (sg,€0) to (s1,e1) with (s1,e1) = F((so0, €0), w(rq, To, Tw,0)). As we are going
to see in the next section the intermediate nodes simulate a state change (s1,e1)
when a proof of unanimous agreement of intermediate nodes could be generated
for it or when the on-chain Dany smart contract accepts the state (si,e;) after
an on-chain dispute has been settled. Once the state channel has transitioned
to a state (s1,ep), then another T, period is waited in order to transition to the
following state. This is done a number of times equal to N,,.

46 Chapter 4. Dany

4.4 Intermediate node layer

The intermediate node layer is composed by devices called intermediate nodes.
These devices run the state channel specified by a Dany smart contract SC'.

Since state channels in Dany update their states according to the messages
produced by a set of referenced sensors, the intermediate nodes running a Dany
state channel are required to be able to receive messages from the referenced
Sensors.

It is worth recalling that the connection between the sensor layer and the
intermediate node layer is not assumed to be reliable, meaning that messages may
be lost during transmission from a sensor to an intermediate node. Because of
this, an intermediate node 7, may have received only a portion of the messages in
the sensor trace ry.

We denote with 74, the trace of sensor messages coming from sensor d that
have been received by node iy, and with rp; the merged trace of sensor traces
produced by sensors in D that has been observed by node i;; we call this the
intermediate node trace of iy.

However, even though any intermediate node may only have partial knowl-
edge of the trace generated by the sensors, the Dany system will ensure that the
transition from a state (sp,e,) to (Spi1,€en+1) Will be the result of the applica-
tion of the transition function to the window of data of the trace rp, that is (
(Sna1s€nt1) = F((sn,en),w,)) assuming that every message in w, has been re-
ceived by at least one honest intermediate node. However, even this assumption
is quite strong and may not hold in many situations. It may happen, for instance,
that some sensor messages are never received by any intermediate node, making
it impossible for them to perform a state transition that depends on rp.

In these situations we believe that the best solution is to guarantee that the
state channel transitions to a new state by applying the transition function to
the merge of the local windows observed by the intermediate nodes. This means
that if a message in rp that should be in w(rp, Ty, Toy,n) is not received by any
intermediate node, then the next state of the state channel (s,.1,e,+1) will be
guaranteed to be equal to F'((s,,€,),w,), with w, being the merge of all the local
windows that the intermediate nodes used to transition to a new state:

]

Wy, = {@ wpy, ik € 1} (4.6)
k=1

We can also write w,, as w(rp 1, To, T\, n) by defining rp ; as the merge of the
local traces of the intermediate nodes in I used to transition to a new state.

]

D1 = {@ Dy - 1, € [} (47)
k=1

Intermediate nodes will ensure that the state channel transition to a reasonable
state by running a protocol among them aimed at proving a certain state has been
agreeed by every honest itermediate node: we call this protocol the Dany protocol.

Chapter 4. Dany 47

Node 1

(Teader) Node 2 Node 3
Py {n, idse, H{(Sun+1,8an41)). H(Was))Os R
State-proposal '
phase i Py dn, idse, H{(Sun+1,€ua41)); H(Wan)iCa 5
e Pma: (0, idsc, H((Sans1€am)). HWas))Oe g
State-acceptance
phase L Py 2 (n, idee, H((Szp41,80041)). H(Wa,))0n :
Agreement | AC: . ((Sum1,Baner), PMa) _;5
certificate delivery i ! ;
Rhase AC: - ((Suawr,8amn), PMy) -

FIGURE 4.3: Message sequence showing the process of creating
and distributing an Agreement certificate with Node 1 acting as
the leader node for the given window

We refer to this protocol as the Dany protocol, which is divided into two sub-
protocols, nameley the Agreement certificate protocol and the Dispute resolution
protocol.

4.5 Agreement certificate protocol

The agreement certificate protocol 4.3 is the protocol run by the intermediate
nodes aimed at generating a certificate proving that every intermediate node agrees
on a given state (s,,e,): we call this proof an agreement certificate. Agreement
certificate allow state updates to be performed off-chain without interacting with
the blockchain: as long as an agreement certificate exists for a given window,
intermediate nodes can be sure that the off-chain state they reached an agreement
on can be enforced on-chain and that the related redistribution of funds can be
performed. In order to generate such a certificate, a leader is selected each time
the local time reaches Ty+ (7T, -n)+0d,, with d,, being the maximum tolerable delay.
Leader selection can be done in a round robin fashion without any exchange of
messages. The leader 7; thus selected will then propose a new state channel state
by applying the state machine transition function to the previous state previously
agreed and to its local window w,, ;, obtaining thus:

(Snttilniri) = F((Sni€ni)s Wniy) (4.8)

We refer to this state as the leader node proposed state at time n.

After the intermediate node has completed this stage, he can propose its locally
computed state to the other intermediate nodes by assembling a message with the
following format:

pmy = <TL, idSC’a H(F((sn,il en,ig)a wn,iz))v H(wn,il»ail (49)

48 Chapter 4. Dany

where:

o H(F((sni€ni) Wny)) is the hash of the state computed by node 7; on its
n-th local windows;

H(w,, ;) is the hash of the n-th local window of 4;

n is the number of the window;

1dgc is a reference to the Dany smart contract on-chain;

e 0, is the signature applied by the leader node.

l

We refer to this kind of message as a protocol message.

The leader protocol message is broadcasted to every other intermediate node
referenced by the Dany smart contract, initiating thus the state proposal phase of
the protocol. Every intermediate node 7; will perform the following checks upon
receiving such a message:

e Check whether the hash of the local state matches its own computed state
for smart contract SC' at window number n:

H(F((Sn,i€n,i)s Wnyiy)) = H(F((8nip€n,i,), Wniiy))-

e Check whether the hash of the window used to compute the new state is
equal to the hash of its local window: H(w, ;) = H(w,,).

If the checks pass, then each intermediate nodes i, will send back its own
protocol message to i; containing the same values sent by 7; but with the signature
of i;: we refer to this protocol phase as the state acceptance phase

Once the leader node has received the protocol messages of all the other inter-
mediate nodes he can create the agreement certificate.

An agreement certificate AC,,, proving a unanimous agreement has been reached
by every intermediate node, can be described as follows:

AC, = ((Sn+1) €nt1,3), P M) (4.10)

where PM,, is a set of protocol messages such that:

e Every protocol message in PM,, have the same values for every field, except
for the signature;

e Each protocol message in PM,, is signed by a different intermediate node;

e Every intermediate node in I has signed exactly one protocol message in
PM,

e for every protocol message pm;, = (H(F ((Snip€n.iy,)s Wniy))s H(Wn i,), 0, a)
in PM,, it is true that: H(F((Sni,€niy,), Wniy)) = H(Snt1,4,s €nst1,i,)

O’ik

Once the agreement certificate has been assembled by the leader node, he
will broadcast it to all the other intermediate nodes: this is the last phase of
the agreement certificate protocol and we refer to it as the agreement certificate
delivery phase.

Chapter 4. Dany 49

Blockchain

Dany smart contract

Intermediate node 1 B

Intermediate node 2

Intermediate node 1

Sensor A
—r [CRAY [mg, | maz|[mas]| Wi,
. - B , .
*)); <% (Mot | Maz [Mo || Moz |[Mes | Mas |
[[ez [mos | FWit s (Sm@nl) = (Sit 1,801 1)
Intermediate node 2 t Giibrt Timeout
iy [[z N
G Ma,1 | M2 Wiz State machine
¢ [moa [[mez[mes | — . 5 i
© [y [z [2 [e] P
[melimezlimes] Fiwion. (sneal) = (52182 me) (sa.ea)
Ron
[
disputeWindow
disputeWindowAC
performTransition

FIGURE 4.4: Starting a dispute in Dany: two intermediate nodes
starting from the same state (s,,e,) try perform the agreement
certificate protocol in order to generate a valid agreement certifi-
cate. However, they have received different windows meaning that
they cannot create a valid agreement certificate in time, forcing
them to provide their local window to the on-chain smart contract.

4.6 Dispute resolution protocol

A dispute resolution mechanism had to be devised for Dany in order to ensure
the liveness and safety of the state channel even when intermediate nodes do not
cooperate. Liveness informally states that ”good” things will eventually happen;
while safety means that bad things do not happen. In our context, liveness states
that the state channel is guaranteed to progress as long as there is at least one
honest and working intermediate node in the system; while with safety we mean
that any state reached by the state channel is either unanimously agreed by in-
termediate nodes, or is the product of the application of the transition function
to the previous state and the merge of the local windows that the intermediate
nodes use in order to move to the next state. In Dany, when intermediate nodes
cannot reach an agreement on the state of the state channel at a certain step n, a
dispute starts (Figure 4.4). An intermediate node starts a dispute either when he
could not receive a valid agreement certificate for a given window before a timeout
expires, or when he detects that another intermediate node has started a dispute
on-chain.

When one of these situations occur, the intermediate node cannot prove that
the state transition he performed is the same agreed by other intermediate nodes,
nor that it has been performed with a window that contains the sensor messages
received by other intermediate nodes. A solution for that is to perform the state

50 Chapter 4. Dany

transition on-chain and make the Dany smart contract transition to a new state.
Intermediate nodes can in fact send to the smart contract their local windows and
the smart contract would be able to merge these windows in order to apply the
transition function to it. However, the transition function also requires to know
what is the previously agreed state. The agreement certificate is the piece of data
that allows any intermediate node to prove what is the state from which we are
performing the transition. This is why it is necessary to generate an agreement
certificate for every reached state (s,,e,), since it enables nodes to solve possible
disputes occurring in the future. When an agreement certificate for a state cannot
be generated, it is thus necessary to solve the dispute on-chain.

