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3School of Pharmacy, Università di Camerino, 62032 Camerino (MC), Italy
4INFN, Sezione di Perugia, 06123 Perugia (PG), Italy

In a recent experiment1,2, a pairing gap was detected in a two-dimensional (2D) Fermi gas with
attractive interaction at temperatures where superfluidity does not occur. The question remains
open whether this gap is a pseudo-gap phenomenon or is due to a molecular state. In this paper,
by using a t-matrix approach we reproduce quite well the experimental data for a 2D Fermi gas,
and set the boundary between the pseudo-gap and molecular regimes. We also show that pseudo-
gap phenomena occurring in 2D and 3D can be related through a variable spanning the BCS-BEC
crossover in a universal way.

PACS numbers: 05.30.Fk, 03.75.Hh, 67.85.-d, 74.40.-n

I. INTRODUCTION

It is commonly believed that the normal phase of high-
temperature (cuprate) superconductors is more intrigu-
ing than the superfluid phase below the critical tempera-
ture Tc, owing especially to the appearance of a pseudo-

gap from the observation of a suppression of low-energy
weight in the single-particle spectral function above Tc

3,4.
Two alternative mechanisms have been proposed in this
respect, namely, the presence of a competing order which
affects directly the single-particle properties, and the oc-
currence of precursor pairing in the normal phase through
strong pairing fluctuations which are amplified by the
(quasi) 2D nature of these systems and affect the single-
particle properties only indirectly through two-particle
effects5–9.

Since it is rather difficult to isolate these two mech-
anisms in a solid-state material, experiments have re-
cently been performed with ultra-cold Fermi gases us-
ing momentum-resolved radio-frequency spectroscopy (in
analogy to angle-resolved photoemission spectroscopy in
solid state), originally in 3D10,11 and more recently in
2D1,2. This is because in ultra-cold gases one can tune
the inter-particle attractive interaction in a controlled
way, from weak coupling with largely overlapping Cooper
pairs to strong coupling where composite bosons form,
amplifying in this way the occurrence of pairing fluctu-
ations and leaving aside other forms of long-range order
not connected with pairing.

Above Tc, pairing correlations between opposite-spin
fermions still extend over a finite distance. While 3D
and 2D are not qualitatively different in this respect, the
temperature window above Tc in which precursor pairing
occurs is expected to be wider in 2D than in 3D, making
2D systems best suited for the study of pseudo-gap phe-
nomena in the normal phase. The problem is, however,
that in 2D a two-body bound state occurs for any value
of the inter-particle coupling, so that one may not a pri-

ori be confident that the measured pairing gap is truly a
pseudo-gap due to collective (many-body) effects like the
pairing gap below Tc, or is rather a molecular binding

energy. We shall address this crucial issue by performing
a theoretical study of the dispersion relation associated
with the single-particle spectral function for various cou-
plings and temperatures, determining in this way the fate
of the underlying Fermi surface whose presence guaran-
tees that the pairing gap is a truly many-body effect.
This study carries along another important issue,

about the use of a more fundamental variable than the
coupling to follow the evolution from the weak (BCS) to
the strong (BEC) coupling limits. This issue was raised in
Ref. 12 to connect the physics of the BCS-BEC crossover
with high-temperature superconductors. Also for ultra-
cold gases, however, it would be preferable to deal with
3D and 2D systems on a comparable footing through the
use of a unifying variable. It will turn out that in terms
of this variable (identified as the ratio of the pair size
to the average inter-particle distance) the collapse of the
Fermi surface occurs simultaneously in 3D and 2D, thus
establishing a coherent framework for precursor-pairing
phenomena in different dimensions.
Recent theoretical approaches that have addressed the

experiment of Ref. 1 include the work of: (a) Ref. 13
which used a non-self-consistent t-matrix approach lim-
ited to a homogeneous system and where the energy
distribution curves were not wave-vector resolved; (b)
Ref. 14 which considered the trapped case as well,
where quantitative comparison with the experimental
data was rather limited; (c) Refs. 15 and 16 which used a
high-temperature expansion valid for temperatures much
larger than the Fermi temperature and limited to a homo-
geneous system, where no quantitative comparison with
the experimental data was attempted; (d) Ref. 17 which
used a self-consistent t-matrix approach limited to a ho-
mogeneous system and where again no quantitative com-
parison with the experimental data was attempted.
The key new physical results that we have obtained

can be summarized as follows:
(i) We present a direct comparison between our calcula-
tions and the experimental spectra of Ref. 1 for a trapped
Fermi system. The favorable agreement we obtain in this
way gives us confidence that the t-matrix approach we
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shall adopt throughout is an appropriate theoretical tool
(at least) in the temperature range where we are going to
use it. This is intermediate between the low-temperature
region when one approaches the critical temperature18

