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Enhanced buoyancy of active particles in convective flows
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We numerically investigated the diffusion of a heavy active Brownian particle in a linear periodic array of
steady planar counter-rotating convection rolls at high Péclet numbers. We show that, under certain conditions,
the particle rises to the surface even if it is denser than the suspension fluid, and floats there for exceedingly long
times. Such an apparently counterintuitive phenomenon of “enhanced buoyancy” is a combined effect of gravity,
advection, and shear torque.
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Introduction. All sorts of counterintuitive phenomena are
known to occur in mechanical systems maintained out of equi-
librium [1]. Among the best known examples are the inverted
(Stephenson-Kapitza and Chelomei) pendulums, namely rigid
rods designed to oscillate upside down by vertically shaking
their suspension points [2]. In rheological systems, vibrational
forces may also lead to intriguing effects, like the sinking
of gas bubbles in shaken liquids [3]. Levitation of a fluid
layer above air is another surprising example [4], whereby
relatively heavy objects can float upside down on the layer’s
lower interface, as if gravity were inverted [3].

Also apparently defying gravity is the “Brazilian nut ef-
fect” [5]. When a box containing one large particle and a
mixture of smaller ones is vertically shaken, the large particle
can rise to the top, even if it is denser than the others. Segre-
gation of granular materials by size is due to the interplay of
external (gravitational and vibrational) and internal (particle-
particle and particle-wall) forces and depends on the particle
shapes [6].

Correspondingly, when not restricted to a container, a mass
moving under nonequilibrium conditions can drift against an
external bias, with negative mobility (either differential or ab-
solute). Differential negative mobility is a relatively common
phenomenon [7]; it is due to the obstructing action of the
suspension medium in response to the driven tracer itself, as
summarized by the catchall “getting more by pushing less”
[8]. Absolute negative mobility, instead, results from tailored
combinations of time memory, spatial asymmetry, and driving
fields [9,10]. So far, negative mobility has been demonstrated
numerically only for particles suspended in periodically mod-
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ulated environments and in the presence of either inertia [9,11]
or asymmetric confining geometries [10].

In this Letter we investigate a less contrived realization
of negative response to an external bias, namely the float-
ing properties of a pointlike heavy active Brownian particle
periodically advected in a linear array of convection rolls
[12]. In view of a practical realization, we will refer for
convenience to the archetypal case of a Janus particle (JP).
JPs are strongly idealized artificial microswimmers capable
of self-propulsion in an active medium [13,14]. Spherical
colloidal particles with two differently coated hemispheres,
or “faces,” they are designed to harvest environmental energy
and convert it into kinetic energy through a variety of micro-
scopic physical-chemical processes [15,16]. Our numerical
simulations reveal that, when suspended in a steady convec-
tion flow, active JPs can rise to the surface and float there, even
if they are denser than the suspension fluid. This surprising
effect, termed here “enhanced buoyancy” (EB), occurs when
self-propulsion and advection speeds grow comparable. The
underlying dynamical mechanism results from the interplay
of the drag exerted by gravity and advection, and the torque
applied by the convective flow shear. However, in contrast
with the earlier literature, neither inertia [11] nor taxis [17]
are required.

Model. Let us consider an overdamped, pointlike active JP
diffusing in the convection array of stream function ψ (x, y)
[18–20],

ψ (x, y) = (U0L/2π ) sin(2πx/L) sin(2πy/L), (1)

with lower (upper) edge y = 0 (y = L/2), under the drag of its
apparent weight (i.e., weight minus buoyant force), g [21]. Its
planar dynamics is described by the Langevin equations (LE)
[22,23],

ṙ = u + v0(θ ) + F + √
D0 ξ(t )

θ̇ = (α/2) ∇ × u +
√

Dθ ξθ (t ), (2)
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where F = (0,−g) and u(x, y) = (ux, uy) = (∂y,−∂x )ψ (x, y)
is the incompressible advection velocity vector with ∇ ·
u = 0. The array unit cell consists of two counter-rotating
convection rolls; reflecting boundaries are assumed at the
array edges. The random sources, ξ(t ) = (ξx(t ), ξy(t )) and
ξθ (t ) are stationary, independent, delta-correlated Gaussian
noises, 〈ξi(t )ξ j (0)〉 = 2δi jδ(t ), with i = x, y, θ . ξ(t ) models
equilibrium thermal fluctuations in a homogeneous, isotropic
medium. In the notation of Eq. (2), D0 coincides with
the free passive-particle diffusion constant in the absence
of advection. ξθ (t ) represents the rotational noise affecting
the orientation, θ , of the self-propulsion velocity, v0(θ ) =
v0(cos θ, sin θ ). The reciprocal of Dθ coincides with the angu-
lar persistence (or correlation) time, τθ , of v0(θ ); accordingly,
lθ = v0/Dθ quantifies the persistence length of the particle’s
self-propelled random motion. The flow shear exerts a torque
on the particle, 
α (x, y) = (α/2)∇ × u, proportional to the
local fluid vorticity. For simplicity, we adopt Faxén’s second
law, which, for an ideal no-stick spherical particle, yields α =
1 [24]. Contrary to earlier work [25–27], in the Lagrangian
formalism of LE (2), “trajectory overshooting” (i.e, particle
trajectories crossing flow streamlines) is caused by the drag
terms, v0(θ ) and F, and not by inertia.

