
A Data Extraction Methodology for Ethereum
Smart Contracts

Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Barbara Re
Computer Science Division

University of Camerino, Camerino, Italy
{name.surname}@unicam.it

Abstract—The broader adoption of blockchain for creating de-
centralised applications has raised interest in employing analysis
techniques to support continuous improvement. Data extraction
is crucial in this context, as it permits a better understanding
of how applications behave. However, due to the variety of data
sources (e.g., transactions and events) and the characterisation of
the blockchain structure, several challenges arise in automatically
extracting data. In particular, retrieving smart contract state
changes remains unexplored despite its potential usage for
discovering unexpected behaviour. For such reasons, this work
proposes a methodology and a supporting tool for extracting data
from smart contract executions and state changes. The obtained
data is then offered in a way that can be easily converted to
purpose-specific standards. The methodology was tested on the
PancakeSwap Ethereum bridge smart contract.

Index Terms—Blockchain, Process mining, Data extraction,
Ethereum, Smart contracts, State changes.

I. INTRODUCTION

The Ethereum blockchain is gathering interest thanks to its
key features, including security, transparency, and decentrali-
sation. This trend is also confirmed by the constant growth of
blockchain-based applications that range from the exchange of
digital assets to goods tracking [1]. In such a context, the ex-
traction of data generated by the execution of blockchain-based
applications is particularly useful to support their continuous
improvement. Indeed, thanks to smart contracts, decentralised
applications are executed directly in the blockchain, generating
data that can be used for certified auditing and monitoring
activities [2]–[7].

Among the different analysis techniques, process mining
is an emerging solution for analysing blockchain applications
exploiting data (i.e., logs) resulting from smart contract exe-
cutions [8]. Process mining is a set of techniques that can be
used to identify bottlenecks and deviations from the expected
behaviour of the monitored processes [9], [10]. In particular,
the process mining community is moving toward object-
centric event data representing the backbone of managing
and analysing complex process data [11]. The blockchain
context can benefit from such an analysis but still lacks a
suitable extraction methodology to process the complexity of
data generated by blockchain-based applications. In this paper,
we do not discuss any analysis, but we concentrate on data
extraction as the most time and effort consuming task in an
analysis (improvement) project, typically requiring more than
80% of resources [12].

Considering blockchain applications, the execution of a
smart contract generates data that is stored in blocks (e.g.,
timestamp), transactions (e.g., sender, inputs, gas, and more),
events and storage (i.e., the memory containing the smart
contract state) [13]. Additional effort is also required to decode
information that cannot be easily interpreted in its original
form in the blockchain. Thus, the extraction activity have to
deal with the heterogeneity of storage and decoding factors.

Moreover, catching the state changes of a contract per-
mits a comprehensive understanding of the application and
enables detailed analysis of the contract evolution over time.
Differently from transaction and block, a state change does
not generate a clear and accessible track, requiring a deep
investigation of the low-level data structure [14], [15]. In
Ethereum, each variable influencing the state of a smart con-
tract is permanently stored and encoded in the storage memory
based on a specific slot. In the case of simple variables,
this slot is statically assigned, while for complex types (e.g.,
mappings and structs), this is dynamically combined with a
key generated during the execution. In the last few years, some
approaches were proposed to extract data stored in different
blockchain sources [16]. However, these approaches mainly
extract information related to the execution of smart contract
functions (e.g., events, inputs, senders) without considering the
evolution of its state.

For these reasons, we propose a data extraction method-
ology to extract data from Ethereum smart contracts
including execution-related data and state changes. To this
aim, our methodology first captures the knowledge about the
contract transactions and, for each of them, extracts the related
state changes. This is possible by replicating transactions
inside the Ethereum Virtual Machine (EVM) and obtaining
the traces generated to reconstruct smart contract variables
changes history. Usually, this leads to exploiting Ethereum
archive nodes requiring a size of several TB of memory,
depending on the client being used, and to define ad-hoc
solutions requiring strong domain knowledge [14], [15]. Our
methodology relies on a resource-efficient solution in terms of
used technologies (i.e., massive data storage) and information.
Indeed, our proposal permits the extraction of traces without
the need to have an archival node or other kind of heavy
data sources. To demonstrate the feasibility of the proposed
solution, the methodology was implemented as a web ap-
plication that makes the data extraction of a smart contract



accessible by taking the contract details from the user as
input. We illustrate the benefits of our methodology using the
PancakeSwap Ethereum smart contract, but it can be generally
applied to any Ethereum smart contract.

