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Enhanced motility in a binary mixture of active
nano/microswimmers

Debajyoti Debnath1, Pulak Kumar Ghosh1†, Vyacheslav R. Misko2,3†, Yunyun Li4, Fabio
Marchesoni4, Franco Nori2,6

It is often desirable to enhance the motility of active nano- or microscale swimmers such as,
e.g., self-propelled Janus particles as agents of chemical reactions or weak sperm cells for better
chances of successful fertilization. Here we tackle this problem based on the idea that motility
can be transferred from a more active guest species to a less active host species. We performed
numerical simulations of motility transfer in two typical cases, namely for interacting particles
with weak inertia effect, by analyzing their velocity distributions, and for interacting overdamped
particles, by studying their effusion rate. In both cases we detected motility transfer with a motility
enhancement of the host species of up to a factor of four. This technique of motility enhancement
can find applications in chemistry, biology and medicine.

1 Introduction
Self-propelling Janus particles (JPs), the most common class of
artificial microswimmer, have been the focus of widespread at-
tention over the last two decades due to their emerging appli-
cations in nano-technology and medical sciences1–7. Such parti-
cles are made by coating one hemisphere with catalytic or photo-
sensitive or magnetic materials1,2,4. Under appropriate condi-
tions, one hemisphere undergoes physical or chemical changes
with respect to the other, thus producing some local gradient in
the suspension fluid (self-phoresis). This strategy allows artificial
swimmers topropel themselves by harvesting energy from their
environment.

Thanks to their self-propulsion mechanism and in contrast to
their passive peer, artificial swimmers can diffuse orders of mag-
nitude faster8, are capable of performing autonomous motion
in periodic structures with broken spatial symmetry9–12 and ex-
hibit other peculiar transport properties13–17. Inspired by these
unique transport features, researchers aim to design customized
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Fig. 1 (Color online) Left: Schematic of a mixture of self-propelled par-
ticles in a rectangular box (xL × yL) with an opening of width ∆. Right:
Schematic of a two-dimensional self-propelled JP. Its dynamical, ~v, and
self-propulsion velocities,~v0, are depicted by distinct vectors.

JPs to be used, for instance, as “nano-robots” capable of per-
forming accurate mechanical operations18–23. Additional promis-
ing technological applications have also been proposed1,9,24,32,33.
Among the most appealing ideas being pursued, we mention here
the recent attempt to power passive particles through the self-
propulsion mechanism of intermediary active particles9,31–35, to
be used as controllable stirrers. In this paper, we numerically
study the velocity distribution and effusion of active particles in
a binary mixture, to understand how to enhance motility of less
active particles by adding more active particles. Mixtures of inter-
acting active particles (either of the same or different kinds) be-
have quite differently in many ways. For dilute solutions, particles
interact via long-range hydrodynamic flows generated by active
particles and the short-range interactions can be safely ignored6.
However, transport properties of dense mixtures are mostly dom-
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inated by the short-range interactions, which are responsible for
a variety of cluster and pattern formation processes reported in
the recent literature25–28.

Our simulation of binary active mixtures shows that adding a
fraction of active microswimmers, such as self-propelled JPs, to a
suspension of passive colloidal particles, results in a motility in-
crease of the latter species. However, adding a small fraction of
more active particles to a suspension of less active microswim-
mers, results in a non-trivial behavior, whereby the added species
appears to enhance the motility of the host species. Such a mech-
anism can be controlled by tuning the parameters ofthe guest
species, e.g., the intensity of light in the case of light-induced
JP using laser beam36, near-infrared light37 or visible light38,39.

Our findings can be potentially useful for various chemical, bi-
ological and medical applications. For example, this technique
could be used to increase the rate of in vitro fertilization by en-
hancing the motility of weak sperm cells. The same strategy can
be implemented in a chemical reactor to govern the reaction rate,
whereby one adds inert active particles to stir otherwise slowly
diffusing reactant molecules.

Furthermore, it should be noted that the motility transfer mech-
anism is associated with some correlated particle dynamics in the
mixture. The most sophisticated way to quantify motion correla-
tion of weak and strong active particles is to compute the mixture
cooperativity49. However, we focus here on the role of coopera-
tivity in controlling the velocity distribution and effusion rates of
weak JPs via motility transfer.

The outline of the paper is as follows. In Sec. 2 we present
a simple dynamical model for interacting self-propelling JPs in
two dimensions, which we implemented in our numerical simu-
lation code. In Sec. 3, we explore the velocity distributions of the
two mixture components. We consider first the case of a mixture
of two identical species (single species case), of noninteracting,
Sec. 3.1, or interacting particles, Sec. 3.2, and, then, the general
case of a binary mixture of two different species of interacting
active JPs. In Sec. 4, we report our data for the effusion rates of
the two JP species out of a narrow opening of the simulation box.
Finally, in Sec. 5 we draw a few concluding remarks.

