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ABSTRACT. Using an estimate on the number of critical points for a Morse-even function
on the sphere Sm,m > 1, we prove a multiplicity result for orthogonal geodesic chords
in Riemannian manifolds with boundary that are diffeomorphic to Euclidean balls. This
yields also a multiplicity result for brake orbits in a potential well.

1. INTRODUCTION

The topology of spheres does not allow good estimates on the number of critical points
of smooth functions. In fact, given the fact that anyC1-function on a compact manifold ad-
mits at least two critical points, Reeb’s theorem characterizes spheres as the only compact
manifold that admits functions with exactly 2 critical points (see for instance [14, Theo-
rem 4.1, p. 25]). However, functions having some type of symmetry tend to have more than
two critical points. For instance, if f : Sm → R is even, i.e., f(x) = f(−x) for all x, then
f defines a function f̃ on the projective space RPm, that must have at least m + 1 distinct
critical points, by Lusternik–Schnirelman (or Morse) theory. Thus, the original function f
must have at leastm+ 1 distinct pairs of antipodal critical points.

1.1. Morse-even functions. Motivated by an example in classical Riemannian geometry,
that will be described below, in this paper we prove that the same estimate on the number of
critical points holds in a slightly more general situation, when resorting to the Lusternik–
Schnirelman category of the projective space is not possible. More precisely, we will
consider functions whose critical points come in pairs with the same Morse index.

Definition. Let Mm be a compactm-dimensional manifold. A Morse function f : M→ R

is said to be Morse-even if for every k = 0, . . . ,m, the set of critical points of f having
Morse index equal to k is an even number.

The starting observation for Morse-even functions on spheres is the following:

Theorem A. Let M be a smooth manifold that is homeomorphic to an m-sphere, and let
f : M→ R be a Morse-even function. Then, f has critical points of arbitrary Morse index
in {0, 1, . . . ,m}. In particular, f admits at least (m+ 1) distinct pairs of critical points.

Proof. The Poincaré polynomial (with integer coefficients) of the m-sphere is given by
Pm(λ) = 1 + λm. By Morse theory, there exists a polynomial Q(λ) = a0 + a1λ + . . . +
am−1λ

m−1 with nonnegative integer coefficients such that:
(1.1)
1+λm+(1+λ)Q(λ) = (1+a0)+(a0+a1)λ+. . .+(am−2+am−1)λ

m−1+(1+am−1)λ
m

is the Morse polynomial Mf(λ) of f. Recall that Mf(λ) =
∑m
k=0 κkλ

k, where κk is the
number of critical points of f whose Morse index is equal to k. Since f is Morse-even, then
each κk is an even number. Using (1.1), one shows by an elementary argument that all the
ai are non-zero and odd, i = 0, . . . ,m−1. Thus, all the κk are positive, k = 0, . . . ,m. �
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Remark 1. The above result has a natural generalization to Morse-even functions defined
on a connected, orientable compact manifold M whose Betti numbers βk(M) are even for
k = 1, . . . ,m− 1. If f : M→ R is a Morse-even function on such a manifold, then for all
k = 1, . . . ,m−1, f admits a number strictly larger than 1

2
βk(M) of pairs of critical points

having Morse index equal to k (this statement holds trivially also for k = 0 and k = m).
A proof of this is obtained readily from the Morse relations, given by the equality:

m∑
k=0

βkx
k + (1+ x)

m−1∑
k=1

akx
k =

m∑
k=0

κkx
k,

i.e.:

κ0 = 1+ a0, κk = βk + ak + ak−1, for k = 1, . . . ,m− 1, κm = 1+ am,

for some integer coefficients ak > 0. The parity of the coefficients implies a0, am > 1,
and ak + ak−1 > 2 for k = 1, . . . ,m− 1.

The condition on the parity of the Betti numbers is satisfied by a large class of manifolds.
For instance, when m = 2, the condition β1 even is satisfied by every compact oriented
surface Σ. Namely, in this case β1(Σ) = 2 gen(Σ) (here gen(Σ) denotes the genus of
Σ). It is not hard to classify the homeomorphism classes of simply connected manifolds
satisfying the condition in low dimensions. When m = 3, if M is simply connected
then β1(M) = 0 (and thus also β2(M) = 0). By the Poincaré conjecture, the unique
simply connected compact manifold that satisfies the assumptions is the 3-sphere. Many
interesting cases of even Betti numbers are found in dimension 4. In this case, for a simply
connected manifold it suffices to require that β2 is even. Recall that in dimension 4, the
second Betti numberβ2 is additive by connected sums, i.e., given 4-manifolds M1 and M2,
then β2(M1#M2) = β2(M1) + β2(M2). Recall also that β2(CP2) = 1 and β2(S2 ×
S2) = 2. Thus, connected sums of any number of copies of S2 × S2 and any even number
of copies of CP2 have even β2.