To solve the dispute, any intermediate node i; waits an amount of time before
communicating their local window, and possibly the agreement certificate for the
previous state, to the Dany smart contract on-chain.

This kind of communication is performed by calling the methods exposed by
the Dany smart contract. These methods are the disputeWindow 4.1 and dis-
pute WindowAC 4.3.

Dispute resolution by providing the window of data

The dispute Window method, is the method exposed by the Dany smart contract to
allow any intermediate node 7, to solve disputes by providing its own local window
Wy, i, , allowing the Dany smart contract to transition to a state (S,41, €nt1).

An intermediate node can call the dispute Window method (algorithm 4.1)
only if the following conditions apply:

e The blockchain time reached Ty + (Tw - n) and a dispute period has not
ended.

e The Dany smart contract knows the starting state (s,, e,) that can be used
as an argument of the state transition function. This is the case if the method
is called for the first window of the smart contract, in this situation the state
to be passed to the state transition function is (So,€p), which is the initial
state. It is worth mentioning that the Dany smart contract at time n + 1
knows the state (s,,e,) from which he should apply the transition function
if it previosly performed on-chain the state transition from (s,_1,€,_1) to

(Sn, €n).

If these conditions are met, a node 7; calls this method providing its local
window of data w,; and the index n. The local window thus provided will be
used by the Dany smart contract to compute the merge of the local windows of
the intermediate nodes (w,,): the smart contract will in fact wait a dispute period
that is increased each time a window containing more messages than the previous
ones is proposed on-chain. This is done in order to allow other intermediate nodes
to provide their local window, and then, after the dispute period has ended, it is
ready to perform the state transition on-chain. Once the dispute period has ended,
any intermediate node can make the smart contract perform the state transition by
calling the exposed method performTransition. This perform the state transition

Chapter 4. Dany 51

on chain, and in the last state (n = N, — 1), it will unlock the redistribution,
giving the locked funds to the intermediate nodes according to ey, .

Algorithm 4.1 Dispute with window method

1 \\ w, is a local variable stored by the Dany smart contract
that

\\stores the merge of all the windows proposed at time n

\\disputeBegin,, is a flag that specifies whether a dispute has
been raised for the n—th window

w N

5 function disputeWindow (w,, n){

6 require (isDisputeTime(tx.timestamp ,n))

7 require(n > 0)

8 require(n < Ny)

9 require (windowContainsNewValidMessages (w, ,n))
10 Whn — Wy D wy,

11 disputeBegin,, < TRUFE

12 increaseDisputeTime(n)

Algorithm 4.2 pseudocode of the perform transition method ex-
posed by the Dany smart contract

1 function performTransition(n){
2 require (disputeTimelsOver(n))
require (disputeBegin, = TRUFE)

(5n+17 €n+1) <~ F((5n7 en);wn)

7 if(n=(Ny—1)){

8 unlockRedistribution (ey)
: }

0}

4.6.1 Dispute with window and agreement certificate

The scalability improvements of Dany lie in the fact that state transitions can be
performed mostly off-chain, without the need to tell the blockchain anything. For
this reason, it is not always the case that the smart contract on-chain knows what
is the state unanimously agreed off-chain. Whenever a dispute among intermedi-
ate nodes occurs for a state (s,,e,), and the Dany smart contract does not know
the previous state (s,_1,€e,_1), every disputing node should call the dispute Win-
dowAC method. The dispute WindowAC method requires three arguments: the
local window of the intermediate node w,, ; the index n; and the agreement cer-
tificate AC,,_1, that allows the smart contract to know what is the previously
unanimous agreed state reached off-chain. The dispute WindowAC' performs the
following checks upon being called:

e check whether AC,,_; is a valid agreement certificate for the state (s,_1, €,_1);

52 Chapter 4. Dany

e check whether the window provided contains valid sensor messages that were
not provided to the blockchain before;

e check that the dispute period for the window has not ended

If the checks pass, the smart contract will store the agreement certificate and
will wait a dispute period to allow other intermediate nodes to provide their own
local window. Once the dispute period has ended, similarly to what happens when
the intermediate nodes call the dispute Window, the perform Transition 4.2 method
has to be called, allowing the Dany smart contract to perform the state transition
on-chain.

Algorithm 4.3 Dispute with window and previous agreement cer-
tificate method

1 function disputeWindowAC (
Acnfl, n)
([
1 require(n > 0)
5 require(n < Ny)
6 require (windowContainsNewValidMessages (w, ,n))
7 require (isDisputeTime(tx.timestamp ,n))
8 require (AgreementCertificatelsCorrect (AC,—1, n—1))
9 disputeBegin, < TRUFE
10 this.AC,_1+ AC,_1 //the stored agreement certificate at index
n—1 is set to be equal to the one provided as argument
11 W, & Wy D Wy,

w N

4.7 Proofs

This section sketches the proof of a theorem about the Dany protocol that states
that the honest intermediate nodes will eventually always agree on the same n-th
state of the state channel and that this state is the result of the application of the
transition function to the previous state and to the merge of the windows processed
by the intermediate nodes, meaning that (s,,e,) = F((Sy_1,€n-1),wn_1). The
theorem will be proven to hold true both when disputes occur and when they do
not occur.

Theorem 1 Let A be a state channel defined by a Dany smart contract

SC = (I,D,K,Ty, Ty, Ny, SM), with I being a non empty set of intermediate
nodes where I = {iy,--- ,im}. Let W, be the set of windows that are used by
the intermediates nodes to run the n-th run of the Dany protocol. That s W,, =
{wiy ns Wiy -+ - ,wim,n}. Suppose that {wg, -+ ,wph, -+ ,ws} are the sequence of
merged windows that are used by Dany at each run of the protocol where each
Wy, = @lj]:'l wi; n € Wy, We can prove that at step n (0 < n < Ny) of the Dany
protocol execution all honest intermediate nodes will reach the same state (s, e,)
that is the state reached by the state machine SM after parsing the merged windows

Chapter 4. Dany 53

Wo, W1, ,Wn. This parsing can be described in the following way:

(8, €n) = {(30760) n =10

F(($p-1,€n-1),wn-1) : 0<n <N,

where F' is the transition function of the state machine SM.

Sketch proof.

The theorem can be proved by induction on the number n of the protocol runs.

At run n = 0 all honest nodes will be in the same state (sg,ep) that is the
initial state of SM when no window has been parsed.

Suppose that at the n-th protocol run (with 0 < n < N, — 1) all honest
intermediate nodes will have the same state (s,, e,) and

[(s0,€0) n=20
(5, €n) = {F((sn_l,en_l),wn_l) :0<n <N,

We need to prove that after one run of the protocol (i.e., n + 1) all the hon-
est nodes will reach the same state (s,.1,€,+1) that is equal to F((sy,en),wn).
This proof can be done by considering the following two complementary set of
assumptions:

1. Case A. (i) all intermediate nodes are running (i.e., there are no node fail-
ures and the network connection is always working), and (ii) all nodes are
honest (i.e., they are correctly executing the protocol), and (iii) all interme-
diate nodes use the same window for the computation.

2. Case B. (i) at least an intermediate node failed (a fail-stop model is as-
sumed) or a node connection link is not working, or (ii) at least an interme-
diate node is not sending valid protocol messages. A message is invalid in
the following cases: (1) the message is wrongly formatted or unexpected (see
protocol messages of Figure 4.3); (2) two different nodes propose different
SM states; (3) two different nodes propose two different message windows;

Case (A). Without loss of generality we assume the intermediate node k is
playing the leader role at run n of the protocol. The leader node will use its n-th
window wj, ,, in order to calculate the new SM state (s,,11, €,+1) that is (S,+1, €5+1)
= F((sn, €n), w;, n). This will allow the leader k to assemble the protocol message
of Eq. 4.9 that is:

pmy = <7’L7 idsc, H(F«Sna Gn), wik,n))a H(wik,n»oil (411)

The leader will send pmy to all other intermediate nodes. Since each receiv-
ing node 4; is honest (i.e., assumption Case (A).(ii)) and performs the same
computation (i.e., assumption Case (A).(iii)), it will send back the same compu-
tation H(F((sn,en), wi;»n)) and the same window hash H(w;, ,) (state-acceptance
phase). This means that all nodes use the same window that is Wi;n = Wiy, n for
each i;,7, € I. Tt is worth mentioning that having the same window w;, ,, for all

54 Chapter 4. Dany

the nodes does not necessary mean that all sensor messages are correctly received.
In fact, all intermediate nodes may lose the same sensor message but still having
the same window. The leader will correctly receive all messages, will change its
state to (Spi1,€n41) and will be able to send back the Agreement Certificate. All
nodes will correctly receive the agreement certificate and will move their state
to state (Spi1,€n41) (since they are all honest). It is worth noticing that in this
case the blockchain is not involved. Effectively, there are no disputes. We now
need to prove that the new state (spy1,€nt1) = F((Sn,€n), w;, n) agreed by the
intermediate nodes is equal to

F((sn,€n),wn) (4.12)

This can be easily proved with the use of assumption (A iii) stating that all
intermediate nodes use the same window for the computation, meaning that the
merge of all intermediate node windows w,, is the same as every intermediate node

window
1]

Wi; 0 = EB Wip = Wy (4.13)
i=1

since all sensor windows are the same that is w;; , = wj, n for each i;,¢, € I. This
means that all intermediate nodes will move to the state (s,11,€,4+1) such that:

(S e) _ (So, 60) n = 0
ol Fntl F((sn,€n),wn) :0<n <N,

Case (B). First of all it is worth mentioning that the honest nodes will drop
all invalid messages. For instance, an intermediate node that sends all invalid
messages is treated as a failing node that sends no messages. For case (B) we
prove that any dishonest behaviour will always lead to a dispute. Then we prove
that a dispute always synchronises honest nodes to the same state (S,11,€,41)-
This state is equal to F'((sp,€n),wn)-

Without loss of generality we first assume that the leader node is honest. The
leader node will use its n-th window wj, ,, in order to calculate the new SM state
(Snt1,€nt1) that is (Spi1,€nt1) = F((Sn,€n), w;i,). This will allow the leader k
to assemble the protocol message of Eq. 4.9 that is:

pmg = (n,idsc, H(F((Sp+1; €nt1)s Wign)), H(Wiyn))oy, (4.14)

The leader will send pmy, to all other intermediate nodes and wait for their
reply. By assumption, one of the nodes is not running a valid protocol. This
means that the leader will not receive a valid reply from all the intermediate nodes
and the agreement certificate will not be generated within the allowed time, or a
dispute will be issued by an intermediate node (although this is not necessary).
In case the timeout expires with the leader node not being able to generate a
valid Agreement certificate, then the leader node starts a dispute on-chain. If the
honest node was able to generate and send a valid AC, the dishonest node can
still attack the protocol by issuing a dispute message. More in general, a dispute

Chapter 4. Dany 55

message can be issued at any step of the protocol. On-chain dispute messages will
be always monitored by an honest node that will correctly detect it and will take
part to the dispute protocol resolution.