2 Model
Let us consider a two-dimensional system consisting of two types
of JPs with different self-propulsion speeds in a thermal bath: Nw

with speed vw and Ns with speed vs. In the following, we will re-
fer the subscripts ’s’ and ’w’ to "strong" and "weak" mobility JPs,
respectively. All N = Nw+Ns particles are represented by interact-
ing disks of radius r0. For very short distances they interact with
each other via a truncated Lennard-Jones potential,

Vi j = 4ε

[(
σ

ri j

)12
−
(

σ

ri j

)6
]
, if ri j ≤ rm

= 0 otherwise, (1)

where ε is the interaction constant, rm locates the potential min-
imum, and σ = 2r0. Thus, particles interact only through steric
repulsion, i.e., no hydrodynamic interactions will be considered

here. To illustrate how the motility of the two species are inter-
related, we computed two quantifiers, the particles velocity dis-
tributions and their effusion rates. However, the former cannot
be computed for massless particles (that is in the absence of iner-
tia). Therefore, we assumed damped particle dynamics, although
in most practical situations inertia plays no significant role, due
to the comparatively very fast viscous relaxation of the suspen-
sion medium40. One can recover the standard massless, or over-
damped, limit by taking very large values of the damping constant
γ. This holds on all physical circumstances when the viscous re-
laxation time, 1/γ, is much shorter than any other relevant time
scale of the system dynamics42–44.

The dynamics of the particles in the xy-plane can be described
by the following set of Langevin equations,

mẍi = −γ[ẋi +∑
j

Fx
i j + v0 cosθi +

√
D0 ξ

x
i (t)], (2)

mÿi = −γ[ẏi +∑
j

Fy
i j + v0 sinθi +

√
D0 ξ

y
i (t)], (3)

θ̇i = ξ
θ
i . (4)

The i-th particle with instantaneous position (xi,yi) diffuses un-
der the combined action of self-propulsion and equilibrium ther-
mal fluctuations. Here, (ξ x

i ,ξ
y
i ) are the components of the ther-

mal fluctuations responsible for the particle translational diffu-
sion; they are modeled by Gaussian white noises with 〈ξ α

i (t)〉= 0

and 〈ξ α
i (t)ξ β

i (0)〉 = 2δi jδαβ δ (t), where α,β = x,y. The constant
D0 = kT/γ can be computed by measuring the translational diffu-
sion of a free JP in the absence of self-propulsion. Here γ plays
the role of an effective damping constant incorporating all envi-
ronmental interactions not explicitly accounted for in Eqs. (2)-
(3), like fluid viscosity, hydrodynamic drag, surface effects, etc.
The second term in the right hand side of the same equations rep-
resents the repulsive forces derived from the Lennard-Jones pair
potential of Eq. (1).

The propulsion velocities with modulus vw and vs are oriented
at an angle θi with respect to the laboratory x-axis. Due to the
particles rotational diffusion, the angles θi change randomly ac-
cording to the Wiener process of Eq.(4), where 〈ξ θ

i (t)〉 = 0 and
〈ξ θ

i (t)ξ θ
i (0)〉= 2Dθ δ (t). For a passive particle, the rotational dif-

fusion constant, Dθ , is typically related to the viscosity, ηv, and
temperature, T , of the suspension medium and to the geome-
try of the particle itself29. For spherical colloidal particles with
radius r0, the rotational diffusion constant can be expressed as
Dθ = kT/8πηvr3

0. However, for an active JP rotational diffusion
can also depend on the mechanisms fueling its self-propulsion.
For this reason, D0, v0, and Dθ are treated here as independent
model parameters4,5,30. Moreover, we assumed for simplicity
that the noise parameters D0 and Dθ are the same for both JP
species.

From the correlation function, 〈cosθi(t)cosθi(0)〉 =

〈sinθi(t)sinθi(0)〉 = (1/2)exp[−Dθ |t|], it is apparent that Dθ

coincides with the rotational relaxation rate of the self-
propulsion velocity ~v0(t). Moreover, we remind that, in the limit
of large γ, a non interacting JP of Eqs. (2)-(4) diffuses normally
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with translational constant, D, consisting of two distinct terms12,
a thermal and a self-propulsion one, namely D = D0 + v2

0/2Dθ .