1.2. Orthogonal geodesic chords. Our motivation for the result of Theorem A comes
from a classical problem in Riemannian geometry, which consists in finding lower esti-
mates on the number of geodesics departing and arriving orthogonally to the boundary
of a compact Riemannian manifold. These objects are called orthogonal geodesic chords
(OGC). It is interesting to observe that there are manifolds diffeomorphic to Euclidean
balls that have no OGC’s, see for instance [3]. Orthogonal geodesics chords for metrics
in a ball have a special interest in the case where the boundary Sm of Bm+1 is strictly
concave. Namely, in this situation, a multiplicity result for OCG’s yields an analogous
multiplicity result for brake orbits of natural Hamiltonians or Lagrangian in a potential
well (see for instance [5]).

In order to apply Theorem A to obtain information on the number of OGC’s, let us con-
sider the following situation. Given a compact Riemannian manifold (M,g) with boundary
∂M, let exp denote the corresponding exponential map. Let ~ν be the unit normal field along
∂M pointing inwards. The metric g will be said to be regular (with respect to ∂M) if there
exists a (necessarily smooth) function sg : ∂M → ]0,+∞[ such that, for any p ∈ ∂M,
the geodesic

[
0, sg(p)

]
3 t 7→ expp(t · ~νp) meets transversally ∂M at t = sg(p). In this

situation, we will call sg the crossing time function of the metric g.
It is easy to see that the set of regular metrics on a given manifold with boundaryM, that

will be denoted by Reg(M), is open in the C1-topology. We also define non-focal a metric
onM for which there are no ∂M-focal points along ∂M. Also in this case, it is not hard to
show that non-focal metrics form an open subset in the C2-topology, see Proposition 3.2.

Let us denote by Reg∗(M) the set of non-focal regular metrics onM. Our main interest
is in the case whenM is diffeomorphic to the unit ballBm+1 in the Euclidean spaceRm+1.
In this case, the set of regular and non-focal metrics is an open subset of all Riemannian
metrics containing, for instance, the set of radially symmetric metrics, see Corollary 3.3.
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As an application of Theorem A, we prove the following:

Theorem B. For a generic1 set of metrics g in Reg∗(B
m+1), there are at least (m + 1)

distinct orthogonal geodesic chords in (Bm+1, g).

More precisely, the result of Theorem B holds for all metrics in Reg∗(B
m+1) for which

every OGC is nondegenerate in an appropriate sense, see the discussion after Corollary 2.2
and Section 3.2 for details.

When M is convex and homeomorphic to the m + 1-dimensional disk the multiplicity
problem for OGC’s is studied in [3, 12]. If M is concave there is an existence result and
a multiplicity result of two OGC’s (see [7] and the references therein). To the authors’
knowledge, Theorem B is the first result about multiplicity of OGC’s without convexity or
concavity assumption.

For the Morse-theoretical aspects in the proof of Theorem B, one of the key ingredients
will be an index theorem for orthogonal geodesic chords (see Corollary 2.4 and Corol-
lary 2.5), in the formulation given in [15]. This result, together with a stability result for
focal points proved in [13], is used to prove that the crossing time function sg is even-
Morse, providing the desired link between even-Morse functions and orthogonal geodesic
chords.

1.3. Brake orbits of Lagrangian systems. The result of Theorem B can be applied to
prove a new multiplicity result for brake orbits, as illustrated below. We will present here
a Lagrangian formulation of the brake orbits problem. An equivalent formulation can be
given for periodic solutions of Hamiltonian systems, via Legendre transform.