The rest of the paper is organised as follows. Section II
introduces information on the Ethereum blockchain’s relevant
characteristics. Section III describes the proposed method-
ology by focusing on the different steps and the adopted
solutions. Section IV discusses the methodology in practice.
Finally, Section V provides an overview of related works, and
Section VI concludes the paper by pointing out future works.

II. BACKGROUND

Ethereum is a decentralised, open-source blockchain with
smart contract functionality [17]. Its public and permissionless
characteristics, permit participants to freely interact with it
while ensuring that ledger data is accessible and visible to
any interested party. Smart contracts are programs deployed
on a blockchain whose code is immutable and run when
predetermined conditions are met. They are commonly used
to automate agreement processes, ensuring that all participants
promptly know the outcome without requiring intermediaries.
In Ethereum, these contracts can be coded using the So-
lidity programming language, which runs on the Ethereum
Virtual Machine (EVM), similar to traditional programming
languages. To write smart contracts, Ethereum provides the
Solidity1 programming language. Once the code is generated,
it is compiled into a low-level bytecode executed inside the
EVM. After the smart contract is deployed in the blockchain
through a dedicated transaction, it becomes available for user
interaction. The compiled bytecode is executed as several
EVM opcode instructions, which perform predefined opera-
tions deterministically. The EVM can store data inside the
storage, memory, and the stack. Each smart contract has a
data area called storage, a persistent key-value store between
function calls and transactions. During its execution, the EVM
performs low-level operations in a data area called stack.
Furthermore, contracts can use a memory location, which is
cleared for each message call. Each executed function of a
smart contract can lead to an update of the global state of the
ledger, maintained by nodes and containing information about
balances and data. In a smart contract, the state variables are
stored in the storage through slots, which are assigned to them
depending on their size.

In Ethereum, transactions are cryptographically signed in-
structions sent on the blockchain by an account. Public
transactions represent the transfer of cryptocurrency or the
execution of a smart contract function. Internal transactions
instead occur between smart contracts, lack a cryptographic
signature, and are typically stored off-chain, meaning they are
not a part of the blockchain. After the execution is completed,
the transaction is added to a block and propagated in the
network where its data is included such as hash, blockNumber,
timestamp (i.e., time at which the transaction has been added

1https://solidity.readthedocs.io/

in a block), to, from, value (i.e., amount of ETH), data (i.e.,
binary code to create a smart contract, function invocation),
gasLimit, and others. In addition, a transaction can include an
additional log containing events emitted during the execution
of smart contracts and include custom application data. Those
events are used to log some custom information, and they
are used to expose the outcome of an operation (e.g., transfer
of a token, deposit. etc.). The resulting logged data is then
used by external services, like front-ends, to update their
internal states accordingly. Internal transactions occur instead
between smart contracts, triggered when an external address
calls a smart contract to execute an operation. The contract
then uses its built-in logic to start interacting with the other
required contracts to complete the operation. Even in a single
transaction, a smart contract may need to perform several
internal calls to other contracts. Unlike public transactions,
internal transactions lack a cryptographic signature and are
typically stored off-chain, meaning they are not a part of the
blockchain.

III. THE EXTRACTION METHODOLOGY

This section describes the proposed data extraction method-
ology focusing on the challenges of extracting smart contract
state changes. Figure 1 depicts the steps of the proposed
methodology. The sequence of activities is managed using
solid arrows while the used inputs and the produced outputs
are connected to each activity through dashed arrows. The
methodology first retrieves the contract code and contract
transactions. Then, the compilation and extraction of data
related to contract states, events, transactions, and blocks is
conducted. Finally, the results are inserted into a JSON log
and provided to the user. Here, below, we analyse each step,
providing more detailed information.

Get contract code. This step takes in input the contract
address and the contract name from which to extract data and
retrieve the contract code later used for further operations.
To provide a fully automatised procedure, we assume that the
contract code is verified and has a publicly available source
code that is readable through the Etherscan API.

Get contract transactions. The scope of this step is to
get all contract transactions from which data is extracted.
Also, in this case, the input required by the user is limited to
the previously inserted address. The extraction can be further
refined by applying filters based on a block range.