We numerically integrated Eqs. (2)-(4) using a standard Mil-
stein algorithm to obtain the velocity distributions and effusion
rates of the both mixture species. The numerical integration was
performed using a very short time step, 10−6-10−7, to ensure nu-
merical stability. Computing the velocity distributions requires
no confinement scheme. However, to keep the mixtures densities
constant, we set up a simulation box of dimension xL×yL with pe-
riodic boundary conditions. Instead, to simulate the effusion rates
we assumed that the particles centers are confined inside the sim-
ulation box. The particles can then exit the box only through a
very small opening of width ∆+ 2r0, to model a pore of accessi-
ble width ∆ (see Fig. 1). The opening can be centered anywhere
along the box wall. Simulating a confined JP requires defining
its collisional dynamics at the boundaries. For the translational
velocity ~̇r, we imposed elastic reflection, whereas the rotational
coordinate, θ , was assumed not to change upon collision (slid-
ing boundary conditions9). As a consequence, an active JP tends
to slide along the walls until rotational fluctuations, ξθ , redirects
the particle inside the box. We computed the effusion rate, de-
fined as the number of particles exiting the box through the pore
per unit of time, for different particles swimming properties and
confinement geometries. At t = 0, the particles were uniformly
distributed in the box with random orientation. To keep the num-
ber density of both species constant, a particle of the same species
was re-injected with random position and orientation inside the
box, whenever one had escaped through the pore. The running
time was set to 104× τθ or 104, whichever was greater, so as to
neglect transient effects due to the initial conditions. The data
points reported in the figures shown here have been obtained by
ensemble averaging over a minimum of 1000 trajectories. For the
simulation parameters values adopted here, the time and length
scales are seconds and micrometers, respectively. The mass of a
slilica bead of radius 0.75 µm is taken as a unit of mass. Tak-
ing the density45 of SiO2 ≈ 2 g/cm−3, the unit of mass would be
about 4×10−12 g. In rescaled units, parameters used in our sim-
ulations are consistent with the corresponding values reported in
the experimental literature.

3 Velocity distribution
It is well known that the velocity of overdamped Brownian parti-
cles is an ill-defined quantity. Indeed, massless particles undergo
a displacement only during the action of external forces40, here
thermal fluctuations, collisions against other particles or the box
walls, and the effective self-propulsion forces41. Therefore, to ex-
tract a velocity distribution, one needs to simulate inertial effects.

By numerically integrating the coupled Eqs. (2)-(4), we sys-
tematically analyzed velocity distributions in systems of non-
interacting and interacting active JPs, as well as in binary mix-
tures of two species of JPs with different self-propulsion speeds.

3.1 Velocity distribution of non-interacting active particles

Let us begin with the case of a single species of non-interacting
particles self-propelling in a thermal bath of temperature T with

speed v0. Velocity distribution at different values of the rotational
diffusion constant, Dθ , are shown in Fig. 2. It is apparent that
inertial effects become important as the viscous relaxation time
constant, τγ = 1/γ, grows comparable or greater than the rota-
tional relaxation time τθ = 1/Dθ . When τγ � τθ (or γ � Dθ ), the
velocity distributions are mostly determined by thermal fluctua-
tions. In the opposite regime, τγ� τθ (or γ�Dθ ), self-propulsion
effects seem to prevail. Hence, the transition from self-propulsion
to inertia-dominated regime, clearly emerging from the velocity
distributions of Fig. 2

Recall that, as anticipated above, for asymptotically large ob-
servation times, a free JP behaves like a persistent Brownian par-
ticle with effective temperature47,48

Teff =
γ

k

(
D0 +

v2
0

2Dθ

)
, (5)

and persistence length lθ = v0τθ . For suitably large values of Dθ ,
the self-propulsion length is shorter than the free thermal length,√

mkT/γ, that is Teff ' T . As a consequence, one expects that
the particles velocities must be distributed according to the two-
dimensional Maxwellian function,

p(v) =
(mv

kT

)
exp
(
−mv2

2kT

)
. (6)

This assertion is corroborated by the numerical results of Fig.
2(a,b).

A different type of velocity distribution emerges when the self-
propulsion length of the active particle is set much larger than
its thermal length. The ensuing velocity distribution is governed
by the self-propulsion dynamics, its maximum being centered at
around v0. Such a distribution results from the combination of
the Maxwellian distribution of Eq. (6), and a Gaussian distribu-
tion with mean v0 and variance kT = γD0, both due to thermal
fluctuations. When lowering the temperature, T , the contribu-
tion of the Maxwellian part is quickly suppressed, which results
in the 2D Gaussian distribution

p(v) =
(

1√
2πγD0

)
exp
[
− (v− v0)

2

2γD0

]
. (7)

In the zero temperature limit, that is, when translational noise
is negligible with respect to rotational noise, this distribution
tends to a δ -function centered at v0, whereas the correspond-
ing velocity distributions in one direction become, p(vx,y) =

1/π

√
1− (vx,y/v0)2. These properties are confirmed by the sim-

ulation results displayed in Fig. 2(a) and supplementary FigSM1.