Let (Mm+1, g) be a Riemannian manifold (without boundary), representing the con-
figuration space of some dynamical systems, and let V : M → R be a smooth function,
representing the potential energy of some conservative force acting on the system. One
looks for periodic solutions x : [0, T ]→M of the Lagrangian systems:

(1.2) D
dt ẋ = −∇V,

where D
dt denotes the covariant derivative of the Levi–Civita connection of g for vector

fields along x, and ∇V is the gradient of V . Solutions of (1.2) satisfy the conservation of
energy law 1

2
g(ẋ, ẋ)+V(x) = E, where E is a real constant called the energy of the solution

x. It is a classical problem to give estimate of periodic solutions of (1.2) having a fixed
value of the energy E. This problem has been, and still is, the main topic of a large amount
of literature, also for autonomous Hamiltonian systems, see for instance [8, 9, 11, 16] an
the references therein. We will give here a very short account of a geometric approach to
periodic solutions of (1.2)

By the classical Maupertuis principle, solutions of (1.2) having energy E are, up to a
parameterization, geodesics in the conformal metric:

(1.3) gE =
(
E− V(p)

)
· g,

defined in the closed E-sublevel ME = V−1
(
]−∞, E] ) of V . Observe that, in fact, gE

degenerates on the boundary ∂ME = V−1(E). Among all periodic solutions of (1.2), his-
torical importance is given to a special class called brake orbits; these are “pendulum-like”
solutions, that oscillate with constant frequency along a trajectory that joins two endpoints
lying in V−1(E). Thus, brake orbits correspond to gE-geodesics in ME with endpoints in
∂ME, or, more precisely, to gE-geodesics γ : ]0, T [ → V−1

(
]−∞, E[ ), with lim

t→0−
γ(t)

and lim
t→T−

γ(t) in ∂ME.

For such degenerate situation, it has been proved in [5] that, if E is a regular value of
the function V (which implies in particular that ∂ME is a smooth hypersurface of M), then

1Here generic is in meant in the topological sense. A subset of a topological set is generic if it contains a
residual set (countable intersection of open dense subsets).
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gE defines a distance-to-the-boundary function distE : ME → [0,+∞[ which is smooth
in the interior of ME and extends continuously to 0 on the boundary ∂ME. Moreover, if
δ > 0 is small enough, then any OGC in the Riemannian manifoldM = dist−1E

(
[δ,+∞[

)
endowed with the metric gE (which is now non-singular) can be extended uniquely to a
gE-geodesic γ in ME with endpoints in ∂ME, as above. In conclusion, any result on
multiplicity of OGC’s can be reformulated to a multiplicity result for brake orbits at level
a fixed regular energy level of a conservative dynamical system.

A very famous conjecture due to Seifert, see [17], asserts that, given a Lagrangian
system as in (1.2), if the sublevel V−1

(
]−∞, E]] ) is homeomorphic to an (m + 1)-ball

Bm+1, then there are at least m + 1 distinct brake orbits. This estimate is known to be
sharp, i.e., there are examples of Lagrangian systems having energy levels homeomorphic
to an (m + 1)-ball and admitting exactly m + 1 distinct brake orbits. A proof of Seifert’s
conjecture in its full generality is still open, but the question has been solved affirmatively
in some cases. When V is even and convex, multiplicity results are obtained in [9, 10, 18,
19, 20]. In particular in [9] there is the proof of the Seifert conjecture for euclidean metrics
and even and convex potentials.

When the E-sublevel V−1
(
]−∞, E] has the topology of the annulus, the multiplicity of

brake orbits is studied in depth in [4] and [6].

Theorem B yields the following contribution to Seifert’s conjecture:

Theorem C. Let E be a regular value of V , such that V−1
(
]−∞, E] ) is homemorphic to

an (m + 1)-ball Bm+1. Assume that there exists δ > 0 sufficiently small such that the
Riemannian manifold M = dist−1E

(
[δ,+∞[

)
endowed with the metric gE satisfies the

assumptions of Theorem B. Then there are at leastm+ 1 distinct brake orbits of energy E
for the Lagrangian system (1.2). �

In particular, from Proposition 3.2 below we obtain the following:

Corollary D. Seifert conjecture is generically true in a C2-open set of potentials V that
contains the ones that are rotationally symmetric at level E. �

By a potential V rotationally symmetric at level E we mean that there is a continuous
action of the rotation group SO(m+ 1) on V−1

(
]−∞, E] ) that makes the sublevel equiv-

ariantly diffeomorphic to the Euclidean ball Bm+1 with the canonical SO(m + 1)-action,
and such that V is constant along the orbits of this action.

2. VARIATIONAL THEORY FOR OGC’S

Let us show how obtain multiple orthogonal geodesic chords in a compact Riemannian
manifold with boundary (M,g), using a function on ∂M whose critical points are OGC’s.
Next Proposition shows that, for a regular metric g, such function is precisely the crossing
time function sg. In order to prove this, let us introduce some notations.