Compile contract. Once the smart contract source code
is obtained, we used the Solidity compiler to obtain three
particular outputs: (i) Application Binary Interface (ABI), (ii)
Abstract Syntax Tree (AST), and (iii) storage layout.

The Application Binary Interface is a general-purpose data
exchange format specified by Ethereum. It contains contract
function types, names, inputs, outputs, and mutability infor-
mation. Thanks to this interface, it is possible to interact with
smart contracts from outside the blockchain and for contract-
to-contract interaction. Indeed, inside the EVM, the deployed
code is stored as bytecode and requires the ABI to interpret
it. In this work, the ABI is primarily used to decode the

https://solidity.readthedocs.io/


Fig. 1: Proposed data extraction methodology.

information extracted from transactions and events since they
are stored in the blockchain in a hexadecimal format.

The Abstract Syntax Tree of the smart contract is a tree
representation of the source code in which each node contains
a particular construct, such as a function and its statements.
By analysing the generated AST, the methodology creates a
mapping between the functions in the contract and the state
variables they modify. This mapping is combined with the
storage layout during the contract state extraction to recognise
which state variables are updated in the executed functions.

The Storage layout interface represents how contract state
variables are persistently stored in the storage memory. In this
memory, the EVM stores the smart contract data using a key-
value format. In simple state variables, the key represents the
index of the memory slot, while for dynamic variables, the
key is generated by hashing the index of the slot concatenated
with a dynamic value (e.g., mapping key, array index). This
poses a significant challenge in associating a specific storage
key with a dynamic state variable. For this reason, in the case
of simple variables, we use the storage layout to derive their
memory location directly, while in the case of dynamic ones,
we use this information as a starting point to compute the final
location.

Extract contract state data. This step is the focal point of
the proposed methodology, and it extracts the state variables
updated after each contract execution. For this purpose, each
transaction is replicated on a local environment with the state
of the blockchain at the moment in which the transaction
was originally executed. This returns the transaction trace
containing the list of executed operations (i.e., opcodes) and
the state of the EVM (i.e., memory locations). By analysing
such operations and their inputs/outputs, it is possible to
reconstruct the history of state variable changes and retrieve
their location in the case of dynamic ones. As a result, the
step produces the storage state that is later included in the
final log. In the following, we describe the main standard
opcodes existing in the EVM and how they are used in the
proposed methodology. Indeed our solution relies on native

functionalities, without the need for any customisation to the
EVM.
STOP indicates that the execution of a certain smart contract
is terminated. The resulting trace execution includes the final
updated contract state, represented by the mapping between
storage keys and their values. Notably, these keys are in
hexadecimal format and represent the result of the simple
conversion of the storage slot or the Keccak256 of the slot plus
the dynamic values. This step matches each storage value by
decoding the key to its related variable, thanks to information
obtained from the storage layout. Indeed, in the case of simple
variables, a conversion of the storage key returns the integer
representing the variable location, permitting its mapping to
the variable name contained in the storage layout and AST.
However, in the case of dynamic variables, the keys cannot
be directly decoded without additional information about their
construction.
SSTORE is a simple opcode operation that saves state vari-
able values inside the respective storage keys. This makes it
possible to catch each new insertion or update in the storage.
SHA3 is the operation for the Keccak256 encryption of an
input read from the memory. In particular, the SHA3 is also
used to compute the storage key of dynamic state variables
by hashing the default assigned storage slot and the dynamic
value. The final hexadecimal value represents the storage
key previously obtained through the STOP opcode in the
contract state. By reading the sequence of SHA3 operations,
we can derive the original storage slots used to create a certain
key and, consequently, understand to which variables it is
associated, thanks to the storage layout and the AST.
CALL, DELEGATECALL, STATICCALL are the codes refer-
ring to contract-to-contract executions. The main differences
among these reside in the inputs and the execution context. In
particular, the CALL executes a function code in another smart
contract, modifying the target state. The DELEGATECALL,
instead, invokes a function of another smart contract, keeping
its original context (i.e., message sender and value) and
modifying the original state. Finally, STATICCALL is used



Fig. 2: Web application for extracting data.

for read-only operations without modifying any state. During
the data extraction step, these operations are used to read
internal transaction data such as the target contract address, the
function selector (i.e., name in hexadecimal format), and the
input parameters, providing additional details on the contract
interactions.