from above and the high-temperature region where the
t-matrix approach reduces to the virial expansion19.
(ii) We discuss in detail the distinction between the
pseudo-gap and molecular regimes for the 2D Fermi sys-
tem. Adopting a suitable criterion for this distinction
is particularly relevant in 2D where a two-body bound
state is present for all couplings throughout the BCS-
BEC crossover. By applying this criterion to the results
of the data of Ref. 1, we can assess that this experiment
was indeed able to explore also the pseudo-gap regime of
most physical interest.
(iii) We exploit the common features of the above crite-
rion between 2D and 3D, to connect the evolution from
the BCS to the BEC limit which occurs in 2D with that
in 3D (previously discussed in Ref. 20). This connection
requires the use of a common variable that does not de-
pend on the differences between the two-body scattering
in 2D and 3D. To this end, we identify the appropriate
variable as the ratio between the pair size and the aver-
age inter-particle distance. Remarkably, we find that the
boundary between the pseudo-gap and molecular regimes
in 2D and 3D occurs at a common value of this variable.
(iv) In terms of this new variable to scan the BCS-BEC
crossover, we are able to assess in a quantitative way that
the pseudo-gap regime extends to much higher tempera-
tures in 2D than in 3D, more than doubling the value in
2D with respect to 3D in the crossover range of interest.
The paper is organized as follows. Section II discusses

the t-matrix approach that we have used in 2D and recalls
features of the temperature and coupling dependence of
the chemical potential. Section III provides a detailed
comparison with the experimental data of Ref. 1 for a
2D trapped Fermi gas in the relevant temperature range.
Section IV dwells on the problem of the 2D homogeneous
Fermi gas and discusses the issue of the boundary be-
tween the pseudo-gap and molecular regimes, and iden-
tifies a unifying variable to span the BCS-BEC crossover
in 2D and 3D. Section V gives our conclusions. The Ap-
pendix focuses on the BEC limit in 2D.

II. THE t-MATRIX APPROACH IN 2D

A. General formalism

Our calculations rest on a non-self-consistent t-matrix
approach, which was extensively used in 3D and is ex-
tended here to 2D. For an inter-particle interaction of
the contact type, the pair propagator is given by

Γ0(q,Ων) = − 1
m
2π η +Rpp(q,Ων)

. (1)

Here, q is a wave vector, Ων = 2πkBTν (ν integer) a
bosonic Matsubara frequency at temperature T (kB be-
ing the Boltzmann constant), and η = − ln(kF a2D) is the

coupling parameter defined in terms of the Fermi wave
vector kF (which is related to the density n by kF =√
2πn) and the 2D scattering length a2D (which is iden-

tified by the two-body binding energy ε0 = 1/(ma22D),
m being the particle mass). In the above expression, Rpp

is the regularized particle-particle bubble

Rpp(q,Ων) = kBT
∑

n

∫

dk

(2π)2
G0(k+ q, ωn + Ων)G0(k, ωn)

−

∫

dk

(2π)2
1

k2

m
+ ε0

−
m

2π
η (2)

=

∫

dk

(2π)2

{

[1− fF (ξ(k))− fF (ξ(k+ q))]

ξ(k) + ξ(k+ q)− iΩν

−
m

k2
Θ(|k| − kF )

}

where G0(k, ωn) = [iωn − ξ(k)]
−1

is the bare single-
particle Green’s function with fermionic Matsubara fre-

quency ωn = (2n + 1)πkBT (n integer), ξ(k) = k
2

2m − µ
(µ being the fermionic chemical potential), fF (ǫ) =
(exp (ǫ/kBT ) + 1)−1 the Fermi function, and Θ(x) is the
Heaviside unit step function of argument x. [Through-
out, we consider a spin-balanced system (and set ~ = 1).]
Within the non-self-consistent t-matrix approach21,

the pair propagator (1) enters the fermionic single-
particle self-energy in the form

Σ(k, ωn)=−
∫

dq

(2π)2
kBT

∑

ν

Γ0(q,Ων)G0(q−k,Ων−ωn) .

(3)
The self-energy (3), in turn, enters the dressed Green’s

function G(k, ωn) =
[

G0(k, ωn)
−1 − Σ(k, ωn)

]

−1
. With

the analytic continuation iωn → ω + i0+ to real fre-
quency ω, one finally ends up with the retarded Green’s
function GR(k, ω) from which the desired spectral func-
tion A(k, ω) = − 1

π Im
{

GR(k, ω)
}

can be calculated22.
Knowledge of A(k, ω), in turn, yields the density of states

N(ω) = 2

∫

dk

(2π)2
A(k, ω) (4)

where the factor of 2 accounts for the spin degeneracy,
as well as the equation for the density

n =

∫ +∞

−∞

dωN(ω) fF (ω) (5)

which determines the chemical potential in terms of n.
The above definition of the coupling parameter η in 2D

complies with the requirement of ranging from −∞ in ex-
treme weak coupling to +∞ in extreme strong coupling,
in analogy with the coupling parameter (kFa3D)−1 in 3D
where a3D is the scattering length in 3D. With this choice
of η, the comparison between the 2D and 3D pseudo-gap
physics appears to be quite natural. Other works, which
did not address this comparison, utilized a different sign
choice for the coupling parameter in 2D13,15,23.
The non-self-consistent t-matrix approach offers some