In the high Péclet number regime addressed here, Pe ≡
DL/D0 � 1, particle diffusion is strongly influenced by ad-
vection. The flow parameters define convenient length and
time units, respectively, L and 
−1

L , with 
L = 2πU0/L;
hence, the advection diffusion constant DL = U0L/2π . There-
fore, the only tunable parameters left in our model are the
noise strengths, D0 (in units of DL), Dθ (in units of 
L), and
the drives g and v0 (in units of U0). The stochastic differential
Eqs. (2) were numerically integrated for a single particle by
means of a standard Milshtein scheme [28]. Therefore, the
results reported here apply to dilute mixtures of active JPs,
only, clustering and jamming effects being not accounted for
[15]. To ensure numerical stability, the numerical integrations
have been performed using a very short time step, 10−5–10−4.

Results. Numerical evidence of EB is presented in Fig. 1,
where the stationary probability density function (pdf),
p(x, y), of the advected JP is plotted for increasing values of
the self-propulsion speed. The apparent weight, g, pushes the
particle against the lower array edge, y = 0. Accordingly, for
v0 < U0, Figs. 1(a) and 1(b), the pdf’s tend to accumulate at
the bottom of the convection array. Circulation due to advec-
tion in the clockwise (right) and counterclockwise (left) rolls,
is clearly visible. With increasing v0, the particle circulation
is restricted to the center-bottom of the rolls. This mechanism
is further illustrated by the trajectory samples of Fig. 1(e).
A totally different scenario emerges for v0 � U0, Figs. 1(c)
and 1(f). The particle either crosses the convection rolls along
the lower array edge or gets trapped in symmetric pockets at
their center-tops. Most remarkably, the particle sojourns in the
vicinity of either edge for much longer time intervals than any
model timescale.

Finally, for v0 � U0 the JP switches array edge mostly
because of self-propulsion, that is, with time constant τθ ;
gravity and advection grow relatively negligible and p(x, y)
tends to accumulate equally along the array edges.

More insight can be gained by inspecting the longitudinal
pdf’s of Fig. 2, p(x), obtained by integrating p(x, y) over the
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FIG. 1. Spatial distributions, p(x, y), of a JP in the laminar flow
of Eq. (1) for g = 0.4 and different v0 [(a)–(d)]. The chart levels are
color coded on natural logarithmic scales as indicated. Trajectory
samples (2400 time-unit long, drawn in different colors) immediately
before (e) and after (f) the EB onset, are reported for a compari-
son. Other simulation parameters are D0 = Dθ = 0.01, U0 = 1, and
L = 2π .

vertical coordinate y. A passive JP, v0 = 0, is advected along
the streamlines of the incompressible flow. For g = 0, p(x, y)
and, therefore, p(x), are uniform. The external bias, g, breaks
the roll symmetry, until, for g > gc = 4

√
D0/DL, the parti-

cle circulation is suppressed [21]. The particle then diffuses
along the lower array edge, subjected to the effective wash-
board potential V0(x) = U0〈cos(2πy/L)〉 cos(2πx/L), with
〈cos(2πy/L)〉 ∼ 1 for g > gc [21]. As a result, the particle
tends to settle at the bottom of the ascending flows [x = π

in Fig. 2(a)] and p(x) is a periodic function with period L.
Let us consider now an active JP in the absence of gravity,
g = 0, Fig. 2(b). The system is up-down symmetric and p(x)
periodic with period L/2. Indeed, on increasing v0, the particle
stops circulating inside the rolls [23] and sojourns preferably,
with equal probability, at the bottom (top) of the ascending
(descending) flows; hence the p(x) peaks at x = 0 mod(L/2).
As anticipated above, for v0 � U0, the p(x) peak structure
vanishes. In the presence of gravity, the interplay of exter-
nal, g, and intrinsic drag, v0, impacts the p(x) profile in
an unexpected manner, as illustrated in Fig. 2(c): Increasing
v0 weakens the ascending flow peaks of p(x) [at x = π in
Fig. 2(a)]; side peaks emerge around x = 0 and 2π , which, for
v0 � U0, eventually overshoot the central peak. Under these
conditions, the advected JP rises to the upper array edge and
sits preferably at the top of the descending flows [29].