3.2 Velocity distribution in a system of interacting active
particles

Velocity distributions for different values of the packing fraction,
φ = 4r2

0Nt/(xL + 2r0)(yL + 2r0), are displayed in Fig. 2(b). These
distributions are centered at v0 for weakly interacting particles
and their center shifts towards lower values with increasing φ .
As apparent here, in dense systems, say with φ > 0.5, interacting
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Fig. 2 (Color online) (a) Velocity distribution of non-interacting active JPs for different Dθ (see legends). The inset illustrates the effect of thermal
noise for Dθ = 0.3. Symbols denote numerical simulation data; solid lines are the analytical estimates of Eq. (6), main panel, and Eq. (7), inset. The
parameters used are (unless reported otherwise in the legends): D0 = 0.03, v0 = 1, γ = 10, m = 1. (b)Velocity distribution of interacting self-propelled
particles for different the packing fraction, φ . (c)Velocity distribution of interacting self-propelled particles for different Dθ . In the main panels (b) and (c),
solid lines represent the least-square fitted 2D Gaussian distributions of Eq.(8). The parameters used are (unless reported otherwise in the legends)):
v0 = 1, τθ = 3.33,τγ = 0.1,r0 = 0.75, D0 = 0.01, ε = 1, φ = 0.7. Insets: (b) most probable velocity, vmp, versus packing fraction. Asymptotes, at φ → 0,
vmp→ v0 and for φ → 1, vmp→

√
B are depicted by horizontal arrows. (c) Variance of the distribution Eq.(8) as a function of Dθ for different values of v0

and D0. Dotted lines are analytic curves corresponding to the effective temperature of Eq.(̃5) (see text).

active JPs obey the Maxwellian velocity distribution,

p(v) =
v
B

exp
[
− v2

2B

]
, (8)

where the fitting parameter, B, depends on the bath temperature
T , the particles rotational diffusion Dθ and self-propulsion speed
v0, and the system packing fraction φ . For v0 → 0, the distribu-
tion is insensitive to the pair interaction, so that B = γD0, like in
gas kinetic theory. Therefore, the interaction dependence of the
velocity distribution is a non-equilibrium effect of self-propulsion.
To examine the impact of self-propulsion on the velocity distribu-
tion in a dense system, in Fig. 2(c) we plotted p(v) (main panel)
and distribution width B (inset) as a function of Dθ for different
values of the speed v0. One notices immediately that:
(i) For very slow rotational relaxation, the width of the distri-
bution is almost independent of Dθ . In this regime, the self-
propulsion length lθ is much larger than the average effective
inter-particle distance ls, so that the particles free path cannot
exceed ls. The fitting parameter seems to obey the empirical law,
B = γ

(
D0 +αv2), with α a function of the packing fraction. This

result can be explained by comparing B with kTeff in Eq. (5),
which we rewrite here as kTeff = γ(D0 + v2

0τθ/2). Upon increasing
φ , both the mean-free ballistic time τs = ls/v0 and the mean-free
diffusion time τD = l2

s /2D0 grow larger than the persistence time
τθ . As a consequence, τθ in the above expression for kTeff should
now be replaced by τ = min{τs,τD}. When the active suspension
is so dense that D0 > v0ls/2, then τ = τD, so that the fitting pa-
rameter B depends quadratically on v0 with α a function of φ .

On a closer look, one notices that α also weakly depends on
v0. This is because self-propulsion makes the colliding particles to
occasionally overlap, thus slightly lowering the effective φ value.
The pair penetration length and, hence, the effective particles
size, can be estimated by equating the self-propulsion force to
the inter-particle repulsion.

(ii) In the opposite limit, lθ < ls, the active particles manage
to change their direction before colliding with other particles,
so that their inter-collisional dynamics is dominated by the self-
propulsion dynamics. They behave as if they were floating in a
thermal bath with the effective temperature of Eq. (5). The en-
suing estimates of the distribution fitting parameter, B = γ(D0 +

v2τθ/2), drawn in the inset of Fig. 2(c) fairly agree with the nu-
merical data.

Figure 2(b,c) [and the supplementary figure FigSM2] also sug-
gests that, under the condition that v2

0 � B, the most probable
value of v, vmp, approaches v0. Based on our argument of (i)
for dense active suspensions, this requires v2

0� γD0/(1−α), with
α = l2

s γ/4D0. Of course, this estimate holds only for not too large
γ values, so that α < 1, i.e., for l2

s γ/4 < D0.
(iii) In the intermediate regime, the curves B versus Dθ exhibit a
maximum. Starting with ls � lθ , as one increases the rotational
diffusion constant, self-propulsion enters gradually into play by
enhancing B. On the other hand, self-propulsion effects disappear
in the diffusive regime, lθ � ls, where B decreases with increas-
ing Dθ . Not surprisingly, B appears to reach its maximum in the
intermediate regime for lθ of the order of the mean inter-particle
distance ls.