advantages over the self-consistent one which has been
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used in the literature also in 2D: (i) Analytic continu-
ation to the real frequency ω is exact within the non-
self-consistent approach and does not have to rely on nu-
merical procedures; (ii) In 2D the self-consistent t-matrix
approach makes the unphysical prediction that compos-
ite bosons remain interacting even when extremely dilute.
The non-self-consistent t-matrix approach does not suffer
from this drawback and can thus better describe the BEC
limit of the crossover. The comparison between these
two t-matrix approaches in the BEC limit is discussed
in the Appendix; (iii) From the computational side, the
non-self-consistent t-matrix approach proves far less de-
manding than the self-consistent one. Accordingly, it is
more manageable to apply when an averaging over the
trap is required.
The lack of self-consistency, on the other hand, yields

an unphysical behavior of the chemical potential when
the T = 0 limit is approached, as it was originally dis-
cussed in Ref. 24 and is recalled below in subsection II-B.
To the extent that we are not interested in reaching such
low-temperature region, the non-self-consistent t-matrix
approach that we adopt here appears to be ideally suited
to address the problem of the spectral function of a 2D
Fermi gas with a strong pairing interaction.

B. Chemical potential vs temperature for the

homogeneous system

Figure 1 shows the chemical potential vs tempera-
ture as obtained within the present non-self-consistent
t-matrix approach. For each coupling considered in
Fig. 1, the chemical potential presents a non-monotonic
behavior reaching a maximum at an intermediate tem-
perature. This behavior was already discussed some
time ago by Schmitt-Rink, Varma, and Ruckenstein24

(within a Nozieres-Schmitt-Rink approach25, which cor-
responds to a simplified variant of the present formal-
ism where the Dyson’s equation for the single-particle
Green’s function is expanded to first order in the self-
energy). The origin of this behavior can be traced in
the infrared divergence of the single-particle self-energy
(3) when the Thouless’ criterion curve (defined by the
equation Γ−1

0 (q = 0,Ων = 0) = 0) is approached.
More specifically, the equation Γ−1

0 (0, 0) = 0 defines,
for each value of the coupling parameter η, a curve µc(T )
(dotted lines in Fig. 1) that cannot be crossed by the
curve µ(T ) because along it the self-energy would be
infinite. The solution of the particle number equation
makes then the chemical potential to osculate the curve
µc(T ) when the temperature is lowered, and eventually
to approach the limiting value −ε0/2 when T → 0. This
behavior, albeit correct in the strong-coupling region, is
unphysical for weak and intermediate couplings. Em-
pirically, one can identify the temperature where µ(T )
reaches its maximum as the temperature below which the
proximity to this unphysical divergence begins to matter.
We shall find below (see, in particular, Figs. 3 and

4) that the temperature range which is relevant to the
pairing effects we are after extends well above this maxi-
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FIG. 1. (Color online) Chemical potential µ (dots and in-
terpolating lines) as a function of temperature T for the 2D
homogeneous Fermi gas, for different values of the coupling
parameter η. Dotted lines correspond to the Thouless’ crite-
rion Γ0(0, 0)

−1 = 0 calculated at the given value of η. Here,
εF = k2

F/(2m) is the Fermi energy of the homogeneous system
and TF = εF /kB the corresponding Fermi temperature.

mum at any given coupling. Yet, to analyze in detail the
single-particle spectral properties it is desirable to work
at the lowest possible temperature, so as to reduce the
importance of thermal broadening relative to interaction
effects. As a consequence, we shall find it convenient to
conduct this analysis at temperatures that correspond to
(about) the maximum of µ(T ) in Fig. 1.

III. COMPARISON WITH THE EXPERI-

MENTAL DATA FOR THE TRAPPED SYSTEM

A. Energy distribution curves

In the absence of final-state effects (as appropriate to
the 40K atoms utilized in the experiment of Ref. 1), the
radio-frequency spectral intensity is given by:

RF(ω̃) =
2

N

∫

dr

∫

dk

(2π)2
A(k, ξ(k; r)− ω̃)fF (ξ(k; r)− ω̃).

(6)

Here, ω̃ = ωrf − ωa is the detuning frequency defined as
the difference between the radio-frequency ωrf and the
atomic transition frequency ωa for free atoms, r the posi-
tion in the 2D trap, and ξ(k; r) = k2/(2m)− µ(r) where
µ(r) = µ−V (r) with the potential V (r) = 1

2mω0r
2 trap-

ping N atoms. The pre-factor in Eq. (6) is chosen to
make the total area of the radio-frequency spectral in-

tensity equal unity, namely,
∫ +∞

−∞
dω̃RF(ω̃) = 1. The

spectral function A(k, ξ(k; r) − ω̃) is calculated at posi-
tion r in the trap within a local-density approximation.