For p ∈ ∂M, let Sp : Tp(∂M) → Tp(∂M) denote the shape operator of ∂M at p in
the normal direction ~νp. Let exp⊥ : U ⊂ T(∂M)⊥ → M denote the normal exponential
map of g along ∂M; for p ∈ ∂M, let γp :

[
0, sg(p)

]
→ M denote the geodesic t 7→

expp(t · ~νp). Recall that a point q ∈ M is a singular value of exp⊥ exactly when q is
focal to ∂M. If q ∈M is a singular value of exp⊥ and v ∈ Tp(∂M)⊥ is the corresponding
critical point, so that γp(t∗) = q for some t∗ ∈ ]0, sg(p)], then the kernel of d exp⊥(v)
consists of ∂M-Jacobi fields along the geodesic γp that vanish at t∗. Recall that a Jacobi
field along γp is called a ∂M-Jacobi field if it satisfies the initial conditions:

(2.1) J(0) ∈ Tp(∂M), J ′(0) + Sp
(
J(0)

)
∈ Tp(∂M)⊥,

where J ′ denotes the covariant derivative of J along γp.



FUNCTIONS ON THE SPHERE WITH CRITICAL POINTS IN PAIRS 5

M
∂M

FIGURE 1. The picture represents a situation in which critical points
of the function sg do not correspond to orthogonal geodesic chords (see
Remark 2). Here,M is a compact subset of a Euclidean space. A portion
of the boundary of M (in red) is a spherical hypersurface, whose center,
which is a ∂M-focal point, lies on ∂M. Orthogonal geodesic chords
starting from this spherical surfaces converge and meet at the center;
thus the function sg is constant in this spherical region of the boundary.
However, these critical points do not correspond to OGC’s inM.

For p ∈ ∂M, denote by qp = γp
(
sg(p)

)
∈ ∂M, and let Ep ⊂ Tqp

M the image of the
linear map d exp⊥

(
sg(p)~νp

)
. Equivalently:

Ep =
{
J
(
sg(p)

)
: J is a ∂M-Jacobi field along γp

}
.

When qp is not ∂M-focal, then Ep = Tqp
M.

Proposition 2.1. Assume g regular. A point p ∈ ∂M is critical for sg : ∂M → ]0,+∞[

if and only if the vector γ̇p
(
sg(p)

)
∈ Tqp

M is orthogonal to the intersection2 Ep ∩
Tqp

(∂M). In particular, if qp is not ∂M-focal, then γp is an orthogonal geodesic chord
inM.

Proof. Since sg > 0, the critical points of sg coincide with those of s2g. For p ∈ ∂M,
denote by σp : [0, 1] →M the affinely reparameterized geodesic σp(t) = γp

(
sg(p) · t

)
,

t ∈ [0, 1]. Integration on [0, 1] gives:

(2.2)
∫1
0

g (σ̇p, σ̇p) dt = sg(p)2,

i.e., σ2g can be thought of the geodesic action functional of g applied to the geodesic σp. Let
p ∈ ∂M be fixed, and let ρ : ]−ε, ε[→ ∂M be a C1-curve satisfying ρ(0) = p and ρ̇(0) =
w ∈ Tp(∂M). Then, p is critical for s2g iff for any such ρ one has d

dt

∣∣
t=0
s2g (ρ(t)) = 0.

Using (2.2) one has:

(2.3) d
dt

∣∣
t=0
s2g (ρ(t)) = 2

∫1
0

g (σ̇p, J
′
w) dt,

where Jw is the Jacobi field along σp given by:

Jw(s) =
d

dt

∣∣
t=0
σρ(t)(s), s ∈ [0, 1].

2We observe that, under the assumptions of Proposition 2.1, qp is ∂M-focal if and only if Ep∩Tqp∂M 6=
Tqp∂M. This follows easily from the fact that Ep always contains γ̇p

(
(sg(p)

)
which is transversal to

Tqp∂M.
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Keeping in mind that Jw(0) = w ∈ Tp(∂M) and that σ̇p(0) ∈ Tp(∂M)⊥, integration by
parts in (2.3) gives:

d
dt

∣∣
t=0
s2g (ρ(t)) = 2g (σ̇p(1), Jw(1)) .

It is easily seen that the map Tp(∂M) 3 w 7→ Jw(1) ∈ Ep ∩ Tqp
(∂M) is surjective, and

from this observation the thesis follows readily. �

Remark 2. It is not hard to give examples of regular metrics that do not satisfy the non-
focal property, and in which critical points of sg do not correspond to orthogonal geodesic
chords. See Figure 1.