When a non-leader node j is honest and running, it will wait for the pm,
message from the leader. When no valid message is received, the node will start a
dispute. When the node receives a valid message that is H(w;; ,) = H(w;,) and
H(F((Sn+1,€nt1), Wi;n)) is equal to H(F((Snt1,€nt1), Wiy n)) then the non-leader
node will reply by signing the message to its leader. In this case the node will wait
for a valid agreement certificate. When this message is not received a dispute will
start. After the honest non-leader nodes receive a valid AC, the dishonest node
can still attack the protocol by issuing a dispute message.

We can conclude that a dishonest node will always trigger a dispute. At this
point we prove that a dispute always synchronises honest nodes in a finite time
to the same state (S,41,€n+1) and that this state is equal to F((sy,e,),wy)). In
order to prove this we need to look at the dispute resolution protocol. First we
can prove that disputes are always settled in a finite time as long as at least one
intermediate node is honest. This is the case because each time an intermediate
node calls one of the dispute methods exposed by the Dany smart contract on-
chain, namely the dispute Window and dispute WindowAC, while providing new
valid messages as arguments, then the dispute period is increased. However, since
the number of sensor messages is finite, it means that the dispute methods cannot
be called indefinitely meaning that the dispute period is also finite, and, as long
as there is an honest intermediate node, the performTransition method will be
called, allowing any honest intermediate node to synchronize on the same state.

We now need to prove that the state (s,41,€,41) intermediate nodes synchro-
nized to is equal to F((s,,e,),w,). This is evident from the dispute resolution
methods pseudocode. In fact, the exposed methods will collect all valid sensor
messages provided by the intermediate nodes and will perform a state transition
towards a new state by applying the state transition function to the previous state
and to the merge of all the windows that have been provided, but this merge is
actually equal to w, since all intermediate nodes are required to provide their local
windows: if any intermediate node does not provide their window we consider their
local window to be empty, even if they physically received some sensor messages.

Corollary 1 Let A be a state channel defined by a Dany smart contract

SC =(I,D,K,Ty, Ty, Ny, SM). Let BC be the set of states of A that are stored
by the blockchain on which an agreeement has been reached through the on-chain
dispute resolution protocol

BC = {(sk,er), - ,(sj,€j)} (4.15)

Let ACSET,, = {AC,,---,AC,} be the set of agreeement certificates either
received, or generated, by an honest node iy € I for the state channel a.

ACSET;, ={AC,,--- ,AC,} (4.16)

Let S;, be the set of state channel states reached by an honest node iy, either
by agreement or by dispute resolution

56 Chapter 4. Dany

Sy, = {(80,60),"' >(Snv€n)} (417)

Then it is possible for iy to prove that any state in S;, s a state reached
by the state channel, meaning that for every (s;, e;) in S;, either there exists an
agreement certificate AC; in ACSET;, proving it, or (s;,e;) has been adjudicated
in the blockchain, meaning that (s;,e;) € BC. At the end of the execution of the
state channel, any honest intermediate node s able to prove what was any n-th
state of the state channel (s, e,).

Sketch proof. This is a corollary of theorem 1. In theorem 1 it is proved
that an agreement among honest intermediate nodes for any state (s,,e,) is
always reached in a finite time, meaning that at the end of the execution of
the state channel, an honest intermediate node i, will have reached the states
Sy = {(807 60)7 B (Sm en)}

Agreement can be reached in two different ways, either by agreement certificate
propagation, or by disputing on-chain. This means that for every (s, e,) there ex-
ists at least one agreement certificate proving it, or the state has been adjudicated
on-chain. In case the agreement has been reached on-chain, then (s,,e,) € BC, In
case agreement has not been reached on-chain and i, is honest, then it means that
there exist an agreement certificate and that i; has either received it, or assembled
it. This is because the Dany protocol specifies that each time an agreement cer-
tificate is not received within a period of time, then any honest intermediate node
should start a dispute on-chain. In this case, iy can prove what is the n-th state of
the state channel by providing the agreement certificate AC,, in ACSET;, , since it
contains a proof that unanimous agreement has been reached among intermediate
nodes.

4.8 Monetary incentive

The security of Dany comes from the fact that any party involved in the execution
of the Dany smart contract can enforce the system to behave correctly. The scal-
ability enhancements, instead, come from requiring parties to interact with the
blockchain only on a few occasions, such as when money should be transferred
from the Dany smart contract to a certain recipient or when there is a dispute.
Solving disputes on the blockchain, however, is computationally expensive, and
is also monetary expensive if the blockchain on which the Dany smart contract
is deployed makes users pay for fees whose cost is proportional to the amount
of computation requested. Ideally, to prevent nodes from purposefully communi-
cating wrong information to cheat the system, a penalty should be given to the
wrongdoers when they are proven malicious. However, in Dany it is not possible
to know whether a node is communicating wrong information because he is mali-
cious or because he hasn’t received certain messages. For this reason, a different
incentive system has been devised. The incentive system aims at providing the
following properties:

Chapter 4. Dany o7

e Intermediate nodes do not have an incentive in proposing wrong data, i.e
incomplete windows, to the blockchain.

e Intermediate nodes do not have an incentive in waiting for other parties to
solve the dispute for them (lazy nodes are not incentivized).

The Dany incentive system consists in requiring intermediate nodes to lock a
certain amount of money in the Dany smart contract at the moment of deployment
(stake) that will be used to incentivize their correct behaviour. The staked money
is then used to repay the transaction costs borne by the disputers when they call
the smart contract methods for solving disputes. Each time a smart contract
method is called successfully by an intermediate node, the smart contract equally
detracts the staked money from every registered intermediate node on the contract.
Suppose intermediate nodes A, B and C have staked 5 tokens each in a Dany
smart contract and suppose also that a transaction costs 3 tokens of fees, if node
A calls a dispute method, then he is refunded of the three tokens required to pay
for transaction fees, but the money is equally detracted from everyone’s stake,
meaning that after executing the method every party has now 4 tokens each. For
this reason, a party is not encouraged to wait other parties to start a dispute
since money would be detracted from the stake nonetheless if a dispute occurs. It
may be argued that intermediate nodes do not have an incentive in disputing a
wrong result on the blockchain at all since it would detract partially their money,
however, intermediate nodes should be run only by the parties interested in the
correct execution of the smart contract, if no party has an incentive in enforcing
the correct execution of the smart contract, then no one can complain about
its incorrect execution. With this solution, parties do not have an incentive in
proposing wrong windows to the blockchain, as long as every party believes that
at least one of them is honest, then every wrong window proposed would be
challenged on-chain, detracting staked money from every intermediate node, even
from the dishonest node. This incentive system, however, makes delegating the
execution of a smart contract to a set of external intermediate nodes insecure.
In fact, if no intermediate node has an incentive in making the smart contract
execute correctly, then they may collude in order to gain the maximum rewards,
or the least expenditures, from the smart contract execution, since there is no
penalty for the intermediate nodes that behave incorrectly and no incentive to the
intermediate nodes that detect the incorrect behaviour of these nodes. For these
reasons, it is better that intermediate nodes be managed by the parties of the
contract.

4.9 Risks

This section discusses the security risks related to the use of Dany related either
to inappropriate configurations of the Dany smart contracts or to possible attacks.

58 Chapter 4. Dany

4.9.1 Inappropriate window size

It is crucial to choose an appropriate window size T,, when deploying a Dany
smart contract in order to ensure the correct behaviour of the system. Choos-
ing an appropriate window size depends on the send-rate of sensor messages; on
the characteristics of the blockchain used as blockchain layer, the most important
characteristics of which being the block size and block period in Ethereum-like
blockchains; and on the complexity of the transition function F. Setting a win-
dow size so big that it is likely to make intermediate nodes assemble windows
containing more sensor messages than the ones processable by the on-chain Dany
smart contract may make it impossible to solve potential disputes correctly.