Extract transactions and blocks data. Once the contract
state changes are collected and decoded, the methodology
continues to read information associated with transactions and
blocks. For each of them, the methodology takes the name
of the executed function from the corresponding log and its
inputs, decoded thanks to ABI. Then, other attributes are read,
such as hash, sender, timestamp, gas used, and more. This
transaction and block data is saved for use in the last step.

Extract events. This last step concerns the retrieval of the
events emitted by the smart contract functions and contained in
the transaction log. Using the ABI, events of past transactions
are captured together with the name and the value of the
attributes. Also, in this case, the output event data is saved
for the latest step.

Generate JSON log. The last step of the methodology
creates the JSON log containing all the extracted data. This log
is stored and provided to the user, who can use it for different
analysis scopes.

IV. EXTRACTION IN PRACTICE

To demonstrate the feasibility of the proposed methodology,
in this section, we report a concrete example of extracting
data from the PancakeSwap decentralised application. Pan-
cakeSwap is the leading decentralised exchange based on the
BNB Smart Chain with cross-chain bridges for token sharing.
In particular, we considered the Ethereum smart contract2

representing the Cake token used for cross-chain capabilities.
The methodology was implemented as a web application

based on Nodejs and is publicly available here. It exposes a

2https://bit.ly/3Og5gi4

user interface as illustrated in Fig 2, providing easy access
to the methodology. Users can simply insert the contract
address, name, and specify the range of blocks for a re-
stricted extraction. The interaction with the blockchain relies
on Web3js libraries3 exploiting its functionalities for reading
blocks, transactions and events emitted from a contract. For the
implementation of the contract code and transactions retrieval,
the freely accessible Etherscan API4 is used. The source code
compilation is done with Solc5, and it requires a contract
written in a Solidity with a minimum version of 0.5.13, as
it introduced the feature generating the storage layout inter-
face. To replicate transactions locally and obtain traces, the
hardhat framework is used with the debug traceTransaction
functionality 6.

Example of data extraction. Listing 1 reports an entry
from the output JSON log containing the data extracted from
one transaction. The full log is available here. and it contains
the first one hundred transactions of the contract.

The first JSON property contains the “sendFrom” activity
(line 2), representing the function executed in the smart con-
tract and extracted from the inputData field of the transaction.
Once decoded, this field also returns the execution timestamp
(line 3) and the eventual inputs. The latter ones are composed
of the names of the variables input names (lines 4-6), their
types input types (lines 7-9), and their values input values
(lines 10-15). After function data, the log contains the storage
state updates thanks to the transaction trace locally replicated
(lines 16-22). Inside the JSON log, each state variable is an
object having a name (lines 17, 20), a type (lines 18, 21),
and a value (lines 19, 22) property. Currently, the decoding is
not supported for nested dynamic variables, and the raw value
is provided. In addition to state changes, the trace permits
contract-to-contract invocations without relying on third-party
services. This is visible in the internal transactions property
(lines 23-27) containing a list of JSON objects for such
transactions. Initially, each call is defined by its type (line 24),
which can be CALL, DELEGATECALL, or STATICCALL,
as in the reported example. Then, the address of the target
contract is included in the to property (line 25). If the call also
has some inputs, their value is taken (lines 26-27). This value
is expressed in the encoded format, so additional information
(e.g., ABI) about the call and the target contract is needed to
decode it. Finally, the emitted events are reported (lines 28-34).
Each event is represented by a JSON object, having a name
(line 29) and the values (line 30), which are event-specific
attributes and could differ inside each function.

V. RELATED WORKS

The employing of automatic methodologies for the ex-
traction of blockchain data has experienced many proposals
over the years. Particular interest was encountered in process

3https://web3js.readthedocs.io/en/v1.2.11/getting-started.html
4https://docs.etherscan.io/api-endpoints/contracts
5https://docs.soliditylang.org/en/latest/using-the-compiler.html
6https://hardhat.org/hardhat-network/docs/overview#the-debug-tracetransa

ction-method

https://bitbucket.org/proslabteam/dataextractionmethodology/src/main/
https://bit.ly/3Og5gi4
https://pros.unicam.it/wp-content/uploads/2024/01/log.zip
https://web3js.readthedocs.io/en/v1.2.11/getting-started.html
https://docs.etherscan.io/api-endpoints/contracts
https://docs.soliditylang.org/en/latest/using-the-compiler.html
https://hardhat.org/hardhat-network/docs/overview#the-debug-tracetransaction-method
https://hardhat.org/hardhat-network/docs/overview#the-debug-tracetransaction-method