The occurrence of an EB effect is confirmed by the sim-
ulation data of Fig. 3. In Figs. 3(a) and 3(b) we plotted
respectively the ratios px(0)/px(π ) and py(π )/py(0) as func-
tions of the self-propulsion speed for g > 0. Here p(y) was
obtained by integrating p(x, y) over x. The ratios’ denomina-
tors are a measure of the particle accumulation respectively
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FIG. 2. Stationary longitudinal pdf’s, p(x), of a JP in the flow
of Eq. (1): (a) v0 = 0 and different g; (b) g = 0 and (c) g = 0.1
for different v0 (see legends). Other simulation parameters are D0 =
Dθ = 0.01; U0 = 1 and L = 2π .
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FIG. 3. Ratios of the longitudinal, p(x), and transverse distribu-
tions, p(y), at the boundaries of the convection rolls of Eq. (1) for
(a) and (b): g = 0.4 and different Dθ ; (c) and (d): Dθ = 0.01 and dif-
ferent v0, see legends. Here px (a) = p(x = a) and py(a) = p(y = a)
for a = 0 and π . Other simulation parameters are D0 = 0.01; U0 = 1
and L = 2π , with 
L = 1.
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FIG. 4. Subtracted autocorrelation function C(t ) = 〈y(t )y(0)〉 −
〈y〉2 for different v0. The fitted exponential decay times, τ (in units
of 
−1

L ), and 〈y〉 (in units of L/2) vs. v0/U0 are plotted, respectively,
in the top and bottom insets for different D0. The values of C(0)
are reported in the SM [29]. If not given in the legends, then the
simulation parameters are g = 0.4, D0 = Dθ = 0.01; U0 = 1 and
L = 2π , with DL = 
L = 1.

at the bottom of the ascending convective flows, px(π ), and
at the lower edge of the array, py(0). These are the regions
where, under the combined action of gravity and advection
[21], a passive JP would sojourn most of the time [Fig. 2(a)].
This picture, which also applies to active JPs with low self-
propulsion speeds, gets suddenly reversed for v0 � U0. As
seen in Fig. 1, the particle populates the upper edge, py(π ) >

py(0), in correspondence with the descending convective
flows, px(0) > px(π ), as if its apparent weight had changed
sign. This instance of negative response to an external bias is
clearly an effect of advection. It disappears when advection
grows negligible with respect to self-propulsion, v0 � U0 in
Figs. 1(a) and 1(b), and gravity, g � U0 in Figs. 1(c) and 1(d).
Accordingly, the ratios of Fig. 3 tend respectively to 1 and 0.

We already noticed that such a dynamical reversal seems
to be characterized by a surprisingly long time persistence
[Fig. 1(f)]. To investigate this issue, in Fig. 4 we plotted the
normalized stationary autocorrelation functions C(t )/C(0),
with C(t ) = 〈y(t )y(0)〉 − 〈y〉2, for increasing values of the
self-propulsion speed. The v0 dependence of 〈y〉 = 〈y(0)〉,
inset of Fig. 4(b), is a quantifier of the “negative gravity”
effect detected for v0 ∼ U0. All C(t ) curves decay exponen-
tially, limt→∞ C(t )/C(0) ∝ e−t/τ , with fitting time constant,
τ , reported in the inset of Fig. 4(a). For v0 < U0, Fig. 4(a), the
C(t ) curves keep memory of the convective circulation, in the
form of damped oscillations for 
Lt � 1 [30]; for v0 > U0,
Fig. 4(b), the exponential tails dominate. Remarkable is the
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dependence of τ on v0: τ is of the order of the rotational dif-
fusion time, τθ , for low and very high self-propulsion speeds
but goes through a huge maximum, orders of magnitude larger
than τθ , in coincidence with the “negative gravity” peaks of
Fig. 3. In conclusion, under suitable self-propulsion condi-
tions, heavy active JPs float at the top of the convection array.