4.9.2 Blackhole attack

A packet drop attack or Blackhole attack occurs when the attacker reprograms
a node on the network to make it drop certain messages. In Dany a blackhole
attack can be performed in various scenarios. if the blackhole attack is performed
by blocking the messages sent by some sensor to a specific intermediate node, then
the intermediate node that is the victim of the attack may not be able to receive
the sensor messages required to assemble a window, making it disagree with the
state proposed by other intermediate nodes of the network. This generates a
dispute for every window for which a message has been dropped, meaning that
the improvement in scalability coming from using Dany is nullified. If the attacker
manages to perform a blackhole attack by making every intermediate node not
receive certain sensor messages, then disputes are not started, but the agreed state
transitions would not be dependent on real-world data anymore. Even though an
attacker cannot forge false sensor messages without having a sensor secret key,
he could none the less influence the outcome of the smart contract execution
by dropping certain messages. If the attacker manages to block an intermediate
node from receiving messages from the other intermediate nodes, then it may be
possible that the attacked node is never able to receive the agreement certificate
of any window, having thus to start a dispute for every window, similarly to what
happens when he does not receive the sensor messages. Blackhole attacks may
also be performed between an intermediate node and a blockchain node, in this
case, the any-trust property of the system cannot any more be guaranteed since
disputes cannot be resolved on-chain.

4.9.3 Off-line intermediate node

If an intermediate node goes offline for a prolonged period of time, the any-trust
property of the system cannot be any more guaranteed. The scalability enhance-
ments provided by the solution will also be hampered since the other intermediate
nodes executing the Dany smart contract will not be able to generate valid agree-
ment certificates for the processed windows, and when this happens they should
communicate the local window to the blockchain.

Chapter 4. Dany 59

4.9.4 Inappropriate dispute period

Dispute periods should be fine-tuned taking into consideration the specific blockchain
used for deploying the Dany smart contract. Different blockchains may differ in
terms of block period: the period of time after which a block is usually appended
to the chain. Any Dany smart contract should not have a dispute period that is
smaller than the block period of the blockchain on which it is deployed, or that
approximates it. A dispute period that is too small may make intermediate nodes
unable to dispute in time a result proposed to the blockchain, either because they
couldn’t assemble a transaction in time, or because they have received information
about a block containing a dispute transaction for the Dany smart contract too
late.

4.9.5 Inappropriate transition function

The transition function is applied both by the intermediate nodes when comput-
ing a state transition and by the blockchain when a dispute occurs. The transition
function therefore has to be computable by the underlying blockchain. In fact,
it is not true that every imaginable function can be executed by any blockchain.
Even the blockchains that can be programmed using a Turing-complete language
may not be able to compute computationally expensive functions. If the transition
function requires too much computation to be processable by the blockchain, then
a wrong state could be proposed to the Dany smart contract and other interme-
diate nodes would not be able to prove it wrong.

4.9.6 Stake is too low

If the money staked by intermediate nodes is low, then it may become impossible
to use them in order to solve disputes. If the money staked gets used in its
totality, then intermediate nodes may incur in a situation in which it would be
convenient for them not to dispute certain wrong proposed results. let’s assume a
smart contract without staked currency is run by three intermediate nodes: Alice,
Bob and Charles. Suppose that Alice is the leader node for a given window and
communicates to the blockchain an incomplete window that penalizes both Charles
and Bob. In this situation, either Charles or Bob should dispute the window by
providing its window of data to the blockchain, however, providing a window of
data to the Dany smart contract on-chain may cost a significant amount of fees
that would not be refunded since it does not contain any staked money. If Bob
assumes that Charles will eventually solve the dispute, then Bob has an incentive
not to communicate anything to the blockchain since even though solving the
dispute is a positive outcome for Bob, solving the dispute without contacting the
blockchain is even more convenient. The same is also true for Charles, making it
thus possible to make the Dany smart contract transition to an incorrect state. It
may be argued that since both Charles and Bob are not following the protocol and
Alice is malicious, then it is not necessary to provide any guarantee in this situation
because every party is behaving incorrectly, however, let’s suppose that Bob is an
honest non-lazy intermediate node while Charles is lazy and never disputes wrong

60 Chapter 4. Dany

state transitions that could be disputed by Bob. In a situation like this, Bob will
be unjustly penalized since the costs of its dispute resolution method calls will be
borne only by him.

4.9.7 Blockchain reorganizations

Reorganizations, or reorgs, occur locally in a blockchain client when an accepted
sequence of blocks is overtaken by a different sequence. Reorganizations can occur
most notably in those blockchains that do not implement a consensus protocol that
guarantees block finality, such as proof-of-work consensus protocols. Blockchain
reorganizations may hinder the security of the Dany protocol since it may happen
that the block containing the transaction that solved a certain dispute is overridden
by another block. In these situations, it may not be possible to solve certain
disputes since the blockchain may be reorganized after the dispute period has
ended. To mitigate the possibility of incurring in this problem, it is suggested to
either set a dispute period high enough to make the probability of out-of-dispute-
period reorganizations extremely low or to deploy the Dany smart contract on a
blockchain that guarantees transaction finality.

Chapter 5

Intermediate nodes
implementation

This chapter describes the procedures followed by the intermediate nodes in order
to elaborate sensor messages, create agreement certificates and interact with the
blockchain. Intermediate nodes’ behaviour can be described by the internal data
structures they hold and the procedures they execute. Section 5.1 describes the
data structures intermediate nodes hold to represent Dany smart contract states.
Section 5.2 describes the procedures executed by the intermediate nodes.

5.1 Data structures

We assume that intermediate nodes start with knowledge about the Dany smart
contract to operate, these information can be thought to be kept in a list of objects
of type Contract as shown in Figure 5.1. The Contract class attributes reflect the
information of the smart contract stored on-chain and provide a reference to the
Dany smart contract on-chain. Any Contract object has the following attributes:

e currentState: the current state of the state channel,

e address: is a reference to the Dany smart contract deployed on-chain, such
as an Ethereum address. We are assuming that the blockchain layer is
instantiated by an account-based blockchain;

e intermediateNodes: references a sequence of IntermediateNode objects
containing information about the intermediate nodes, they are used for sig-
nature verification purposes;

e sensors: references a sequence of sensor objects representing the sensors ref-
erenced by the Dany smart contract, they are used for signature verification
purposes;

e windows: reference to a sequence of Window objects;

e contractState: can assume the values: READY,EXECUTING, COMPLETED.

It represents whether contract execution has yet to start (READY), has
started and is executing (EXECUTING) or it’s execution is completed,
meaning that the time period of the last window of the contract has ended;

61

62 Chapter 5. Intermediate nodes implementation

e numberOfWindows: the number of windows processable by the referenced
Dany smart contract: this is equivalent to N,, in the Dany smart contract
formalization;

e disputeTime: the dispute period of the Dany smart contract.

Every Contract object also implements a method called transitionFunction, this
is equivalent to the transitionFunction I’ defined in the Dany smart contract.

Intermediate nodes can keep track of the messages pertaining to a certain
window of data with Window objects. Window objects are always referenced
to by a Contract object and they allow the intermediate node to store the data
required to perform the transition function, updating thus the state of the state
channel run by them, and to keep track of the messages exchanged by intermediate
nodes used for creating the AgreementCertificate. The Window class has thus the
following attributes:

e sensorMessages: the sensor messages that comprise this window;
e startTimestamp: the timestamp when window execution start;
e windowSize: the temporal size of the window;

e windowlIndex: the index of the window (whether it is the first one, the
second one and so on);

e protocolMessages: the protocol messages received from the intermediate
nodes referencing the window;

e state: the state computed by the intermediate node on this window: equiv-
alent to (s,,€n);

e agreementCertificate: the agreement certficate either generated or re-
ceived by other intermediate nodes;

e windowState: a value that provides information about the operations to
perform on the window.

The attribute windowState, in particular, offers information to the intermediate
node on how to treat the window. This attribute can take the following values:

e NOTREADY: means that the window period hasn’t started, therefore
sensor messages cannot be added to the window;

e READY: the window period has started and is not finished yet, therefore
sensor messages can be added to the window;

e FINISHED: the window period has ended and the intermediate node can
use it for executing the off-chain function;

e ACWAITING: the intermediate node is waiting to receive an agreement
certificate;

Chapter 5. Intermediate nodes implementation 63
Sensor
Contract pubKey: bytes(]
initialState : State
currentState : State Window

windowSize: uint

startTimestamp: uint

windowState: WindowState

sensorMessages: SensorMessage]]

numberOfWindows: uint

<>—|7 startTime: uint

intermediateMNodes : IntermediateNode]]

endTime: uint
sensors: Sensorf] state’ State
disputeTime: uint protocolMessages: ProtocolMessage]]
contractState : ContractState
address : Address K o>—
IntermediateNode
transitionFunction{
sensorMsg: SensorMessage]], pubKey: bytes]]
state: State)
<=gnumeration== ==efnumeration== State
ContractState WindowState S: uint
E: Redistribution[]
READY NOTREADY
EXECUTING READY
COMPLETED FINISHED
ACWAITING
ACTIMEDOUT
<=struct== COMPLETED

Redistribution

user: address
amount: uint

F1GURE 5.1: Class diagram representing a contract in intermediate
nodes

e ACTIMEDOUT: the agreement certificate has not been received in time,
therefore a dispute should be started on chain;

e ACCOMPLETED: the agreement certificate for the window has been ei-
ther received or generated successfully.

5.1.1 Message structures

Messages received and sent by the intermediate nodes can be modeled as classes
specializing a generic Message class 5.2. The types of messages an intermediate
node can handle are protocol message, leader protocol message, sensor message,
Agreement certificate and Tick. In particular, the leader protocol message class
specializes the protocol message class because it uses the same fields any protocol
message has. The tick message is never mentioned in the previous section because
it is an internal message generated locally by the intermediate node at short regular
intervals: it is an artifact used for timing purposes.