1 {
2 "activity": "sendFrom",
3 "timestamp": "1680523403",
4 "inputNames": ["_from", "_dstChainId",
5 "_toAddress", "_amount",
6 "_minAmount", ...]
7 "inputTypes": ["address", "uint16",
8 "bytes32", "uint256",
9 "uint256", ...],

10 "inputValues": [
11 "0xA13bb...cA56E",
12 102,
13 "0x00000...ca56e",
14 989898989898990000,
15 989898980000000000, ...],
16 "storageState": [
17 {"name": "failedMessages",
18 "type": "mapping(..(..., bytes32)))",
19 "value": "00000...c066b3fb96f01641"},
20 {"name": "_balances",
21 "type": "mapping(address, uint256)",
22 "value": 449699370000000000}, ...],
23 "internalTransactions": [
24 {"type": "STATICCALL",
25 "to": "00000...bc225cd675",
26 "inputs": ["9c729da10...8f7ea",
27 "d6d4c898...00000"]}, ...],
28 "events": [
29 {"name": "Transfer",
30 "values": {
31 "from": "0xA13bb...cA56E",
32 "to": "0x00000...00000",
33 "value": 989898980000000000}}, ...]
34 }

Listing 1: Example of log entry for a single transaction.

mining, where automatic data extraction from execution logs
is crucial to analysing the history of smart contracts. In this
context, the available solutions start with the extraction of data
mainly related to contract execution [8]. A first attempt was
proposed in [18] to discover business processes executed on
the blockchain. In this framework, an XES log is derived from
data related to blocks and transactions. Similarly, another early
research described in [4] extracts transactions and generates
XES logs for process discovery and conformance checking
analysis. In [19], [20] instead, events emitted by Ethereum
smart contracts are extracted and formatted according to XES
for process discovery. The approach was then extended in [21],
including the Hyperledger Fabric blockchain support. Fabric
was also used in [22], where various data such as events,
assets, transactions, and participants were obtained from the
vehicle manufacturing network smart contract, resulting in
a final CSV file. Recent works have also investigated the
use of object-oriented standards. The Artifact-Centric Event
Log (ACEL) logging format was proposed in [13]. ACEL

Work Contract
type Considered Data Output

format
B CC CS E IT T

[18] process
based ✓ ✗ ✗ ✗ ✗ ✓ XES

[4] generic ✗ ✗ ✗ ✗ ✗ ✓ XES
[19] generic ✓ ✗ ✗ ✓ ✗ ✗ XES
[20] generic ✓ ✗ ✗ ✓ ✗ ✗ XES
[21] generic ✓ ✗ ✗ ✓ ✗ ✗ XES

[22] process
based ✗ ✗ ✗ ✓ ✗ ✗ CSV

[13] generic ✓ ✗ ✗ ✓ ✗ ✗ ACEL
[23] generic ✓ ✓ ✗ ✓ ✓ ✗ OCEL
proposed
work generic ✓ ✗ ✓ ✓ ✓ ✓ JSON

TABLE I: Table of identified related works and their charac-
teristics. B = Blocks, CC = Contract Creations, CS = Contract
State, E = Events, IT = Internal Transactions, T = Transactions

extends the OCEL standard with concepts related to lifecycle,
object changes, relations, and relation changes. The proposed
extraction method turns in this direction by mapping Ethereum
smart contract events into ACEL elements. Similarly, [23]
extracts contract creation and message call data from Ethereum
transaction traces that are used with events to generate OCEL
logs. In this case, no extensions to the standard were applied,
and the authors also included internal transactions, increasing
the variety of data considered.

A resuming and comparison of the data extraction ap-
proaches is reported in table I, and it considers the adopted (i)
blockchain, the (ii) contract type, the (iii) extracted data, and
the (v) output format. Regarding the first aspect, it is evident
that Ethereum is the most used blockchain, while only a few
works face a different technology, specifically Hyperledger
Fabric [21], [22]. As application types, some works assume
smart contracts representing business processes instances [18],
[22], thus having a more customised solution, while the rest
of the approaches propose the extraction of data starting from
generic applications. Also, in this work, we do not focus on
a specific application type but remain as general as possible
to support many different contexts. Another important aspect
relates to the data sources, usually transactions, blocks, and
events with their respective decoding. Transaction traces are
used in [23] to get message calls and contract creations. Unlike
the largely considered data sources, we use transaction traces
to get smart contract state changes and internal transactions.
To read the contract state, we dynamically build the storage
locations that save state variables during a function execution.
The remaining part of the table shows that all the approaches
also decode the extracted data and that the well-established
XES standard is used for the earliest work. With the recent
growth around object-centric techniques, the OCEL standard
has started to be considered [23], and an extension was also
provided in [13]. In this work, we do not extract data based
on a particular standard within its boundaries but aim to keep
the extraction phase as a general step reusable in different
contexts. For this reason, as output, we provide a general JSON
log that can be easily adapted to any desired standard.