Discussion. As reported so far, key EB ingredients are
self-propulsion, gravity, and advection. How this mechanism
takes place is illustrated by the trajectory samples in Figs. 1(e)
and 1(f) and the Supplemental Material (SM) [29]. For g > gc,
an active JP diffuses most of the time pressed against the lower
array edge, y = 0, and subjected to the (slowly) fluctuating
horizontal drag, v0 cos θ , i.e., pinned by the effective tilted
washboard potential Ve(x) = V0(x) − xv0 cos θ . On increasing
v0, with v0 < U0, the minima of Ve(x) shift right (left) from
the centers of ascending flows (x = π in Figs. 1 and 2). When
taking stochastic averages over times much larger than τθ ,
this causes a broadening of the p(x) peaks, see Fig. 2. On
a shorter timescale, due to the rotational fluctuations, ξθ (t ),
the JP occasionally propels itself away from the array bot-
tom, subjected to vertical advection, uy > 0, and shear torque,

α (x, y). This is most likely to happen at the turning points
of Ve(x), V0(x) ∓ xv0 (x = π for v0 → 0 and x = ±π/2 for
v0 → U0 in Fig. 1). However, as the Ve(x) turning points
shift sidewise, with increasing v0uy gets weaker and 
α (x, y)
stronger; accordingly, the trajectories in Fig. 1(e) soon bend
downwards and the particle circulation inside the rolls is sup-
pressed.

An abrupt change occurs when we set v0 slightly above U0.
Self-propulsion is now strong enough not only to horizontally
depin the particle from the bottom edge potential, V0(x), but
also to propel it to the top. However, quite surprisingly, the
apparent weight, g, does not suffice to make the particle return
back to the bottom. This happen because, as gravity drags
the particle downward across the ψ (x, y) streamlines [25], the
shear torque, 
α (x, y), turns the self-propulsion velocity, v0,
upwards again. This results in a sort of “sling mechanism” that
traps the particle in the upper regions of the convection rolls
[Figs. 1(c) and 1(f)].

Contrary to Refs. [26,27], the sling mechanism introduced
here is not due to inertia, but rather to the shear torque acting
on the active particle. Moreover, it explains the exceedingly
long persistence time of the JP at the top of the array, where
it appears to be steadily floating against gravity. Indeed, the
fitting time, τ [inset of Fig. 4(a)], quantifies the effectiveness
of such a dynamical trap. Under optimal conditions, it can
grow orders of magnitude larger than the largest timescale in
the model Eqs. (2) [i.e., τθ in the Pe � 1 regime considered

in the present report], very sensitive to the noise strength D0

[29]. In the inset of Fig. 4(a) we notice immediately that, on
decreasing D0, the τ peaks shoot up, while shifting toward
v0 = U0.

We now briefly discuss the robustness of EB versus all
model parameters (see the SM [29] for more details):

(i) Self-propulsion speed, v0. As anticipated above, for
v0 > U0 > g, self-propulsion dominates over both gravity and
advection, so that the upside-down symmetry of the array is
restored. Therefore, EB is restricted to values of v0 larger than
but relatively close to U0 [Figs. 3(a) and 3(b)].

(ii) Shear torque coefficient, α. So far we adopted Faxén’s
prescription, α = 1 [24,31], which means that inside the con-
vection rolls the drag vectors, v0 and u, tend to be antiparallel.
This was tacitly assumed in our discussion of trajectory local-
ization at the lower and upper edges, respectively, for v0 � U0

and v0 � U0, see Figs. 1(e) and 1(f). Lowering α, or worse
changing its sign, clearly suppresses the dynamical trapping
mechanism responsible for EB.

(iii) Apparent weight, g. EB is detectable for all g values
up to a certain maximum; it vanishes only when g prevails
over the combined action of self-propulsion and advection,
that is for g ∼ v0 at large v0 [Figs. 3(c) and 3(d)].

(iv) Rotational noise strength, Dθ . The noise ξθ (t ) makes
v0 change direction with time constant τθ = 1/Dθ . Fig-
ures 3(a) and 3(b) clearly show that the onset of EB is not
affected by Dθ , while the magnitude of the effect is. EB is
suppressed both for too-large Dθ , when the persistence length,
lθ , is much shorter than the roll size, L, and too small Dθ ,
when the timescale of thermal noise activated diffusion along
the array bottom [modeled by Ve(x)] is shorter than τθ . EB is
clearly detectable for a relatively wide range of intermediate
Dθ values, with Dθ < 
L.

Conclusions. We have shown that a heavy JP constrained to
a linear array of convection rolls can rise to the top due to the
combined action of gravity and advection, an effect we termed
“enhanced buoyancy.” The advective torque is responsible for
the underlying “sling mechanism,” which maintains the parti-
cle floating on the surface for exceedingly long time intervals.
The “sling mechanism” reported here is rather selective with
respect to the JP’s mass density and self-propulsion proper-
ties, which suggests potential applications at both microfluidic
and environmental scales.
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