64 Chapter 5. Intermediate nodes implementation

Message
iy
ProtocolMessage AgreemeniCertificateMessage Tick SensorMessage
windowlndex: uint : state: State timestamp: uint data: uint
contractAddress: address timestamp: uint
hashResult: byte]] sequece: uint
hashWindow: byte[] signature: byte]
signature; byte]] pubkey: bytel]l
pubkey: bytell
LeaderProtocolMessage

FI1GURE 5.2: Class diagram representing the type of messages that
are processed by intermediate nodes

5.2 Procedures

This section describes the procedures performed by intermediate nodes when re-
ceiving messages. Intermediate node behaviour depends on the messages it re-
ceives, as it is shown in 5.1 When a sensor message is received, the intermediate
node should put it in the appropriate window. To do so, the procedure parseSen-
sorMessage 5.2 is executed.

Algorithm 5.1 Receive message procedure

1 procedure receive (Message msg){

N

if (msg.type is SensorDataMessage){
parseSensorMessage (msg)
5 }

7 if (msg.type is Tick){
8 parseTick (msg)
9 }

I if (msg.type is ProtocolMessage){
2 parseProtocolMessage (msg)

1
1
13 }
1

15 if (msg.type is AgreementCertificateMessage){
16 parseAgreementCertificateMessage (msg)

17 }

Chapter 5. Intermediate nodes implementation 65

5.2.1 parseSensorMessage procedure

parseSensorMessage takes a sensor message in input and performs some prelim-
inary checks to ensure the sensor message was sent by a registered sensor of the
contract. The checks performed are to ensure that the sensor message is correctly
signed
(require(isCorrectlySigned(msg) in the pseudocode) and that the timestamp of
the sensor message falls between the start time of the smart contract and its end
time (startTimestamp + (numberO fWindows - windowSize)).

If the checks pass, then the window that should contain it is selected and the
sensor message is added to its sensorMessages list.

Algorithm 5.2 Parse sensor message procedure

1 parseSensorMessage(SensorMessage msg){
2 require (isCorrectlySigned (msg))
3 require(Contract.startTimestamp < msg.timestamp)
require (Contract.startTimestamp + (Contract.windowSize -
Contract.windowNumber) > msg.timestamp)

6 window < getWindow (msg.timestamp)
7 addSensorMessageWindow (msg, window)

5.2.2 parseProtocolMessage procedure

ProtocolMessages are the building block of Agreement certificates. When an in-
termediate node receives a protocol message it should do the following:

e Assemble the agreement certificate, in case the intermediate node is the
leader of the window;

e Send back its own protocol message to the intermediate node if the state
proposed in the received message is the same as the one computed locally;

e Store it in the appropriate Window object in order to assemble an agree-
ment certificate later on when the node has received every intermediate node
protocol message.

In order to do so, the protocol message is passed as an argument to the parse-
ProtocolMessage procedure 5.3. The parseProtocolMessage performs the following
checks:

e checks whether the protocol message is signed correctly by a registered in-
termediate node;

e checks whether it refers to a valid window for the Dany smart contract (the
window index n is between 0 and window_number);

66 Chapter 5. Intermediate nodes implementation

If the checks pass, then the procedure will retrieve the window object that
the protocol message refers to (getWindow Protocol Messaage(pm) in the pseu-
docode) and will check whether the received protocol message is a leader protocol
message or a standard protocol message. A leader protocol message is a protocol
message referencing window w,, sent by a node ¢ for which leader(w,) =i , with
leader : W — I being a function that maps windows to nodes. Leader protocol
messages should be received only by non-leader nodes and these receiving nodes
should send back a response to the sender in the form of a standard protocol mes-
sage. On the other hand, non-leader protocol messages should be received only
by leader nodes which will use them to generate an agreement certificate. For this
reason, leader protocol messages and standard protocol messages are handled by
two different procedures, namely parseLeaderProtocolMessage and parseStandard-
ProtocolMessage.

Algorithm 5.3 Parse protocol message procedure

I parseProtocolMessage (ProtocolMessage pm){

2 require (pm.window_index >= 0

3 require (pm.window_index < Contract.numberOfWindows)
4 require (isCorrectlySigned (msg))

6 window <« getWindowProtocolMessage (pm)

7 if (pm is LeaderProtocolMessage){

8 parseLeaderProtocolMessage (pm, window)
9 lelse{

10 parseStandardProtocolMessage (pm, window)

11 }

5.2.3 parseLeaderProtocolMessage procedure

The parseLeaderProtocolMessage 5.4 makes these preliminary checks before con-
tinuing:

e checks that the receiving intermediate node is not the leader for that window.
If the receiving node is the leader then it should not be possible for him to
receive a leader protocol message and therefore should ignore them if they
arrive;

e checks whether the state of the window is FINISHED.

Leader protocol messages received before a window has reached the FINISHED
state should be ignored since the intermediate nodes may not have received the
required sensor messages to complete the window. Similarly, the other window
states (ACWAITING, ACTIMEDOUT, COMPLETED) imply that a valid leader
protocol message for that window has been received in the past, this is why a new
leader protocol message is ignored if the window is in one of these states.

If the checks pass, the intermediate node assembles a protocol message that is
sent back to the leader node (send(protocol Message Answer, sender(pm)) in the

Chapter 5. Intermediate nodes implementation 67

pseudocode). The state of the window object is also changed to ACWAITING,
meaning that the intermediate node is now waiting to receive a valid agreement
certificate.

Algorithm 5.4 parse leader protocol message procedure

> parselLeaderProtocolMessage(LeaderProtocolMessage pm, window){
require (! thisNodelsLeader (window))
require (window.state = FINISHED)

protocolMessageAnswer < generateProtocolMessage (window)
7 send (protocolMessageAnswer ,sender (pm))
8 window . windowState + ACWAITING;

5.2.4 parseStandardProtocolMessage procedure

The ParseStandardProtocolMessage 5.5, requires that the receiving node is the
leader of the window and that the window state referenced by the protocol message
is in the FINISHED state. This is because regular protocol messages interest
only the leader node that has the role of using them in order to generate and
propagate an agreement certificate and they would not be able to create such an
agreement certificate if the window state is not FINISHED. With this procedure,
the leader stores the wvalid protocol message received by the intermediate nodes.
The leader node considers a protocol message to be valid if the message hashState
and hash Window are the same as the hash of the state and the hash of the window
that the leader node stores locally.

Algorithm 5.5 Parse standard protocol message procedure

1 parseStandardProtocolMessage (ProtocolMessage pm, window) {
2 require (thisNodelsLeader (window))
3 require (window.windowState < FINISHED)

addProtocolMessageToWindow (pm, window)

7 if (requiredProtocolMessagesForAgreementCertificate (window))
{

8 AC + generateAgreementCertificate (window)

9 window . AgreementCertificate + AC

10 broadcast (AC)

11 window . windowState « COMPLETED

5.2.5 parseAgreementCertificate procedure

The parseAgreementCertificate 5.6 procedure is executed by intermediate nodes
when an agreement certificate message is received. Upon receiving an agreement

68 Chapter 5. Intermediate nodes implementation

certificate, the intermediate node checks that the agreement certificate is valid. If
that is the case, then the node will retrieve the window referenced by the agreement
certificate (window <— getWindowAC Message(msg) in the pseudocode) and will
further check that its state is ACWAITING, meaning that the node is waiting to
receive an agreement certificate for the window but hasn’t received one yet. The
agreement certificate is stored in the appropriate window object and the window
is set to the COMPLETE state, meaning that no further actions are required to
be performed.

Algorithm 5.6 Parse agreement certificate procedure

1 parseAgreementCertificate (AgreementCertificateMessage msg){
2 require (isACValid(msg))

| window < getWindowACMessage (msg)
5 parseACWindow (msg, window)
6 }

s parseACWindow(AgreementCertificateMessage msg, Windowlnfo
window) {
9 require (window.state = ACWAITING)
10 require(msg.state = window.state)
11
12 window. agreementCertificate « toAgreementCertificate (msg)
13 window . state <« COMPLETED
14
}

5.2.6 parseTick procedure

Ticks are used to change the window state when certain time limits are exceeded.
In fact, the parseTick procedure 5.7, when called, retrieves every window object
of every contract and depending on the state of the window performs some checks
before changing their state if needed. The window state transitions performed are
the following:

e from NOTREADY to READY state if the tick timestamp is larger than
the window startTimestamp attribute;

e from READY to FINISHED state, if the tick timestamp is larger than
the window startTimestamp + windowSize;

e from FINISHED to COMPLETED if the intermediate node is the leader
node. before transitioning the intermediate node assembles a leader protocol
message and sends it to the other intermediate nodes;

e from FINISHED to ACTIMEDOUT if the tick timestamp is larger than
a timeout period waited by the node for receiving a valid agreement certifi-
cate;

Chapter 5. Intermediate nodes implementation 69

e from ACWAITING to ACTIMEDOUT if the tick timestamp is larger
than a timeout period waited by the node for receiving a valid agreement
certificate;

e from COMPLETED to ACTIMEDOUT if if the tick timestamp is larger
than a timeout period waited by the node for assembling a valid agreement
certificate.