The radio-frequency spectral intensity can be analyzed
into its individual k-components by exchanging the order
of the two integrals in Eq. (6). One may thus define for
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each k-component:

RF(k, ω̃) =
2

N

∫

drA(k, ξ(k; r) − ω̃)fF (ξ(k; r) − ω̃) (7)

such that RF(ω̃) =
∫

dk
(2π)2RF(k, ω̃). By expressing en-

ergies in units of the trap Fermi energy EF = ω0N
1/2,

wave vectors in units of the Fermi wave vector kF =
(2mEF )

1/2, and radial positions in units of the Thomas-

Fermi radius RF =
√

2EF /(mω2
0), one then gets the di-

mensionless expression:

RF(k, ω̃) = 8

∫

drA(k, ξ(k; r) − ω̃)fF (ξ(k; r) − ω̃). (8)

Finally, to obtain an expression that can be directly
compared with the experimental Energy Distribution
Curve (EDC), it is sufficient to express the frequency
ω̃ in terms of the single-particle energy defined as Es =
k2/(2m)− ω̃. This yields eventually:

EDC(k, Es) = 8

∫

drA(k, Es − µ(r))fF (Es − µ(r)). (9)

B. Comparison with the experimental data

Figure 2 compares the experimental data of Ref. 1 for
the energy distribution curve at k = 0 with our the-
oretical calculations that contain no fitting parameter.
Specifically, for given coupling strength and temperature,
the value of the chemical potential µ required to obtain
EDC(k = 0, Es) is calculated by inverting numerically
the number equation N =

∫

drn(r), where n(r) is the
particle number density obtained from the local spectral
function at position r. The experimental resolution of 1.5
kHz (as reported in the supplementary material of Ref. 1)
is included in the comparison with the experimental data,
by convoluting the theoretical results of Eq. (9) with a
normalized Gaussian of variance σ =1.5 kHz (once con-
verted in units of EF ). For completeness, Fig. 2 reports
the theoretical curves obtained both without (thin lines)
and with (thick lines) this convolution.
The value of EF for the experimental data at temper-

ature T/TF = 0.65 reported in Fig. 2 is determined to be
11 kHz. One should note that the value kF = 8.1µm−1

given in Ref. 1 would instead yield a Fermi energy EF =
8.4 kHz. This value, however, refers to a lower temper-
ature (T/TF = 0.27) with less atoms in the sample due
to evaporative cooling. The dependence of the number
of particles on temperature in the experimental setup of
Ref. 1 was analyzed by the same group in Ref. 2. A lin-
ear interpolation of the Fermi wave vector data reported
there for T/TF = 0.27 and T/TF = 1.09 (see the caption
of their Fig. 3) allows us to conclude that the value of
the Fermi energy at T/TF = 0.27 has to be multiplied
by a factor 1.3, in order to obtain the value of EF at
T/TF = 0.65. This yields the value EF = 11 kHz quoted
above, which fixes the horizontal scale of the experimen-
tal spectra. The vertical scale of the experimental spectra
is instead fixed by making the height of the right exper-
imental peak to coincide with the theoretical prediction.

 0
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FIG. 2. (Color online) (a)-(c) The experimental spectra taken
from the bottom panels of Fig.2(a) of Ref. 1 (dots) are com-
pared to our calculations of the EDC(k = 0, Es), without
(thin lines) and with (thick lines) convolution with a Gaus-
sian resolution of variance 1.5 kHz. In these panels, the tem-
perature is fixed at 0.65 TF where TF = EF/kB , while the
coupling parameter η = − ln(kF a2D) takes different values.
The single-particle energy Es is in units of EF .

The comparison between the experimental data and
our theoretical calculations shown in Fig. 2 appears to be
rather good, to the extent that our calculations are able
to reproduce not only the positions and widths of the ex-
perimental peaks and their evolution with coupling, but
also the asymmetric shapes of the spectra. These results
give us confidence about the validity of our theoretical
approach at least in the temperature range relevant to
the experiment of Ref. 1. In this respect, it might be re-
marked that none of the previous theoretical works men-
tioned in the Introduction has attempted a direct com-



5

parison between the experimental spectra of Ref. 1 and
the corresponding theoretical calculations, in the way we
have done in Fig. 2.
On the other hand, it has not been possible for us

to compare our calculations also with the experimen-
tal data at T/TF = 0.27 reported in the top panels
of Fig. 2 of Ref. 1. This is because, for the couplings
η = (−0.8,−0.5, 0.0) considered in Ref. 1, the non-self-
consistent t-matrix approach yields the values Tc/TF =
(0.37, 0.45, 0.58), respectively, for the the superfluid criti-
cal temperature Tc of the 2D trapped system (cf. Ref. 14).
The temperature T/TF = 0.27 is then lower than our Tc,
thus not allowing us to compare with the experimental
data at this temperature (at least within the present the-
ory formulated for the normal phase). In this context, a
reference value for Tc could be provided by the BEC limit
Tc/TF =

√
3/π ≃ 0.55 that corresponds to an ideal Bose

gas of molecules trapped in a two-dimensional harmonic
potential26, because the superfluid critical temperature
of the trapped two-dimensional Fermi gas should con-
verge to this value when η → +∞. Comparison with
this value suggests that the values of Tc quoted above for
η = (−0.8,−0.5, 0.0), even though not expected a priori

to be quantitatively correct, are probably not unrealistic.