Finally, it should be noted that the fitting values of B have been
extracted by least-square fitting. The fidelity of such fittings has
been assessed by computing the mean square weighted devia-
tion46 χ2

v . It always returned values close to 1, except for large
v0. This deviation is noticeable for v0 = 4, where the rotational
diffusion is rather low (shown in supplementary FigSM2).

3.3 Velocity distribution in a binary mixture of active parti-
cles

Let us consider now a mixture of active particles of two types.
Let us denote the Nw particles with fixed self-propulsion speed
vw, as weakly active, and the remaining Ns particles with tunable
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Fig. 3 (Color online) (a) Comparison of velocity distribution p(v) of weak (empty symbols) and strong (filled symbols) active particles with varying
composition ηs of the binary mixture. Note that solid (hollow) circles represent velocity distribution of strong (weak) active particles for the interacting
single species case. Solid lines correspond to Eq. (8) where B is obtained from least square fittings. Inset plots depict the variation of distribution width
of weak JPs Bw as a function of the fraction of strong active particles, ηs = Ns/Nt . Thus, ηs = 0 means that all particles are weak and ηs = 1 that all
particles are strong. Dotted lines represent Eq.(9) with the relevant best-fit parameters αs and αw. (b) Distribution widths of weak, Bw (empty symbols),
and strong active JPs, Bs (filled symbols), respectively versus ηs and ηw for different vw. (c) kTeff versus ηs for different vw: numerical data (symbols)
are compared with the analytical estimates of Eq. (10) (dotted lines). The remaining model parameters are (unless reported otherwise in the legends):
vs = 1, Dθ = 0.3,τγ = 0.1,r0 = 0.75, D0 = 0.01, ε = 1, φ = 0.61.

self-propulsion velocity vs, as strongly active. A comparison of
velocity distributions of the weak (hollow symbols) and strong
(solid symbols) JPs in a binary mixture are shown in Fig. 3(a)
for different fractions ηs = Ns/N of the strong active particles.
Plots here correspond to situations where the system packing frac-
tion φ is quite large and the velocity distributions p(v) are of the
Maxwellian type, Eq. (8). As to be expected, the plots in Fig.
3(a) show that weak active particles distributions grow wider, and
their maxima shift to higher velocities, with increasing ηs. On the
other hand, the distributions of the stronger component shrink
and their maxima shift toward lower velocity values in compar-
ison with the single component system. This result suggests an
effective motility transfer from more active to less active particles.
To better characterize the underlying mechanism, we estimated
the distribution half-widths B for different mixture compositions.
The ratio Bw(ηs)/Bw(0) in the inset of Fig. 3(a) grows linearly
with ηs, its slope depending on the thermal energy, kT = γD0,
and self-propulsion speed of both JP species. This behavior can
be explained as follows. Since the system is dense and ls � lθ ,
self-propulsion only contributes to the effective thermal motion
of the system, see item (i) of Sec. 3.2. Adding up the average
kinetic energy contribution from both species and equating the
result to the corresponding prediction based on Eq.(8), one can
arrive at

Bi(η j)

Bi(0)
= 1+

(
α jv2

j −αiv2
i

γD0 +αiv2
i

)
η j. (9)

Where, {i, j}= {s,w} with i 6= j. The above estimate rests on the
assumption that the self-propulsion contributions to the kinetic
energy in this regime are directly proportional to v2

i with a pro-
portionality constant αi. For ls� lθ , both αi are insensitive to the
rotational diffusion constant Dθ , and weakly depend on vi. On
the contrary, for ls� lθ , αw = αs = γ/2Dθ .