Chapter 5. Intermediate nodes implementation

Algorithm 5.7 Parse tick procedure

parseTick (Tick tick){
foreach (window in windows){
parseTickWindow (tick ,window)
}

}

parseTickWindow (Tick tick , Window window){

W N NN NN
S © o N o o

switch (window.windowState)

case NOT_READY:
if (tick.timestamp >= window.startTimestamp)

{

window . windowState <« READY

}

case READY:
if (tick.timestamp >
(window . startTimestamp + window.windowSize))

{
window . windowState <+ FINISHED

}

case FINISHED:
window.state < applyTransitionFunction (window)
async start disputeWindowProcess(window)

if (isThisNodeLeader (window))
{

leaderProtocolMsg <+ generatelLeaderProtocolMessage (
window)

broadcast(leaderProtocolMsg)

window . windowState < COMPLETED

telse if(tick.timestamp >
windowACTimeOutTimestamp (window))

{
window . windowState <+ ACTIMEDOUT

}

case ACWAITING:
if (tick.timestamp > windowACTimeOutTimestamp (window))

{
window . windowState <« ACTIMEDOUT

}

case COMPLETED:
if (tick.timestamp > windowACTimeOutTimestamp (window))

{

window . windowState <« ACTIMEDOUT

}

Chapter 5. Intermediate nodes implementation 71

5.2.7 Dispute process

When a window turns into the finished state, it becomes possible to communicate
to the Dany smart contract on-chain the state obtained from applying the off-
chain function on it. For this reason, it is necessary that every intermediate node
checks that invalid results are not proposed on-chain by any possible dishonest
intermediate node. The process that intermediate nodes run in order to solve pos-
sible disputes arising for a certain window is the dispute window process algorithm
(code 5.8). The dispute process is started asynchronously as a window transitions
to the FINISHED state, taking as argument the Window object representing the
window on which disputes may occur. The process will then wait a preDisputePe-
riod, in order to mitigate the risks of multiple nodes providing the same window to
the blockchain, and then will communicate with the on-chain Dany smart contract
in order to retrieve data about its state. The data retrieved are data about the
window previously proposed. Intermediate nodes, in fact, need to know whether
a window has been proposed on-chain because an intermediate node proposing an
invalid window may make the DaNy smart contract accept it if the dispute pe-
riod ends and other intermediate nodes haven’t disputed it; moreover, they need
to know what is the window that has been used to propose a result in order to
ensure that a state transition is not performed with an incomplete window.
The dispute process performs polling on the Dany smart contract in order to check
whether a window has been proposed for the given window. If a window has been
proposed on-chain, then the intermediate node will dispute it if it does not contain
the messages in its local window. The result is disputed by calling the appropriate
exposed Dany smart contract method, the method to be called is determined by
whether the blockchain knows the previous state or whether it doesn’t.
Interaction with the blockchain layer doesn’t end with this. In fact, a state
resulting from the application of the transition function to a window can be con-
sidered accepted by the DaNy smart contract only when the performTransition
method is called. For this reason, the process will wait until the dispute period
for the given window has ended and then will wait for an additional postDispute-
Period that is different for every intermediate node referenced in the Dany smart
contract in order to avoid multiple nodes calling the same Dany contract when not
necessary. After that, the node checks whether the performTransition method has
already been called by any other intermediate node. If that is not the case, then
he will call it, making thus the Dany smart contract transition to a new state. The
blockchain window process ensures thus that as long as at least one intermediate
node is honest and active, the Dany smart contract on-chain accepts only correct
windows.

72

Chapter 5. Intermediate nodes implementation

Algorithm 5.8 dispute process pseudocode run by intermediate
nodes for a given window

V)

NN NN
@w N e

NN N NN
0 o o

W W W N
O N R O ©

34

process disputeWindowProcess(Window window) {
watingPeriodPreDispute < getWatingPeriodPreDispute (window)
waitingPeriodPostDispute «+ getWaitingPeriodPostDispute(
window)
wait(watingPeriodPreDispute)
do until(endDisputePeriod (window) < currentTime)

if (isWindowProposed (window))

{ if (window.state = COMPLETED)
{ if (H(proposedWindow (window)) # H(getAC(window) .
state))
{
//calls the disputeWindow method
//of the Dany smart contract
disputeWindow (window)
}
}
if (window.state = ACTIMEDOUT)
{ if (windowContainsUnproposedMessages(window))
gisputeWindow(window)
}
}
}
else
{
if (satisfiedDisputeWindowRequireStatement (window))
gisputeWindow(window)
}
else
{
disputeWindowAC (window)
}
}

}

wait (waitingPeriodPostDispute)

if(! isResultAcceptedOnChain())

{

//call the perform transition method of the
//Dany smart contract

performTransition (window)

}

Chapter 6

Experimental results

In this chapter we discuss the experimental results obtained from running an
implementation of Dany. The results obtained allows us to better understand
which are the settings in which Dany proves to be a valid solution for scalability
issues inherent smart contract execution.

6.1 Scenario

The scenario taken into consideration was a pollutant emission scenario in which
a sensor produces at a constant rate data measuring the levels of pollution in the
air as an integer number. When the average pollution in a given window of time
exceeds a predetermined threshold, a fine should be applied to a user.

6.2 Implementation

The pollutant emission scenario was simulated by implementing a Dany smart con-
tract written in Solidity in a local EVM compatible blockchain. The implemented
Dany smart contract is initialized with the following arguments:

o Intermediate node addresses: the ethereum addresses of the intermediate
nodes required to run the state channel: in our configuration we initialize it
with two different ethereum addresses;

e Sensor addresses: The ethereum addresses of the sensors required to produce
the data processed by the state channel: in our case we initialize the smart
contract with one sensor address;

e Dispute time: the dispute period of the smart contract set to 10 seconds;

e Stake: An amount of cryptocurrency K staked by the intermediate nodes in
the contract;

e Number of windows: (N,) the number of windows processable by the smart
contract;

e Start timestamp: The timestamp when the contract execution should start;

e [nitial state: the initial state (sg,eg) of the state channel: represented as a
struct in solidity (code: 6.1);

73

74 Chapter 6. Experimental results

o A transition function (code 6.2) that returns a value that depends on whether
the average calculated on a window of data exceeded a given threshold or
not.

The smart contract exposes the three dispute resolution methods dispute Win-
dow (code: 6.3) , dispute WindowAC (code: 6.5) and performTransition (code:
6.4) allowing nodes to dispute on chain.

Algorithm 6.1 Structs used to represent the state

2 struct State{

: uint s;

4 SingleRedistribution [] e;
5 }

6

7 struct SingleRedistribution {
8 address receiver;

9 uint amount;

10 }

Algorithm 6.2 Transition function written in solidity used in the
Dany smart contract

1 function transitionFunction(StateLibrary.State memory
_previous_state , Structs.Window memory _window) public
pure returns (StatelLibrary.State memory) {

o N

StateLibrary.SingleRedistribution|[_previous_state .e.
length] memory redistribution;
StatelLibrary.SingleRedistribution [] memory
redistribution = new Statelibrary.
SingleRedistribution [](-previous_state.e.length);

7 int threshold = 30;

8 int sum = 0;

9 for(uint i = 0; i<-window.sensor_messages.length; i++){
10 sum = _window.sensor_messages|[i].data.data;

11 }

13 int avg = sum / int(_window.sensor_messages.length);
15 if (avg > threshold){

17 if(_previous_state.e[0].amount >= 100){

18 redistribution [0].amount = _previous_state.e[0].
amount — 100;
19 redistribution [1].amount = _previous_state.e[1].

amount + 100;

Chapter 6. Experimental results

75

Algorithm 6.3 DisputeWindow in Solidity

function disputeWithWindow (Structs.Window calldata _window,
uint256 _window_index)

{

}

external

require (isDisputeTime(_window_index));
require (windowlndexlsValid (-window_index));
require (! timestampedDisputedStates|[_window_index].

accepted);
require (
_window_index = 0 ||
timestampedDisputedStates[_window_index — 1].
accepted

)

disputeWithWindowPrivate (_window, _window_index,

current_state); //should check that current state is
always updated

function disputeWithWindowPrivate(Structs.Window calldata

_window , uint256 _window_index , Statelibrary.State

memory _previousState) public {

require (windowlsOrdered (_window)) ;

require (addNewValidMessagesToStoredWindow (_window ,
_window_index));

StatelLibrary.State memory computedState =
transitionFunction (_previousState ,
timestampedDisputedStates[_window_index]. window);

addStateToStorage(computedState
timestampedDisputedStates[_window_index].state);

timestampedDisputedStates[_window_index].state_proposed

= true;

timestampedDisputedStates|[_window_index]. state_proposed
= true;

timestampedDisputedStates[_window_index].
lastupdated_timestamp = block.timestamp;

76

Chapter 6. Experimental results

Algorithm 6.4 performTransition function in solidity

w N

function

performTransition (uint256 _window_index) external {

require ((timestampedDisputedStates|[_window_index].
lastupdated_timestamp + dispute_time) < block.
timestamp) ;

require (timestampedDisputedStates|[_window_index].

state_proposed = true);

require (timestampedDisputedStates|[_window_index].
accepted = false);

current_state = timestampedDisputedStates|[_window_index
|.state;

timestampedDisputedStates|[_window_index |. accepted =
true;

if (_window_index = (number_of_windows — 1)){

performRedistribution(current_state.e);

}

Chapter 6. Experimental results 7

Algorithm 6.5 disputeWindowAC in solidity

> function disputeWithWindowAndPreviousAgreementCertificate (

3 Structs.Window calldata _window,

1 Structs. AgreementCertificate calldata
_agreement_certificate ,

5 uint256 _window_index

6) external {

8 require (! timestampedDisputedStates[_window_index].
accepted);

9 require (! timestampedDisputedStates|[_window_index —1].
accepted);

10 require (-window_index > 0 && _window_index <
window_size);

11 require (isDisputeTime(_window_index));

12 require (isAgreementCertificateValid (
_agreement_certificate)); require(
_agreement_certificate.signed_protocol_messages [0].

protocol_message.window_identifier = _window_index
—1);

13

14 timestampedDisputedStates[_window_index —1].
agreement_certificate = _agreement_certificate;

15 timestampedDisputedStates[_window_index —1].
agreement_certificate_proposed = true;