C. Local couplings and normalized temperatures

in the trap

Theoretically, the trap averaging required to compare
with the experimental data rests on a local-density ap-
proximation, whereby the system is considered locally
homogeneous with density n(r). To this end, once the
density profile n(r) in the trap has been calculated for
given values of the coupling parameter η and temper-
ature T , one can determine the local coupling param-
eter η(r) ≡ − ln[kF (r)a2D] and normalized tempera-

ture T/TF (r), where kF (r) =
√

2πn(r) and kBTF (r) =
kF (r)

2/(2m).

TABLE I. Local values of coupling and normalized tempera-
ture for a 2D trapped Fermi gas at T = 0.65TF .

η η(0) T/TF (0) η(rmax) T/TF (rmax)

-0.8 -0.66 0.84 -0.45 1.3

-0.5 -0.38 0.82 -0.16 1.27

0.0 -0.07 0.57 0.17 0.93

Table I reports two examples of these local values for
the three different cases considered in Fig. 2, correspond-
ing to the trap coupling parameter η = (0.0,−0.5,−0.8)
of panels (a), (b), and (c), respectively, and T = 0.65TF .
Specifically, Table I reports the local values both at
r ≡ |r| = 0 and at r = rmax defined as the value of
r where rn(r) attains its maximum, such that the cor-
responding radial shell has the largest particle number.
The region r . rmax is, in fact, expected to contribute
most to the measured EDC spectral intensity.
These local values of coupling and normalized temper-

ature will be utilized in the next Section, to map the

physical conditions that underlie the various panels of
Fig. 2 onto the coupling vs temperature phase diagram
of the homogeneous system. Later on it will be also rele-
vant to verity that locally the system remains well above
the critical temperature (cf. Fig. 7 below).

IV. PROPERTIES OF THE UNDERLYING

HOMOGENEOUS SYSTEM

A. Boundary between the pseudo-gap and

molecular regimes

We begin by considering the issue of the boundary be-

tween the pseudo-gap and molecular regimes. To this end,
Fig. 3 shows the frequency dependence of the single-par-
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FIG. 3. (Color online) Single-particle density of states N(ω)
of a homogeneous system (normalized to the non-interacting
value N0 = m/π) vs the frequency ω (in units of the Fermi
energy εF ), for several values of coupling and temperature. In
panel (a) the function N0(ω) = N0Θ(ω + µ) (where µ refers
to the interacting system) is also shown for comparison.

ticle density of states N(ω) obtained from Eq.(4). Specif-
ically, panel (a) shows N(ω) for the same temperature
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and couplings of Fig. 2, while panel (b) shows N(ω)
for the coupling η = −0.5 and several temperatures
about that of Fig. 2. From these curves one may iden-
tify the occurrence of a “pseudo-gap” whenever N(ω)
has a local minimum about ω = 0, such that the clos-
ing of this pseudo-gap occurs as soon as N(ω) becomes
a monotonically increasing function of ω. In addition,
panel (c) shows the temperature dependence of N(ω)
for the weaker coupling η = −2.0, where a more sym-
metric shape of N(ω) emerges which resembles what
is obtained in cuprate superconductors from tunneling
experiments27.
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FIG. 4. (Color online) Coupling dependence of the pairing
temperature T ∗ where the pseudo-gap closes for a homoge-
neous 2D Fermi gas (squares and interpolating line). The
critical temperature Tc determined experimentally in Ref. 18
is also reported for comparison (circles and interpolating line).
Both temperatures are in units of TF = εF/kB .

Through this kind of analysis, we obtain the coupling
dependence of the pairing temperature T ∗ at which the
pseudo-gap closes according to the above criterion. The
result is reported in Fig. 4, where for reference we report
also the experimental data for the critical temperature
Tc in 2D that were recently determined in Ref. 18. This
comparison shows that the pairing temperature T ∗ at
which the pseudo-gap closes in the single-particle density
of states N(ω) becomes rapidly much larger than Tc as
the coupling strength increases toward the BEC limit.
What is not, however, evident from the above analysis

is whether what has been identified as a “pseudo-gap” is
a truly many-body effect or rather a manifestation of the
two-body binding. To answer this question, we perform
here for the 2D system an analysis similar to what was
done in Refs. 20 and 28 for the 3D system. Accordingly,
in Fig. 5(a) we show the dispersion relations obtained by
following the evolution of the frequency position of the
peak of the single-particle spectral function A(k, ω) at
negative frequencies when the magnitude k = |k| of the
wave vector is increased from k = 0 to values larger than
kF , for several couplings and temperatures. For each
coupling, the temperature is chosen well below T ∗ (that
is, T ≈ 0.5T ∗) yet above the temperature range where
the chemical potential is influenced by the effects dis-
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FIG. 5. (Color online) (a) Dispersion relations of the peak of
the single-particle spectral function at negative frequencies,
for various couplings and temperatures. The frequency ω is
in units of εF and the wave vector k in units of kF . (b) Cou-
pling dependence of the Luttinger wave vector kL (squares
with error bars) at which the back-bending occurs in the dis-
persions of panel (a) (each point corresponds to a different
temperature as indicated in panel (a)). The coupling depen-

dence of the wave vector kµ =
√

2mµ(T ) is also reported for
comparison (empty circles).