From Proposition 2.1, we obtain immediately the following:

Corollary 2.2. Let g be regular and non-focal. Then, a point p is critical for sg if and
only if the point qp = γp

(
sg(p)

)
is critical for sg. In this case, sg(p) = sg(qp), and

γqp
= γp up to orientation. �

Proposition 2.1 gives a first order variational principle relating orthogonal geodesic
chords in M to critical points of a smooth function on ∂M. For our purposes, we need
a related second order variational principle, relating nondegeneracy and Morse index of
OGC’s in M and critical points of sg. Let us recall a few facts from the variational theory
of OGC’s.

Assume that γp :
[
0, sg(p)

]
→M is an OGC inM, i.e., that γ̇p

(
sg(p)

)
∈ Tqp

(∂M)⊥.
The index form along γp is the symmetric bilinear form Ip defined on the vector space Vp
of (piecewise smooth) vector fieldsV along γp satisfyingV(0) ∈ Tp(∂M) andV

(
sg(p)

)
∈

Tqp
(∂M), defined3 by:

(2.4) Ip(V,W) =

∫sg(p)
0

g(V ′,W ′) + g
(
R(γ ′p, V)γ

′
p,W

)
ds

−
[
g
(
Sp(V(0)),W(0)

)
+ g
(
Sqp

(V(sg(p))),W(sg(p))
)]
,

where R is the curvature tensor of g, chosen with the sign convention

R(X, Y) = [∇X,∇Y ] −∇[X,Y].

It is well known that Ip is the second variation of the geodesic action functional, defined in
the set of paths with endpoints in ∂M, at the critical point γp. The OGC γp is said to be
nondegenerate if Ip is a nondegenerate bilinear form on Vp, i.e., if γp is a nondegenerate
critical point of the geodesic action functional ofM in the space of paths with endpoints in
∂M. The kernel of Ip is the space of ∂M-Jacobi fields J along γp that satisfy, in addition
to (2.1), the following boundary condition at t = sg(p):

(2.5) J
(
σg(p)

)
∈ Tqp

(∂M), J ′
(
sg(p)

)
+ Sqp

(
J(sg(p))

)
∈ Tqp

(∂M)⊥.

Thus, γp is nondegenerate if and only if there exists no non-trivial Jacobi field J along γ
satisfying (2.1) and (2.5). The Morse index of γp is the index of the symmetric bilinear
form Ip, which is the dimension of a maximal subspace of Vp on which Ip is negative
definite. Recall that this is a (finite) nonnegative integer, that can be computed in terms of
some focal invariants of ∂M, see [15] for details.

Proposition 2.3. Assume g regular. Let p ∈ ∂M be a critical point of sg, and assume that
qp ∈ ∂M is not ∂M-focal along γp. Then:

(a) p is a nondegenerate critical point of sg if and only if γp is a nondegenerate OGC;

3Observe that we have a different sign convention from the standard literature in the second boundary
term of Ip, because Sqp has been defined as the shape operator in the normal direction ~νqp , and ~νqp =

−γ̇p
(
sg(p)

)
. Similarly, the second condition in (2.5) has a sign different from the standard literature.
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(b) the Hessian of 1
2
s2g at the critical point p is identified with the symmetric bilinear

form:

(2.6) Jp × Jp 3 (J1, J2) 7−→ g
(
J ′1(sg(p)) − Sqp

(
J1(sg(p))

)
, J2(sg(p))

)
∈ R,

where Jp is the vector space of all ∂M-Jacobi fields J along γp that satisfy

J
(
sg(p)

)
∈ Tqp

(∂M).

Its index is less than or equal to the Morse index of the OGC γp.

Proof. As in Proposition 2.1, both statements are obtained by identifying the points p of
∂M with the curve γp, as an element of the space of curves with endpoints in ∂M. Using
this identification, the tangent space Tp(∂M) is identified with the space of variations of
γp by geodesics γq that start orthogonally to ∂M and arrive onto ∂M. This space of
variations is given by the vector space Jp. The function 1

2
s2g is the restriction to the set

{γp : p ∈ ∂M} of the geodesic action functional of M. We have proved that, under
our assumptions, γp is a critical point of this restriction, but also a critical point of the
full geodesic action functional. Hence, the second derivative of 1

2
s2g at p is given by the

restriction of the index form Ip to the space Jp; this implies, in particular, that the Morse
index of p is less than or equal to the Morse index of the OGC γp. Formula (2.6) is
obtained easily using partial integration in (2.4), the Jacobi equation and (2.1). This proves
(b).