16 addStateToStorage(_agreement_certificate .state ,
timestampedDisputedStates[_window_index —1].state);

17 timestampedDisputedStates [_window_index].state_proposed
= true;

18 timestampedDisputedStates[_window_index —1].accepted =
true;

19 addStateToStorage(timestampedDisputedStates |
_window_index —1].state ,current_state);

20 disputeWithWindowPrivate (_window, _window_index ,
current_state);

6.3 Results and discussion

The results presented in Table 6.1 show the amount of gas used when calling the
methods exposed by the Dany smart contract with varying number of sensor mes-
sages in a window. It is possible to observe that the number of sensor messages
in a window does not affect the cost of the performTransition method while the
costs of dispute Window and dispute WindowAC' increase as the number of mes-
sages in the window increases. This is due to the fact that dispute Window and
dispute WindowAC' take the window as input and have to perform computation
on it (applying the transition function on it) and have to perform other checks
on the window. However, the performTransition gas cost remains constant since
its behaviour is that of accepting a state that was previously computed by either

78 Chapter 6. Experimental results

calling the dispute Window or dispute WindowAC methods. The gas requirements
of such methods are high; this becomes more evident if we compare these costs
with the cost of logging one sensor message in a simple logging smart contract (
Algorithm 6.6). Logging one sensor message in such a contract costs 23424 gas
units, a significantly lower cost than the Dany smart contract method calls. Using
Dany becomes therefore convenient only if disputes are unlikely to be raised.

In Figure 6.1 it is shown the amount of gas consumed by an intermediate node for
the Dany smart contract assuming that every window contains 5 sensor messages
with varying dispute rates. With dispute rate we mean the number of disputes
raised when a certain number of windows has been computed. These values are
also compared with the amount of gas needed for logging sensor messages using
the logging smart contract. It is possible to observe that the Dany smart con-
tract makes an intermediate node spend less gas if the number of disputes raised
during the execution is inferior to one dispute every 50 processed windows, while,
if disputes where to arise every 10 windows, the logging smart contract is still
preferable. Scenarios in which the rate at which sensor messages are produced is
fixed, or close to fixed, and the number of disputes to be raised in a given pe-
riod is expected to be within certain extremes, may allow users to fine tune the
Dany smart contract, requiring intermediate node owners to stake only a slightly
higher amount of money they expect to spend during the execution. In a sce-
nario in which disputes do not occur, Dany could be able to process thousands
of sensor messages per second, while public blockchains can only process a very
small number of transactions per seconds. However, it is not always the case that
disputes do not occur. Unfortunately, if the rate of sensor messages produced is
extremely high and disputes are expected to occur, it may not even be possible to
implement Dany on top of a public blockchain such as ethereum. This is because
blockchains such as Ethereum produce blocks with a limited block size, mean-
ing that it is not possible to create blocks containing transactions spending more
gas than the maximum allowed. A Dany smart contract that manipulates win-
dows containing an excessive number of sensor messages may not be implemented
in such blockchains since it would make it impossible to solve arising disputes.
Consortium blockchains, however, may provide a suitable blockchain layer for de-
manding Dany smart contracts since they may be set with high block size and
block creation rate. The results obtained show that it is possible to improve the
scalability of a blockchain by running Dany as a second layer on top of it.

Chapter 6. Experimental results 79

Gas consumption in Dany with different dispute rates

== Simple logging cost

100000000 == Danywith 1 dispute
every window

Dany with 1 dispute
every 10 windows

10000000 w= Dany with 1 dispute
every 50 windows

== Danywith 1 dispute
f every 100 windows

1000000 Dany without disputes

100000
100 200 300 400 500

Number of sensor messages

FIGURE 6.1: Graph showing the amount of gas used by an inter-

mediate node for executing a Dany smart contract with different

number of disputes. The Y-axis shows the amount of gas spent

while the X-axis is the number of sensor message processed. It is

assumed that sensor messages are grouped 5 by 5 in the interme-
diate node windows.

Algorithm 6.6 Logging smart contract written in Solidity

contract StorageContract{

address sensor_address;
address operator;
Structs.SensorMessage [] sensor_messages_array;

constructor (address _sensor_address ,address _operator){
sensor_address = _sensor_address;
operator = _operator;

}

function addSensorMessage(Structs.SensorMessage memory
_sensor_message) public {
require (msg.sender =— operator);
require (isValidSensorMessage(_sensor_message));
sensor_messages_array .push(_sensor_message);

}

function isValidSensorMessage(Structs.SensorMessage memory
_sensor_message)
public
view
returns (bool)

address signer = StructUtils.
getSignerAddressOfSensorMessage(_sensor_message);
return sensor_address = signer;

Chapter 6. Experimental results

H size performTransition disputeWindow disputeWindowAC

1 72938 371458 1018325
2 72938 565003 1211884
3 72938 758575 1405469
4 72938 952144 1599051
) 72938 1145715 1792647

TABLE 6.1: Table showing the amount of gas used per method call
with varying window sizes. The column size specifies the number
of messages in the window

Chapter 7

Conclusions and future directions

In this thesis, a novel protocol for the execution of smart contracts addressing the
limits of traditional smart contract execution methods has been proposed.

The research questions addressed was the following:

e Research Question: Can we have a scalable solution for IoT smart con-
tracts while maintaining a high level of security in smart contract execution?

We observed a lack of solutions for the execution of scalable IoT smart contracts
in the literature. With Dany, we devised a solution for enabling the execution of
smart contracts that are more scalable. Some of the smart contracts that would
benefit from being run on Dany are in the field of the IoT. We provided a case
study where the use of Dany would prove convenient such as the one described in
chapter 3 and then we provided experimental results that show when the use of
Dany would be convenient.

As a future direction, we think it would be useful to explore different kind of
security assumptions. The any-trust security assumption used to build Dany may
indeed be weakened if by doing so a more efficient protocol can be devised. We
also think it can be useful to explore new dispute resolution mechanisms.

List of Figures

1.1 Opcode count in ethereum smart contracts 5)
1.2 Solidity primitive counto)
2.1 Block linking in Bitcoino 10
2.2 IBFT 2.0 protocol 14
2.3 Directed acyclic grapho 19
2.4 Payment channel o Lo 20
2.5 Pegged sidechain oo 24
2.6 Three phase protocol of Diversity 27

81

3.1
3.2

3.3
3.4

3.5

4.1
4.2

4.3
4.4

5.1
5.2

6.1

Pollution case study
Average transaction latency comparison between IBFT 2.0 and
Caliper
Average throughput comparison between IBFT 2.0 and Caliper
Number of transactions per block in the test 1 at a transaction send
rateof 2 TPS.
Number of transactions per block when sending transactions at 100

Dany architecture o
Windows and traces generated by sensors and received by interme-
diate nodes: Sensors d and z generate the traces M, and M, re-
spectively. These are received by intermediate nodes i1 and 2 who
divide them into windows and merge them. Intermediate nodes
may lose some sensor messages, possibly making their merged local
windows different, e.g., wi is different from w?
Agreement certificate protocolo
Dispute resolution in Dany

Intermediate node class diagram L.
Intermediate node messages class diagram

Gas usage in Dany with different dispute rates

List of Tables

3.1
3.2
3.3
3.4
3.5

6.1

Hyperledger Caliper tests at four different transaction send rates . .
Block metrics retrieved from Caliper tests
Blocks metrics retrieved with the custom benchmark tool tests . . .
Blocks metrics retrieved with the custom benchmark tool tests . . .
Test 2. The values of the transaction confirmation delays are re-

ported in each column of the table for a different value of the sending

transaction frequency parameter.

Table showing the amount of gas used per method call with varying
window sizes in Dany L.

82

List of Algorithms

1.1
3.1
4.1
4.2

4.3
5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6

Wallet implementation in Solidity 6
Benchmark smart contract 31
Dispute with window method 51
pseudocode of the perform transition method exposed by the Dany

smart contracto Lo 51
Dispute with window and previous agreement certificate method . . 52
Receive message procedure Lo 64
Parse sensor message procedure 65
Parse protocol message procedure L. 66
parse leader protocol message procedure 67
Parse standard protocol message procedure 67
Parse agreement certificate procedure 68
Parse tick procedure Lo 70
dispute process pseudocode run by intermediate nodes for a given

window L 72
Structs used to represent the state 74
Transition function written in solidity used in the Dany smart contract 74
DisputeWindow in Solidity 75
performTransition function in solidity 76
disputeWindowAC in solidity 7
Logging smart contract written in Solidity 79

83

Bibliography

1]

[10]

[11]

Hyperledger besu. https://www.hyperledger.org/use/besu. Accessed:
2023-02-28.

Hyperledger caliper. https://hyperledger.github.io/caliper/. Ac-
cessed: 2023-05-2.

Openzeppelin. https://docs.openzeppelin.com/contracts/4.x/tokens.
Accessed: 2023-05-2.

Solidity 0.8.17 documentation [online]. available:
https://docs.soliditylang.org/en/v0.8.17/ [accessed 2023-01-25].

Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien
Stern. Addendum to ”scalable secure storage when half the system is faulty.
01 2004.

Hamidreza Arasteh, Vahid Hosseinnezhad, Vincenzo Loia, Aurelio Tom-
masetti, Orlando Troisi, Miadreza Shafie-khah, and Pierluigi Siano. Iot-based
smart cities: A survey. In 2016 IEEFE 16th international conference on envi-
ronment and electrical engineering (EEEIC), pages 1-6. IEEE, 2016.

Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of things:
A survey. Computer networks, 54(15):2787-2805, 2010.

Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timén, and Pieter Wuille. Enabling
blockchain innovations with pegged sidechains. URL: hitp://www. open-
sciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-
sidechains, 72:201-224, 2014.

Mohamed Ben-Daya, Elkafi Hassini, and Zied Bahroun. Internet of things
and supply chain management: a literature review. International Journal of
Production Research, 57(15-16):4719-4742, 2019.

Mirko Bez, Giacomo Fornari, and Tullio Vardanega. The scalability challenge
of ethereum: An initial quantitative analysis. In 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE), pages 167-176,
2019.

Stefano Bistarelli, Gianmarco Mazzante, Matteo Micheletti, Leonardo
Mostarda, Davide Sestili, and Francesco Tiezzi. Ethereum smart contracts:
Analysis and statistics of their source code and opcodes. Internet of Things,
11:100198, 2020.

84

https://www.hyperledger.org/use/besu
https://hyperledger.github.io/caliper/
https://docs.openzeppelin.com/contracts/4.x/tokens

BIBLIOGRAPHY 85

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

Mic Bowman, Debajyoti Das, Avradip Mandal, and Hart Montgomery.
On elapsed time consensus protocols. Cryptology ePrint Archive, Paper
2021/086, 2021. https://eprint.iacr.org/2021/086.

Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv
preprint arXiw:1710.09437, 2017.

Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,
Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining ghost
and casper. arXiw preprint arXiw:2003.03052, 2020.

Diletta Cacciagrano, Flavio Corradini, Gianmarco Mazzante, Leonardo
Mostarda, and Davide Sestili. Off-chain execution of iot smart contracts.
In Advanced Information Networking and Applications: Proceedings of the
35th International Conference on Advanced Information Networking and Ap-
plications (AINA-2021), Volume 2, pages 608-619. Springer, 2021.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OsDI, volume 99, pages 173—-186, 1999.

Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341,
2016.

Usman W Chohan. The double spending problem and cryptocurrencies.
Awvailable at SSRN 3090174, 2021.

Anton Churyumov. Byteball: A decentralized system for storage and transfer
of value. URL hitps://byteball. org/Byteball. pdf, 2016.

Tom Close. Nitro protocol. Cryptology ePrint Archive, 2019.

Tom Close and Andrew Stewart. Forcemove: an n-party state channel pro-
tocol. Magmo, White Paper, 2018.

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin Sirer,
et al. On scaling decentralized blockchains. In International conference on
financial cryptography and data security, pages 106—125. Springer, 2016.

Sourav Das, Vinay Joseph Ribeiro, and Abhijeet Anand. Yoda: Enabling
computationally intensive contracts on blockchains with byzantine and selfish
nodes. arXiv preprint arXiw:1811.03265, 2018.

Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,
Andrea Margheri, and Vladimiro Sassone. Pbft vs proof-of-authority: Apply-
ing the cap theorem to permissioned blockchain. 2018.

Christian Decker and Roger Wattenhofer. A fast and scalable payment net-
work with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems, pages 3—18. Springer, 2015.

https://eprint.iacr.org/2021/086

86

BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[30]

[34]

[35]

[36]

[37]

[38]

Massimo Di Pierro. What is the blockchain? Computing in Science € Engi-
neering, 19(5):92-95, 2017.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM), 35(2):288-323,
1988.

Stefan Dziembowski, Sebastian Faust, and Kristina Hostakova. General state
channel networks. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 949-966, 2018.

W Ethereum. Ethereum whitepaper. Ethereum. URL:
https://ethereum.org/en/whitepaper [accessed 2023-01-24], 2014.

Caixiang Fan, Changyuan Lin, Hamzeh Khazaei, and Petr Musilek. Per-
formance analysis of hyperledger besu in private blockchain. In 2022 IEEE
International Conference on Decentralized Applications and Infrastructures
(DAPPS), pages 64-73. IEEE, 2022.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374-382, 1985.

Evangelos Georgiadis. How many transactions per second can bitcoin really
handle ? theoretically. JACR Cryptol. ePrint Arch., 2019:416, 2019.

Amir Haleem, Andrew Allen, Andrew Thompson, Marc Nijdam, and Rahul
Garg. Helium: A decentralized wireless network. Helium Systems Inc., Tech.
Rep.[Online]. Available: http://whitepaper. helium. com, 2018.

Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and
Edward W Felten. Arbitrum: Scalable, private smart contracts. In 27th
USENIX Security Symposium (USENIX Security 18), pages 1353-1370, 2018.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
international cryptology conference, pages 357-388. Springer, 2017.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,
Linus Gasser, and Bryan Ford. Enhancing bitcoin security and per-
formance with strong consistency via collective signing. arXiv preprint
arXiw:1602.06997, 2016.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,
Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized
ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 583-598. IEEE, 2018.

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE. The
byzantine generals problem. ACM Transactions on Programming Languages
and Systems, 4(3):382-401, 1982.

BIBLIOGRAPHY 87

[39]

[40]

[41]

[42]

[43]

[46]

[47]

[48]

[49]

[50]

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. In Concurrency: the works of leslie lamport, pages 203-226. 2019.

Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Songtao Guo, and Yuanyuan
Yang. A survey of iot applications in blockchain systems: Architecture, con-
sensus, and traffic modeling. ACM Computing Surveys (CSUR), 53(1):1-32,
2020.

Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. Nano
[Online resource]. URL: https://nano. org/en/whitepaper (date of access:
24.03. 2018), 4, 2018.

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. A secure sharding protocol for open blockchains. In

Proceedings of the 2016 ACM SIGSAC conference on computer and commu-
nications security, pages 17-30, 2016.

Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystify-
ing incentives in the consensus computer. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 706—
719, 2015.

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random func-
tions. In 40th annual symposium on foundations of computer science (cat.
No. 99CB37039), pages 120-130. IEEE, 1999.

Leonardo Mostarda, Andrea Pinna, Davide Sestili, and Roberto Tonelli. Per-
formance analysis of a besu permissioned blockchain. In Advanced Infor-
mation Networking and Applications: Proceedings of the 37th International
Conference on Advanced Information Networking and Applications (AINA-
2023), Volume 3, pages 279-291. Springer, 2023.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review, page 21260, 2008.

Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joél Alwen, and
Krzysztof Pietrzak. Spacemint: A cryptocurrency based on proofs of space. In
Financial Cryptography and Data Security: 22nd International Conference,
FC 2018, Nieuwpoort, Curacao, February 26—March 2, 2018, Revised Selected
Papers 22, pages 480-499. Springer, 2018.

Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart con-
tracts. White paper, pages 1-47, 2017.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable
off-chain instant payments, 2016.

Serguei Popov. The tangle. White paper, 1(3):30, 2018.

88

BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Roberto Saltini and David Hyland-Wood. Ibft 2.0: A safe and live variation of
the ibft blockchain consensus protocol for eventually synchronous networks.
arXw preprint arXiw:1909.10194, 2019.

Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In Annual International Cryptology Con-
ference, pages 148-164. Springer, 1999.

Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Li-
nus Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-
resistant distributed randomness. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 444-460. Teee, 2017.

Nick Szabo et al. Smart contracts, 1994.

Péter Szilagyi. Eip-225: Clique proof-of-authority consensus proto-
col,” ethereum improvement proposals, no. 225. [online serial]. available:
https://eips.ethereum.org/eips/eip-225., 2017.

IoTeX Team. Iotex: a decentralized network for internet of things powered
by a privacy-centric blockchain. loTeX Team, 2018.

Karl Wiist, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srdjan Capkun.
Ace: Asynchronous and concurrent execution of complex smart contracts. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 587-600, 2020.

Joachim Zahnentferner. Chimeric ledgers: translating and unifying utxo-
based and account-based cryptocurrencies. Cryptology ePrint Archive, 2018.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scal-
ing blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 931-948, 2018.

Vlad Zamfir. Casper the friendly ghost. 2017.

	Abstract
	Introduction
	UTXO model and Account model
	Smart contracts
	Internet of Things and Blockchains
	Motivation and research questions
	Thesis contribution
	Thesis organisation

	State of art on scalability solutions
	On-chain approaches to scalability
	Consensus protocols
	Proof-of-Stake consensus protocols
	Proof-of-Authority consensus protocols

	Sharding
	IoT blockchain ecosystems
	Other Distributed Ledger technologies
	Directed acyclic graph

	Off-chain approaches to scalability
	Payment channels
	State channels
	Delegated computation
	Sidechains
	Diversity

	Pollutant emission control system
	Pollutant emission control case study
	Blockchain solution
	Evaluation of a local blockchain solution with Hyperledger Besu
	Blockchain configurations
	Benchmark configuration
	Benchmark results

	Evaluation of a distributed blockchain solution using Hyperledger Besu
	Blockchain configuration
	Hyperledger Caliper
	Custom benchmark tool
	Benchmark tests performed
	Caliper results
	Custom tool results

	Discussion

	Dany
	Dany at glance
	Sensor layer
	Sensor messages and windows

	Blockchain layer
	Intermediate node layer
	Agreement certificate protocol
	Dispute resolution protocol
	Dispute resolution by providing the window of data
	Dispute with window and agreement certificate

	Proofs
	Monetary incentive
	Risks
	Inappropriate window size
	Blackhole attack
	Off-line intermediate node
	Inappropriate dispute period
	Inappropriate transition function
	Stake is too low
	Blockchain reorganizations

	Intermediate nodes implementation
	Data structures
	Message structures

	Procedures
	parseSensorMessage procedure
	parseProtocolMessage procedure
	parseLeaderProtocolMessage procedure
	parseStandardProtocolMessage procedure
	parseAgreementCertificate procedure
	parseTick procedure
	Dispute process

	Experimental results
	Scenario
	Implementation
	Results and discussion

	Conclusions and future directions