cussed in Fig. 1. From these dispersions one can identify
the values of the Luttinger wave vector kL at which the
curves “back-bend”, thereby signaling the presence of an
underlying Fermi surface. The resulting coupling depen-
dence of kL is shown in Fig. 5(b), where the error bars
correspond to the statistical error of BCS-like fits to the
curves of panel (a)28. From this analysis we conclude that
in 2D the boundary between the pseudo-gap and molecu-
lar regimes, where kL vanishes and the underlying Fermi
surface disappears, lies in the range −0.1 . η . 0.0. A
corresponding analysis made in 3D had shown28 that kL
vanishes at Tc for the coupling (kF a3D)−1 ≃ 0.6.

It is relevant to mention that an alternative (zero-
temperature) criterion has sometimes been used in
the literature to separate the BCS from the BEC
regimes15,29–31, by imposing the condition µ(T = 0) = 0
(which corresponds to where the back-bending of the
single-particle dispersion occurs at k = 0 at the level
of the BCS mean field). This condition can be utilized
at any temperature T , and the coupling dependence of
the wave vector kµ =

√

2mµ(T ) can correspondingly be
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identified for given T . In general, the coupling depen-
dence of kµ cannot be expected to coincide with that of
the Luttinger wave vector kL, in terms of which we have
identified the boundary between the pseudo-gap and the
molecular regimes. To show this difference for the spe-
cific problem in 2D, we have reported in Fig. 5(b) also
the coupling dependence of kµ for the same temperatures
at which kL was obtained. [A similar analysis in 3D was
reported in Refs. 20 and 28.]

On physical grounds, the difference between kL and
kµ at given coupling and temperature is due to the effect
on kL of a (diagonal) self-energy shift over and above
the thermodynamic chemical potential µ, shift which is
then not present in kµ by its very definition. The only
case when kL and kµ coincide with each other is that of
the BCS mean-field approach, where only an off-diagonal
self-energy appears. In particular, from Fig. 5(b) one
sees that kµ vanishes in 2D at about η = −0.5 while kL
vanishes at about η = 0. This implies that the criterion
kµ = 0 sets the BEC side of the crossover at η & −0.5 as
argued32 in Ref. 15, while the criterion kL = 0 adopted
here sets the same side at η & 0.0. This difference is
crucial when identifying the boundary between pseudo-
gap and molecular regimes in an appropriate way.

To get a deeper insight into the dispersion relations of
Fig. 5(a), we report in Fig. 6 false color intensity plots
of the single-particle spectral function A(k, ω) multiplied
by the occupation factor fF (ω), for several couplings and
temperatures. This is the quantity which underlies the
average (9) for a trapped Fermi gas and is also mea-
sured in photoemission experiments in solid-state sys-
tems. In particular, panels (a)-(c) of Fig. 6 correspond
to three cases considered in Fig. 5(a) and reproduce the
raw data from which the dispersions of Fig. 5(a) were
determined. For completeness, we also report these dis-
persions in Fig. 6 (white circles and lines). Note that for
the frequencies relevant to these dispersions the occupa-
tion factor fF (ω) is essentially equal to one.

Panel (d) of Fig. 6, on the other hand, corresponds to
the case η = 0 and T = TF. This panel can thus be com-
pared directly with the virial expansion results presented
in Fig. 4(a) of Ref. 15 for the same coupling and tempera-
ture. This comparison shows that the virial expansion of
Ref. 15 and the present t-matrix approach (which reduces
to the virial expansion at high temperature19) at this
temperature still differ significantly from each other. It
turns out, in particular, that the virial expansion misses
a sizable self-energy shift in the quasi-particle dispersion
at positive frequency and differs quantitatively from the
t-matrix results also at negative frequency. Panel (d)
of Fig. 6 can further be compared with Fig. 2(a) since,
according to Table I, the corresponding local values of
coupling and normalized temperature of Fig. 2(a) are
close to those considered here. Specifically, a compari-
son can be made between the data of Fig. 6(d) at k = 0
and the trap average (9), having in mind that most of
the signal of EDC(0, Es) comes from the region around
rmax. When making this comparison, one should recall

(c)

(b)

(d)

(a)