The assumption that qp is not ∂M-focal along γp implies that, as J2 runs in Jp, the
vector J2(b) is an arbitrary vector in Tqp

(∂M). Hence, Ip(J1, J2) = 0 for all J2 if and
only if J2 satisfies (2.5), i.e., the kernel of the second derivative of s2g at the critical point
p ∈ ∂M coincides with the kernel of the index form Ip. This proves statement (a). �

Using the Morse index theorem for geodesics between two fixed submanifold, see for
instance [15], one proves the following more precise result on the Morse index of critical
points of sg:

Corollary 2.4. Under the assumption of Proposition 2.3, the Morse index of 1
2
s2g at p is

equal to the Morse index of the OGC γp minus the number of ∂M-focal points along γp,
counted with multiplicity.

Proof. It follows readily from Proposition 2.3 and the result of [15, Theorem 2.7]. More
precisely, [15, Theorem 2.7] proves that, when qp is not ∂M-focal along γp, then the
space Vp (recall that this is the domain of the index form Ip) is the direct sum of:

• the space V1p of (piecewise smooth) vector fields V along γp satisfying V(0) ∈
Tp(∂M),
• the space Jp of (∂M)-Jacobi fields J along γp satisfying J

(
sg(p)

)
∈ Tqp

(∂M).
Such a direct sum decomposition is Ip-orthogonal. Hence, the index of Ip on Vp, which is
the Morse index of the OGC γp, is equal to the sum of the indices of the restriction of Ip
to each one of the two spaces above. The index of the restriction of Ip to Jp is precisely
the index of the bilinear form (2.6), i.e., the Morse index of 1

2
s2g at p. The index of the

restriction of Ip to the space V1p, by the Morse index theorem for geodesics between a
submanifold and a fixed point (see [15, Theorem 2.5]), is given by the number of ∂M-
focal points along γp counted with multiplicity. �

Corollary 2.5. Let M be a compact manifold with connected boundary ∂M, and let g be
a regular and non-focal Riemannian metric on M. If every OCG in M is nondegenerate,
then sg is an even-Morse function on ∂M.

Proof. From Proposion 2.3, part (a), it follows that if every OGC is nondegenerate, then
also every critical point of sg is nondegenerate, i.e., sg is a Morse function. Let us show
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M

∂M

FIGURE 2. The picture illustrates an example of a non-degenerate OGC
which has one ∂M-focal point, but its backward reparameterization has
no ∂M-focal point. Here M is a compact subset of a Euclidean space.
The boundary of M has a portion which is a spherical surface. An or-
thogonal geodesic chord departs from this surface, and it passes through
the center of the sphere, which is a focal point. At the final endpoint, the
geodesic meets orthogonally a portion of ∂M which is planar (i.e., flat).
Thus, there are no focal points along the backward reparameterization of
the geodesic. Note that this phenomenon only occurs when the metric
fails to be non-focal, so that the picture shows also that the non-focal
property is not generic. Namely, any sufficiently small perturbation of
the metric preserves the existence of a non-degenerate OGC, which has
different Morse indexes when run in the two directions, by the stability
of the Morse index. Therefore, any perturbed metric fails to be non-focal.

that, given a critical point p of sg, then qp is a critical point with the same Morse index.
From Corollary 2.4, the difference between the Morse indices of p and qp equals the
difference of the number of ∂M-focal points along γp and along γqp

(which incidentally
is the same geodesic4 as γp, with the opposite orientation, see Corollary 2.2). We claim that
the number of ∂M-focal points along any geodesic γr : [0, sg(r)] →M is constant for al
r ∈ ∂M. This follows easily from the assumption that no γr has any ∂M-focal point inM,
and an argument of stability of the number of focal points in Riemannian geometry, see [13]
for details. Namely, as r runs in ∂M, the number of focal points (counted with multiplicity)
along γr changes continuously, and by connectedness, if such number is not constant in
∂M, then there would be a ∂M-focal point in ∂M along some γr. This concludes the
proof. �

Remark 3. It is not hard to show that in all the results of this section, the assumptions
cannot be relaxed. As we observed in Remark 2, Figure 1 shows an example of a metric
which is not non-focal, and where the critical points of sg do not correspond to OGC’s (cf.
Proposition 2.1 and Corollary 2.2). Figure 2 illustrates an example where the function sg
is a Morse function, but not even-Morse (cf. Corollary 2.5). Figure 3 gives an example of
a regular and non-focal metric on a manifold of arbitrary dimension, whose boundary is
not connected, and admitting only 2 OGC’s.