To better interpret the mechanism of host-guest mobility trans-
fer, in Fig. 3(b) we compare the widths Bs and Bw of the relevant
velocity distributions. We simplify our analysis by focusing on
the parameter regimes where both mixture components exhibit
a Maxwellian velocity distribution. Figure 3(b) shows that Bw

linearly grows as the fraction, ηs, of strong active particles in-
creases. By contrast, Bs decreases with increasing ηw. Equation
(9) is useful to explain the linear dependence of both Bs and Bw

on ηs. It is apparent from both numerical simulations and Eq. (9)
that in a binary mixture the velocity distribution of the weak host
depends not as much on its own self-propulsion parameters as
on the presence of the strong guest. Under the Maxwellian condi-
tions assumed here, v2

w� v2
s and γD0� τθ v2

w, one can easily relate
the effective temperature of the binary mixture to the distribution
widths Bs,w as follows,

kTeff = (1−ηs)Bw(ηs)+ηBs(ηs). (10)

This estimate for Teff is in good agreement with the numerical
results shown in Fig. 3(c). In view of the linear η dependence
of B, one would then expect Teff to be a nonlinear function of η .
However, by inspecting Eqs.(9)-(10) one easily concludes that,
for the simulation parameters adopted in Fig. 3(c), nonlinear cor-
rections are negligible. As a result, the effective temperature of
the binary mixture grows (almost) linearly with the mole fraction
of the guest particles. Moreover, Eq. (9) also hints at how the
self-propulsion properties of the host and guest particles impact
Teff.

One often needs to know the fraction of weakly active particles
whose speed exceeds a specified value, say vc. One can calcu-
late this quantity, χ(ηs,vc), directly from the velocity distribution
function of the less active JPs, that is

χ(ηs,vc) =
∫

∞

vc

p(v,ηs) dv. (11)
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Thus, χ(ηs,vc) is the fraction of weakly active particles having an
instantaneous velocity greater than the cut-off velocity vc in the
binary mixture with Nw weak JPs. To clarify the role of vc, we
consider the kinetic model of reaction rate theory. As the reac-
tant particles collide with each other, only a certain fraction of
such collisions leads to the formation of the desired product. To
this purpose it is necessary that the energy of the reactants at
the moment of the impact exceeds a threshold value, Ea, also
known as reaction activation energy, which corresponds the the
cut-off activation speed, vc =

√
2mEa. Therefore, coming back to

the problem at hand, it would be desirable to know how the ratio
χ(ηs,vc)/χ(0,vc) changes by adding a certain amount of strongly
active particles. For the velocity distributions of Eq. (8), such ratio
reads

χ(ηs,vc)

χ(0,vc)
= exp

[
−v2

c
2

(
1

B(ηs)
− 1

B(0)

)]
. (12)

This quantity, namely the ratio of the number of weakly active JPs
with speed larger than vc to the same number, but in the absence
of strongly active JPs, is plotted in Fig. 4 for different values of vc.
Our simulations show that χ(ηs,vc)/χ(0,vc) is a monotonically
growing function of ηs; its growth rate increases with increasing
vc. These observations support the strategy discussed in Sec. 1
aiming at enhancing the motility of weakly active, or even pas-
sive particles, by adding to the system a small fraction of strongly
active particles as autonomous stirrers.

4 Effusion
In the previous section, we showed how adding a relatively
small fraction of highly motile microswimmers to a suspension
of less motile microswimmers can considerably enhance the over-
all motility of the mixture. This effect was demonstrated in the
presence of inertia. We consider now the limiting case of over-
damped, or massless, active particles. This limit corresponds to
low Reynolds numbers, a hydrodynamic regime that applies to
most microswimmers investigated in the literature, both biolog-
ical and artificial. This raises a problem, because, as mentioned
above, the velocity distribution of massless particles is mathemat-
ically ill-defined. To avoid this difficulty, in our simulations we
computed an alternative motility quantifier for the overdamped
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Fig. 5 (Color online) (a) Effusion rate Em(0) of non-interacting JPs with
ε = 0, as a function of the self-propulsion velocity v0 for different rota-
tional diffusion coefficient Dθ . Dotted lines are the predictions based on
Eq. (16). Horizontal arrows indicate the corresponding rate upper bound,
Eq. (17), for large τθ = 1/Dθ . Inset: the effusion rate ratio Em(ε)/Em(0)
for ε = 0.1 and different Dθ (see leends). (b) Effusion rate Em(ε) of in-
teracing self-propelled particles versus v0 for ε = 1 and different packing
fraction φ . Inset: Em(ε)/Em(0) versus v0 for the same set of parameter as
the main panel. Other simulation parameters for main panels and inset:
xL = yL = 10, ∆ = 0.5,r0 = 0.5, D0 = 0.03, Nm = 80.

limit, namely the effusion rate of the active JPs through a narrow
pore of the simulation box. The corresponding Langevin equa-
tions in the highly damped situation are obtained by ignoring in-
ertia in Eqs. (2)-(4),

ẋi = ∑
j

Fx
i j + v0 cosθi +

√
D0 ξ

x
i (t), (13)

ẏi = ∑
j

Fy
i j + v0 sinθi +

√
D0 ξ

y
i (t), (14)

θ̇i =
√

Dθ ξ
θ
i . (15)