FIG. 6. (Color online) False color intensity plots of the single-
particle spectral function A(k, ω) multiplied by the occupa-
tion factor fF (ω), for several couplings and temperatures.
The frequency ω is shifted by the chemical potential µ at
given coupling and temperature (with µ taken from Fig.1).

that (ω + µ)/εF in Fig. 6(d) corresponds in Fig. 2 to Es

multiplied by the factor EF /εF (rmax) = 1.43. By tak-
ing into account this factor, one verifies that the position
and width of the peak at negative energy in Fig. 2(a) are
consistent with the corresponding values extracted from
the signal of Fig. 6(d) at k = 0. In addition, the peak at
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FIG. 7. (Color online) Local couplings and normalized tem-
peratures of Table I are compared with the coupling depen-
dence of T ∗ (in units of TF = εF /kB) of the homogeneous
gas (squares and interpolating line). Asterisks correspond to
the first row, circles to the second row, triangles to the third
row of Table I, respectively. In each case, the values at r = 0
lie on the left of the values at rmax. In addition, the verti-
cal arrow indicates the position of the boundary between the
pseudo-gap and molecular regimes determined in Fig.5(b).

about zero energy in Fig. 2(a) is essentially determined
by the presence of free atoms in the outer shell of the
trapped cloud, while the tail of the spectrum at Es ≃ 1
(in units of EF ) in Fig. 2(a) is contributed by the signal
at positive frequency in Fig. 6(d).

This analysis shows that a comparison between the
calculations for the homogenous system and the trap-
averaged data of Ref. 1 is meaningful only when sup-
ported by extended calculations for the trapped system,
which allow for the determination of the relevant local
couplings and temperatures and of the associated energy-
conversion factors. For these reasons, when attempt-
ing such a comparison indirectly without the support of
calculations for the trapped system (as it was done in
Ref. 15) one may end up with somewhat misleading re-
sults and conclusions about the relevance of the data.

Finally, the local values of coupling and normalized
temperature at r = 0 and r = rmax that were reported in
Table I can be compared with the coupling dependence
of T ∗ and with the boundary between the pseudo-gap
and molecular regimes, so as to identify the coupling and
temperature regions of the homogeneous gas which were
explored in the experimental data of Fig. 2. This com-
parison is made in Fig. 7, from which one concludes that:
(i) the data of Fig. 2(a) (corresponding to the triangles
in Fig. 7) are below T ∗ and lie at the boundary between
the pseudo-gap and molecular regimes; (ii) the data of
Fig. 2(b) (corresponding to the circles in Fig. 7) are just
below T ∗ and well within the pseudo-gap regime; (iii) the
data of Fig. 2(c) (corresponding to the asterisks in Fig. 7)
are above T ∗ although at couplings consistent with the
pseudo-gap regime at lower temperatures. We thus con-
clude that the experiment of Ref. 1 was able to explore
also the pseudo-gap regime of most physical interest.

B. A unifying variable for 2D and 3D

One may take advantage of the similarities between
pseudo-gap phenomena in 3D and 2D to identify a vari-

able alternative to the coupling, in terms of which it ap-
pears possible to unify the evolution from BCS to BEC
in 3D and 2D. Following Ref. 12, we identify this vari-
able with the ratio between the pair size ξpair and the

average inter-particle distance dn given by [3/(4πn)]1/3

in 3D and by [1/(πn)]1/2 in 2D, where ξpair is obtained
at T = 0 within mean field in the two cases12,33.
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FIG. 8. (Color online) (a) Coupling dependence of the T = 0
ratio between the pair size ξpair and the inter-particle spacing
dn in 3D, and (b) corresponding dependence in 2D. (c) Re-
lation between the couplings in 3D and 2D as obtained from
the universal variable ξpair/dn. Segments with arrows identify
(within numerical errors) the critical values of the couplings
in 3D (thick line) and in 2D (thin line) where kL vanishes.

Figure 8 shows the ratio ξpair/dn vs the respective
couplings, in panel (a) for 3D and in panel (b) for 2D.
From these curves, a relationship between the couplings
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(kF a3D)−1 in 3D and η in 2D can be established. The re-
sulting curve is shown in Fig. 8(c). From these plots one
verifies that the critical values of the couplings at which
kL vanishes in 3D and 2D correspond to the same value

(≃ 0.4) of ξpair/dn. This rather remarkable result justi-
fies a posteriori our identification of the ratio ξpair/dn as
the appropriate parameter that lies at the heart of the
physics of the BCS-BEC crossover. From Fig. 8(c) one
further verifies that to the unitary limit (kFa3D)−1 = 0
in 3D there corresponds the value η ≃ −0.6 in 2D, for
which ξpair/dn ≃ 0.6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.5  0.75  1  1.25  1.5

T
* /T

F

ξpair /dn

2D

3D

FIG. 9. (Color online) Temperature T ∗ (in units of the Fermi
temperature TF ) vs ξpair/dn both in 3D (circles - from Ref.34)
and in 2D (squares - present calculation), where the lines
interpolate through the calculated values.