Proposition 2.6. Under the assumptions of Corollary 2.5, there are at least (m+1) distinct
orthogonal geodesic chords in (Bm+1, g).

4Observe that the fact that γqp is the same as γp with the opposite orientation does not imply in principle
that the number of ∂M-focal points along the two geodesics is the same, see Figure 2.
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M

∂M

γ1

γ2

FIGURE 3. When the boundary of M is not connected, one cannot ex-
pect the existence of more than 2 orthogonal geodesic chords, regardless
of the dimension ofM. Consider for instance an annular region ofRm+1

bounded by two non-concentrical spheres. In this situation, the metric is
regular and, if the inner sphere contains the center of the outer sphere in
its interior, then the metric is also non-focal. Thus, sg is an even-Morse
function on a non-connected manifold. However, there are only two or-
thogonal geodesic chords, and thus sg admits only two pairs of critical
points with the same Morse index. Observe that in Remark 1 on page 2
only connected manifolds were considered.

Proof. It follows immediately from Theorem A and Corollary 2.5. �

In next section we will discuss the assumptions of the results proved above, and we will
prove the genericity of the nondegeneracy condition for OGC’s.

3. PROOF OF THEOREM B. A DISCUSSION OF THE ASSUMPTIONS.

3.1. On the genericity of metrics without degenerate OGC’s. Recall that a metric on a
compact Riemannian manifold is called bumpy if every one of its closed geodesic (possibly
iterated) is nondegenerate, i.e., it does not admit non-trivial periodic Jacobi fields. A clas-
sical result due to Anosov [1] asserts that bumpy metric are generic. Genericity of metrics
all of whose geodesics satisfying more general boundary condition are nondegenerate is
proved in [2].

Let us introduce the following terminology. Given a compact manifold M with bound-
ary, a metric g ∈ Reg∗(M) will be called ∂-bumpy if every OGC inM is nondegenerate.

The following is what we need for the conclusion of Theorem B:

Proposition 3.1. LetM be a compact manifold with boundary. The set:

(3.1) R̃eg(M) :=
{
g ∈ Reg∗(M) : g is ∂-bumpy

}
is Ck-generic in Reg∗(M) for all k = 2, . . . ,+∞.

Proof. It suffices to show that R̃eg(M) is Ck-generic in the set of all metrics on M. This
is an application of the result in [2]. In order to obtain the desired conclusion, one must
observe that the proof of [2, Theorem 5.10] yields the genericity of metrics having only
nondegenerate geodesics satisfying arbitrary boundary conditions, provided that one can
exclude a priori the existence of strongly degenerate5 periodic geodesics in this class. This

5The notion of strong degeneracy for a periodic geodesic has been introduced in [2], and it is stated in terms of
the existence of a non-trivial periodic Jacobi field along an iterated periodic geodesic, satisfying some additional
properties. A detailed discussion of this notion is irrelevant in the context of the present paper.
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is always the case for orthogonal geodesic chords, because this class does not contain any
periodic geodesic at all. �

3.2. ∂∂∂MMM-focal points and non-focal metrics. Unlike bumpy metrics, the set of non-focal
Riemannian metrics on a compact manifold with boundary ∂M is not generic in general.

Example 1. For instance, one can construct examples of hypersurfaces Σ inRn, diffeomor-
phic to an (n − 1)-disk, whose set of focal points contains another hypersurface F. Now,
consider the closureΩ of a bounded open subset whose smooth boundary ∂Ω contains Σ,
and such that ∂Ω intercepts F transversally. In this situation, transversality implies that
any C1-perturbation of the flat metric on Ω will produce ∂Ω-focal points along ∂Ω. The
situation is illustrated concretely in Figure 2. The picture provides an example of a metric
which fails to be non-focal, and the same holds also for small perturbations of the metric.

However, the absence of ∂M-focal points on ∂M is still a quite general assumptions,
that holds in a large variety of circumstances. Intuitively, concavity of the boundary (which
is a property satisfied by Jacobi metric) and non-positive curvature have an effect of keep-
ing focal points away from ∂M. More precisely, we can prove that when the sectional
curvature of g and the eigenvalues of the shape operator of ∂M are not too large compared
to the size of M, then there are no ∂M-focal points in M. In order to give basis to this
assertion, let us introduce the following constants.