The effusion rate has been studied in depth to characterize classi-
cal transport in constrained geometries50. We define the effusion
rate of the strong (s) [weak (w)] JPs, Es (Ew), as the number of s
(w) particles exiting the simulation box per unit time. In the case
of a single-component system, we denote the effusion rate by Em.
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(bottom-right)]. Filled and empty circles represent strong and weak JPs,
respectively. Other simulation parameters for main panels and insets:
vw = 1, ε = 1′ xL = yL = 10, ∆ = 0.5,r0 = 0.5, D0 = 0.03, Nm = 80

Let us consider the effusion rate Em(0) of a single species of
non-interacting JPs with ε = 0. In Fig. 5(a) we plotted a few
curves Em(0) versus v0 for different values of Dθ . For v0 → 0,
the effusion is controlled by thermal motion and, as expected, is
insensitive to v0. Effects due to self-propulsion become apprecia-
ble only for values of v0 larger than the particles thermal speed√

2D0Dθ . Beyond this critical value, the effusion rate grows first
quadratically with v0 and then saturates toward an asymptotic
value. The rising branches occur for lθ � xL,yL. Indeed, for
very short rotational relaxation times τθ , when it can safely be
assumed that particles diffuse in a thermal bath with effective
constant Deff, the effusion rate through a narrow pore of effective
width ∆� xL,yL, reads50–52

Ei = πρiDeff

[
ln
(

xL + yL

∆

)]−1
. (16)

Here, the suffix i refers to either s or w, ρi denotes the number
density of the mixture component i, and Deff is now D0 + v2

0/2Dθ

– see Eq.(5). This estimate for Ei(0) agrees fairly closely with
the simulation results reported in Fig. 5(a). In the opposite ro-
tational regime, when lθ � xL,yL, the slow direction changes of
the self-propulsion velocity tends to suppress the particles effu-
sion through the pore. Assuming that τθ is much larger than any
other system time scale, the effusion rate can be approximated
by51

Ei(0)≈ xLyLρiDθ/π. (17)

This asymptotic estimate has been marked in Fig. 5(a) by hori-
zontal arrows.

The effusion rate of interacting self-propelling particles with
ε > 0 is plotted in the inset of Fig. 5(a). This figure shows the v0-
dependence of the effusion rate relative to the corresponding rate
in the absence of interaction, Em(ε)/Em(0), for several values of
Dθ . The system we simulated here was quite dense (φ = 0.66),
so that the self-propulsion mechanism becomes strongly con-
strained, being ls � lθ . Like in non-interacting systems, the ef-
fusion rate is insensitive to self-propulsion with low v0. More
remarkably, with increasing v0 the relative effusion decreases.

We attributed this result to the jamming of the interacting par-
ticles caused by self-propulsion in the vicinity of the box walls.
Snapshots of the mixture configurations [see inset of Fig 6(b) and
supplementary FigSM3] corroborate this assertion. The jamming
effect becomes noticeable as soon as the self-propulsion length be-
comes larger than the confining box. Therefore, the appearance
of such an effect and minima of Em(ε)/Em(0) versus v0 are in-
versely related to the rotational diffusion [see inset of Fig. 5(a)].
By the same token, one expects that both the decaying and raising
branches of the curves Em(ε)/Em(0) versus v0 are quite insensitive
to the packing fraction, φ , in agreement with the data plotted in
the inset of Fig. 5(b). In the very strong self-propulsion regime,
both Em(ε) and Em(0) tend to saturate [see Fig. 5(b)]. However,
Em(ε) saturates at larger v0 values than in the non-interacting
case. A plausible explanation is suggested by a comparison of
the mixture snapshots. The particles far away from the walls are
more mobile and contribute more to the effusion rate; they are
not jammed against the walls and “see” a larger opening-width
to compartment-size ratio, ∆/yL. In contrast, particles jammed
against the walls tend to clog the box opening. However, the
fraction of the more mobile particles drops fast with increasing v0,
thus leading to plateaus in the effusion rate in the limit v0→ ∞.

Figure 5(b) shows that the clogging mechanism works even at
low packing fraction, though its impact on effusion is reduced.
More remarkably, the excluded volume effect become apparent
for v0 → 0: the interacting particles become more effusive than
the non-interacting ones. In a dilute solution, this effect per-
sists until the self-propulsion length grows larger than the av-
erage inter-particle spacing. This explains why, in the presence
of strong self-propulsion, the computed effusion ratios still grow
with v0, though quite slowly.