VI. CONCLUSIONS AND FUTURE WORK

The continuous growth of blockchain is encouraging the
creation of decentralised applications, relying on smart con-
tracts as a form of disintermediated and trusted logic. Data
produced by these applications during smart contract execution
is considered transparent and immutable inside the blockchain,
paving the way for innovative analysis techniques. Therefore,
extracting and processing smart contract data assume a crucial
role in enabling the usage of such data in different contexts
like testing, monitoring, and process mining. This latter uses
blockchain logs according to specific standards to enhance
processes and identify irregularities. When applying this kind
of analysis to blockchain, different data sources are involved
like events, blocks, and transactions, hence requiring novel
solutions for their retrieval. In particular, the processing of
smart contract state changes is still an open challenge due
to the peculiarity of the blockchain structure. Reading state
changes permits the consideration of a larger amount of
information and represents behaviours that are not always
expressed in blockchain logs.

Over the years, some methodologies were proposed to
automatically extract and convert blockchain data to partic-
ular standards, enabling the application of process mining
techniques but without considering the smart contract state.
For this reason, in this work, we present a data extraction
methodology for dealing with the challenges of smart contract
state extraction. For each generated transaction, the state of the
contract and other execution-related information are extracted
and inserted in a JSON log. In this way, it is possible to have a
general-purpose representation that can be converted according
to a standard depending on different needs. The feasibility of
the methodology was tested on the Ethereum PancakeSwap
token by extracting data and generating the corresponding
JSON. As future improvements, we will support a larger
amount of data related to smart contracts. Also, we plan to
provide a converter that automatically formats the intermediate
JSON to a desired standard.

ACKNOWLEDGMENT

Acknowledgement of the financial support of the project
PNRR MUR project ECS 00000041-VITALITY.

REFERENCES

[1] A. G. Gad, D. T. Mosa, L. Abualigah, and A. A. Abohany, “Emerging
trends in blockchain technology and applications: A review and outlook,”
J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 9, pp. 6719–6742,
2022.

[2] C. D. Ciccio, G. Meroni, and P. Plebani, “Business process monitoring
on blockchains: Potentials and challenges,” in Enterprise, Business-
Process and Information Systems Modeling, vol. 387 of Lecture Notes
in Business Information Processing, pp. 36–51, Springer, 2020.

[3] C. D. Ciccio, G. Meroni, and P. Plebani, “On the adoption of blockchain
for business process monitoring,” Softw. Syst. Model., vol. 21, no. 3,
pp. 915–937, 2022.

[4] F. Corradini, F. Marcantoni, A. Morichetta, A. Polini, B. Re, and
M. Sampaolo, Enabling Auditing of Smart Contracts Through Process
Mining, p. 467–480. Berlin, Heidelberg: Springer-Verlag, 2022.

[5] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, and
F. Tiezzi, “Engineering trustable and auditable choreography-based
systems using blockchain,” ACM Trans. Manag. Inf. Syst., vol. 13, no. 3,
pp. 31:1–31:53, 2022.

[6] T. Cippitelli, A. Marcelletti, and A. Morichetta, “Chorssi: A bpmn-based
execution framework for self-sovereign identity systems on blockchain,”
in Business Process Management: Blockchain, Robotic Process Au-
tomation and Educators Forum, vol. 491 of Lecture Notes in Business
Information Processing, pp. 5–20, Springer, 2023.

[7] F. Donini, A. Marcelletti, A. Morichetta, and A. Polini, “Restchain: a
blockchain-based mediator for REST interactions in service choreogra-
phies,” in Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing, pp. 245–248, ACM, 2023.

[8] L. Moctar-M’Baba, M. Sellami, W. Gaaloul, and M. F. Nanne,
“Blockchain logging for process mining: a systematic review,” in Inter-
national Conference on System Sciences, pp. 1–10, ScholarSpace, 2022.