Let g be a regular metric on M; the maximum of the function sg on ∂M, denoted by
L(M,g) will be called the maximal crossing time of (M,g). Clearly, L(M,g) is somewhat
related to, however in general larger than, the diameter of (M,g). Moreover, denote by Λ
the maximum, for p ∈ ∂M, of the largest eigenvalue of Sp, and by K the maximum value
of the sectional curvatures of all 2-planes tangent toM.

Proposition 3.2. LetM be a compact manifold with smooth boundary.
(a) The set of non-focal metrics onM is open with respect to the C2-topology.
(b) A sufficient condition for a metric g to be non-focal is that the following inequality

holds:

(3.2) K+ · L(M,g)2 +Λ+ · L(M,g) − 1
4
< 0,

(where a+ denotes the positive part of the real numner a.) Condition (3.2) implies indeed
that there is no focal point to ∂M inM.

Proof. The set of focal points to a given compact hypersurface along a normal geodesic
is stable by C2-perturbations of all data. A formal proof of this fact can be found in
reference [13]. From this stability, (a) follows easily.

For the proof of (b), let us show that, under the assumption (3.2), given any p ∈ ∂M, the
index form Ip is positive definite on the space on the vector space Up of (piecewise smooth)
vector fields V along γp satisfying V(0) ∈ Tp(∂M), V

(
sg(p)

)
= 0, and g(V, γ̇p) ≡ 0.

Recall that γp :
[
0, sg(p)

]
→M is a unit speed geodesic.

Let V ∈ Up \ {0} be fixed; up to normalization, we can assume:

(3.3)
∫sg(p)
0

g(V, V) ds = 1.

Since V
(
sg(p)

)
= 0, for all t ∈

[
0, sg(p)

]
we have:

−g
(
V(t), V(t)

)
= 2

∫sg(p)
t

g(V ′, V) ds,

which gives

(3.4) g
(
V(t), V(t)

)
6 2
∫sg(p)
0

g(V ′, V ′)
1
2g(V, V)

1
2 ds.
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Integrating (3.4) on [0, sg(p)] and keeping in mind (3.3), Schwarz’s inequality gives:

(3.5) 1 =

∫sg(p)
0

g(V, V) ds 6 4sg(p)2
∫sg(p)
0

g(V ′, V ′) ds.

Setting t = 0 in (3.4) and using again Schwarz’s inequality, we obtain:

(3.6) g
(
V(0), V(0)

)
6 4sg(p)

∫sg(p)
0

g(V ′, V ′)ds.

Let us now estimate Ip(V, V), using formula (2.4); note that g
(
γ̇p, V)γ̇p, V

)
is equal to

−K(γ̇p, V)g(V, V), where K(γ̇p, V) is the sectional curvature of the 2-plane spanned by
γ̇p and V . Then, using the very definition of the constants Λ and K, we get:

(3.7) Ip(V, V) > −Λg
(
V(0), V(0)

)
+

∫sg(p)
0

[
g(V ′, V ′) − Kg(V, V)

]
ds

by (3.6)
> −4Λ+sg(p)

∫sg(p)
0

g(V ′, V ′) ds+
∫sg(p)
0

[
g(V ′, V ′) − Kg(V, V)

]
ds

by (3.5)
>

[
− 4Λ+sg(p) + 1− 4K

+sg(p)
2
]
·
∫sg(p)
0

g(V ′, V ′) ds.

Note that if V 6= 0, then
∫sg(p)
0 g(V ′, V ′) ds > 0, because V

(
sg(p)

)
= 0, and therefore V

cannot be parallel along γ. Thus, from (3.7) it follows that Ip(V, V) > 0 if:

(3.8) 1− 4Λ+sg(p) − 4K
+sg(p)

2 > 0.

Note that (3.2) coincides with (3.8) when sg(p) = L(M,g). On the other hand, if (3.2) is
satisfied, it is easy to see that (3.8) holds for every p ∈ ∂M. �

For instance, whenM is a ball, from part (a) of Proposition 3.2 we deduce the following:

Corollary 3.3. IfM is diffeomorphic to a ball, then the set of regular and non-focal metrics
onM is a C2-open set that contains all the rotationally symmetric metrics.

Proof. A rotationally symmetric metric in the ball is regular, because the geodesics starting
orthogonally to the boundary are radial, and therefore they arrive transversally (orthogo-
nally) to the boundary at the other endpoint. Moreover, for all these metrics the unique fo-
cal point to the boundary is the center of symmetry, which is far from the boundary. Hence,
sufficiently small perturbations of rotationally symmetric metrics are non-focal. �
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