Figure 6(a) illustrates the dependence of the effusion rates of
the two active mixture components on their self-propulsion pa-
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rameters, v0 and Dθ . The mixture is of 1:1 molar ratio of strongly
(s) and weakly (w) active particles. We kept the self-propulsion
speed vw fixed and varied vs from values lower to values higher
than vw. First of all, we notice that the effusion rates of both
JP species are almost insensitive to the rotational diffusion for
vs→ 0, while develop a strong dependence on Dθ in the opposite
limit, vs → ∞. For vs > 10vw, at Dθ = 1 the effusion rate is about
one order of magnitude larger than at Dθ = 0.1.

In Fig. 6(b), we examine the consequences of gradually increas-
ing the fraction of guest particles for different values of their self-
propulsion speed, vs. While all effusion plots exhibit the same
general behavior as in Fig 6(a), a few additional features are re-
markable:
(i) The effusion rate of the strongly active JPs keeps increasing,
but more slowly than Em(0) in Fig. 5(a), due to their interaction
with the less active JPs. In such a limit, the most active particles
tend to push the less active ones against the box walls. Moreover,
like in one component systems, clogging effects have great impact
on the effusion of both the weak and strong active components.
(ii) On the contrary, the effusion rate of the weak JPs remains
unchanged for vs up to vw; upon further increasing vs, it goes
through a maximum in agreement with the mechanism of effec-
tive motility transfer. Again, for very large self-propulsion, vs �
xLDθ ,xLDθ , strongly active JPs jam against the container walls,
thus pushing the weaker JPs inside [see snapshots of Fig. 6(b)
and supplementary FigSM4]. Accordingly, the weaker JPs have a
small chance to escape through the opening so that effusion be-
comes drastically suppressed. Moreover, no decaying branch of
Ew vs. vs is detectable at low ηs. This happens because very few
strong JPs cannot possibly confine all weak particles in the box
interior.

In conclusion, we stress that adding a small amount of strongly
active JPs does suffice to enhance the effusion of sluggish active
JPs, but an excess of them can produce the opposite effect! Re-
call that, as illustrated by our simulation snapshots, the two com-
ponents of an active binary mixture can separate into two dis-
tinct phases, when the self-propulsion length of one component is
much larger than the size of the container and the other one much
shorter, that is, for vs/Dθ � xL,yL� vw/Dθ . However, phase seg-
regation should be avoided for better motility transfer.

As shown in figure 5(b), there is a window of the tunable vs,
where the effusion rate of the w particles is enhanced by 2 to 7
times, depending on their rotational relaxation time and the com-
position of the binary mixture. Also, the span of this window is
sensitive to the persistence length of self-propelled motion. This
striking result confirms that, even in the absence of inertia, the
motility of the more active microswimmers can be effectively trans-
ferred to the less active microswimmers.

In our numerical analysis we assumed the pore to be centered
in one side of a square-shaped simulation box. However, slid-
ing boundary conditions as the JPs move against the cavity walls,
can affect their average effusion rate. Our simulation shows that
this may become an issue only at zero temperature. As a matter
of fact, thermal fluctuations assist the escape mechanism by en-
hancing particle diffusion along the boundaries, thus suppressing
possible effects related to the cavity geometry and the actual pore

location. To verify this point, we simulated the effusion rate (not
shown) for a modified box geometry, whereby the escape pore
was moved toward one corner; for the simulation parameters of
Fig. 5 we detected no appreciable variations of the relevant effu-
sion rates.

5 Conclusions
We have analyzed the effects of active nano/micromotors with
tunable high motility in a suspension of particles whose motil-
ity cannot be directly controlled. We showed that by injecting a
small fraction of more active Janus particles one can substantially
enhance the motility of other less active species. Such a motility
enhancement was demonstrated for two typical cases: particles
with weak inertia, by studying the velocity distributions for both
species, and for overdamped particles, by comparing their effu-
sion rates.

Our numerical study proves that in dense binary mixtures of
active particles, the width of the velocity distribution of the less
active particles linearly grows with the fraction of more active
particles. Thus, the number of particles moving with larger veloc-
ity is considerably enhanced. Moreover, for an appropriate choice
of the mixture parameters, in the overdamped regime the motil-
ity transfer from the more active to the less active subsystem can
raise the effusion rate of the latter by 2 to 7 times.

Such a technique of motility control can be implemented in
a large variety of biological and medical situations, where one
wishes to enhance the motility of insufficiently active nano- or
micro-particles. For example, in the case of weakly motile sperm
cells, our proposal has advantages over other similar proposals
(e.g., using self-propelled metallic rotors trapping sperm cells53),
whereby it is substantially less damaging to living swimmers and
much easier to implement, as it does not require the fast guest
swimmers to localize and trap individual host particles one by
one. Another suggestive application of this method of motility
transfer is to speed up a chemical reaction involving slowly dif-
fusing nano-particles, by adding a small amount of more active
neutral particles as stirrers54.
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