In terms of this universal variable ξpair/dn, we can
eventually reconsider the issue of the temperature T ∗ up
to which pseudo-gap phenomena survive. To this end,
Fig. 9 shows the dependence of T ∗ on ξpair/dn both for
the 3D and 2D cases. This direct comparison in terms of
the same variable in both cases evidences in a quantita-
tive way a strong enhancement of pseudo-gap effects due
to reduced dimensionality. For instance, to the “unitary”
value ξpair/dn ≃ 0.6 there corresponds (T ∗/TF )3D = 0.3
and (T ∗/TF )2D = 0.7, with a 2.3 amplification factor.

V. CONCLUDING REMARKS

In this paper, we have dealt with the problem of the
boundary between the pseudo-gap and molecular regimes
for a 2D Fermi gas with attractive inter-particle interac-
tion, a problem that can also be rephrased in the context
of the way in which many-body effects hinge on two-body
effects. Specifically in 2D, this appears to be a rather del-
icate question since a two-body (molecular) bound state
exists for all values of the attractive fermionic interaction.
To answer this question, we have presented a theoretical
approach that has proven capable to reproduce quanti-
tatively the experimental spectra of Ref. 1, assessing in
this way that that experiment was able to explore also
the pseudo-gap regime of most interest.
This turns out to be a particularly important result,

to the extent that in 3D, on the other hand, the exper-

imental detection of the pseudo-gap regime above Tc at
unitarity has been widely debated in the literature20,35,
in this context a general consensus having been achieved
only on the value of the coupling (on the BEC side of uni-
tarity) where the pseudo-gap fades away and the molec-
ular regime sets in.
Also for this reason it was relevant to provide a unify-

ing description of the pseudo-gap regime for the 2D and
3D cases. This was achieved by spanning the BCS-BEC
crossover through a “universal” variable, which is iden-
tified by a common definition in 2D and 3D and super-
sedes the most often used coupling variable that depends
instead on the two-body scattering specific to dimension-
ality. In terms of this new variable, it has been possible
to reckon what can be regarded as the analog of the uni-
tarity limit for a Fermi system in 2D, and further to es-
tablish that the temperature range where the pseudo-gap
survives in 2D is quite enlarged with respect to 3D.
All these considerations, about the issue of the pseudo-

gap due to pairing correlations in 2D, appear to be rel-
evant also in the context of high-temperature (cuprate)
superconductors where this issue has been highly debated
over the last several years. This is because of the pres-
ence in these systems of other effects that may concur
with pairing in the formation of a pseudo-gap in the
single-particle spectra8,36,37. What we have explicitly
shown here, that in 2D a pseudo-gap due to pairing per-
sists in the normal phase over a quite wide temperature
range just when the pair size is comparable to the av-
erage inter-particle spacing, suggests, in fact, that pair-
ing correlations cannot be dismissed when addressing the
pseudo-gap issue in high-temperature superconductors.
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Appendix A: BEC LIMIT FOR COMPOSITE

BOSONS IN 2D WITHIN SELF-CONSISTENT

AND NON-SELF-CONSISTENT t-MATRICES

In 2D, the pair propagator (1) takes the following
asymptotic form in the BEC limit when µ/εF → −∞:

Γ0(q,Ων) ≃ − 4πε0
m

1

iΩν + µB − q2/(4m)
(A1)

where µB = 2µ+ ε0 is the chemical potential of compos-
ite bosons which form out of fermion pairs in this limit.
Apart from an overall constant factor, the form (A1) cor-
responds to the Green’s function of non-interacting com-
posite bosons. As a consequence, no interaction among
composite bosons survives in this limit within the non-
self-consistent t-matrix approach, since only one Γ0 ap-
pears in the fermionic single-particle self-energy (3).
The situation is somewhat different within the self-

consistent t-matrix approach, where the dressed Green’s
function G replaces the bare G0 in the bubble (2). In the
BEC limit, this replacement has the result of introduc-
ing an effective interaction among composite bosons, as
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it can be seen, e.g., from Fig.4 of Ref. 38. Referring, in
addition, to Fig.3(b) of the same Ref. 38, in the limit of
vanishing wave vectors and frequencies the value of this
effective interaction in 2D turns out to be 4π/m indepen-
dent of the 2D scattering length a2D, while in 3D this
interaction equals 4πa3D/m where a3D is the 3D scatter-
ing length. This implies that, within the self-consistent
t-matrix approach, an effective interaction among com-
posite bosons survives even in the extreme BEC limit,

a result which contradicts one’s physical intuition about
the diluteness of the Bose gas.
As a matter of fact, the exact solution for the scatter-

ing problem of two dimers in vacuum given in Ref. 39
yields for the dimer-dimer scattering length the value
aB2D = 0.55 a2D, which vanishes with a2D in the extreme
BEC limit. A proper summation of diagrams in the limit
of zero density would thus be required beyond the self-
consistent t-matrix to reproduce this result in 2D, along
the lines of the approach used in Ref. 40 for the 3D case.
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