[9] W. M. P. van der Aalst, “Process mining: A 360 degree overview,” in
Process Mining Handbook (W. M. P. van der Aalst and J. Carmona,
eds.), vol. 448 of Lecture Notes in Business Information Processing,
pp. 3–34, Springer, 2022.

[10] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[11] W. M. P. van der Aalst, “Object-centric process mining: Unraveling the
fabric of real processes,” Mathematics, vol. 11, no. 12, p. 2691, 2023.

[12] K. Diba, K. Batoulis, M. Weidlich, and M. Weske, “Extraction, corre-
lation, and abstraction of event data for process mining,” WIREs Data
Mining Knowl. Discov., vol. 10, no. 3, 2020.

[13] L. Moctar-M’Baba, N. Assy, M. Sellami, W. Gaaloul, and M. F. Nanne,
“Process mining for artifact-centric blockchain applications,” Simul.
Model. Pract. Theory, vol. 127, p. 102779, 2023.

[14] K. Diba, K. Batoulis, M. Weidlich, and M. Weske, “Extraction, corre-
lation, and abstraction of event data for process mining,” WIREs Data
Mining Knowl. Discov., vol. 10, no. 3, 2020.

[15] J. D. Weerdt and M. T. Wynn, “Foundations of process event data,” in
Process Mining Handbook (W. M. P. van der Aalst and J. Carmona,
eds.), vol. 448 of Lecture Notes in Business Information Processing,
pp. 193–211, Springer, 2022.

[16] L. Moctar-M’Baba, M. Sellami, W. Gaaloul, and M. F. Nanne,
“Blockchain logging for process mining: a systematic review,” in 55th
Hawaii International Conference on System Sciences, pp. 1–10, Schol-
arSpace, 2022.

[17] V. Buterin, “Ethereum: A next-generation smart contract and decentral-
ized application platform..” https://ethereum.org/669c9e2e2027310b6
b3cdce6e1c52962/Ethereum Whitepaper - Buterin 2014.pdf, 2014.
[Online; accessed 16-September-2022].

[18] R. Mühlberger, S. Bachhofner, C. D. Ciccio, L. Garcı́a-Bañuelos, and
O. López-Pintado, “Extracting event logs for process mining from data
stored on the blockchain,” in Business Process Management Workshops,
vol. 362 of Lecture Notes in Business Information Processing, pp. 690–
703, Springer, 2019.

[19] C. Klinkmüller, A. Ponomarev, A. B. Tran, I. Weber, and W. M. P.
van der Aalst, “Mining blockchain processes: Extracting process mining
data from blockchain applications,” in Business Process Management:
Blockchain and Central and Eastern Europe Forum, vol. 361 of Lecture
Notes in Business Information Processing, pp. 71–86, Springer, 2019.

[20] R. Hobeck, C. Klinkmüller, H. M. N. D. Bandara, I. Weber, and
W. M. P. van der Aalst, “Process mining on blockchain data: A case
study of augur,” in Business Process Management - 19th International
Conference, vol. 12875 of Lecture Notes in Computer Science, pp. 306–
323, Springer, 2021.

[21] P. Beck, H. Bockrath, T. Knoche, M. Digtiar, T. Petrich, D. Ro-
manchenko, R. Hobeck, L. Pufahl, C. Klinkmüller, and I. Weber,
“BLF: A blockchain logging framework for mining blockchain data,” in
Proceedings of the Best Dissertation Award, Doctoral Consortium, and
Demonstration & Resources Track at BPM 2021, vol. 2973 of CEUR
Workshop Proceedings, pp. 111–115, CEUR-WS.org, 2021.

[22] A. Koschmider and F. Duchmann, “Extraction of meaningful events
for process mining from blockchain,” Blockchain and Robotic Process
Automation, pp. 13–29, 2021.

[23] R. Hobeck and I. Weber, “Towards object-centric process mining for
blockchain applications,” in Business Process Management: Blockchain,
Robotic Process Automation and Educators Forum, vol. 491 of Lecture
Notes in Business Information Processing, pp. 51–65, Springer, 2023.

https://ethereum.org/669c9e2e2027310b6b3cdc e6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdc e6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf

	Introduction
	Background
	The Extraction Methodology
	Extraction in Practice
	Related Works
	Conclusions and Future Work
	References

