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Abstract
Recent developments in quantum machine learning have seen the introduction
of several models to generalize the classical perceptron to the quantum regime.
The capabilities of these quantum models need to be determined precisely in
order to establish if a quantum advantage is achievable. Here we use a statis-
tical physics approach to compute the pattern capacity of a particular model
of quantum perceptron realized by means of a continuous variable quantum
system.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Artificial neural networks have proven to be an extremely efficient computational model in spe-
cific tasks such as pattern recognition or image classification and have revolutionized the field
of data analysis on classical computers [1–4]. Artificial neural networks are commonly imple-
mented by classical algorithms on ordinary computers [5]; however, there has been recently a
surge of interest towards the architecture of physical neural networks, i.e. implemented on a
dedicated hardware [6, 7]. At the same time, the advent of quantum computation has shown
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that purely quantum mechanical features such as coherence and entanglement allow to address
hard computational tasks with an exponential improvement of the performances compared to
classical computation [8]. The great success achieved in these two fields is currently motivating
a rapid increase in the studies concerning quantum machine learning, exploring the interaction
between machine learning and quantum computation, with the aim to understand whether the
two fields can benefit from each other.

The simplest model of an artificial neuron traces back to the classical Rosenblatt’s per-
ceptron [9], which can be seen as the simplest learning algorithm for binary classification.
Several possibilities can be considered to implement a perceptron by means of a quantum
architecture [10–16]. In this context it is important to investigate the capability of a particu-
lar model of quantum perceptron to achieve quantum advantages with respect to its classical
counterparts.

The main limitation affecting a single classical perceptron is due to the fact that the classifi-
cation task is performed through a separation of patterns belonging to different classes through
a hyperplane in the vector space containing the N features defining the pattern. In particular,
it was soon pointed out that a simple perceptron is unable to compute the XOR function [17],
since this corresponds to a classification problem where different classes cannot be separated
with a line in the plane. However, it was found that when a large number of features is con-
sidered, i.e. for patterns in a vector space with a large dimension N, given p random labeled
patterns it is extremely unlikely that a perceptron cannot classify them if p < 2N for large N
[18, 19]. On the contrary, the probability that p random labeled patterns can be classified by
a simple perceptron becomes vanishingly small for p > 2N in the large N regime. It became
clear that the important parameter to characterize the performances of a perceptron is then the
ratio α = p/N, and led to identify the critical value of this ratio as the pattern capacity of a
classical perceptron which thus is αc = 2.

In the seminal work [20], Gardner took a new approach to the pattern capacity of neu-
ral networks, adopting tools of statistical physics and in particular methods from the the-
ory of disordered systems. The possibility to find a hyperplane separating randomly labeled
patterns belongs in fact to the class of random constraint satisfaction problems [16, 21,
22], which can be investigated using the statistical theory of spin-glasses. In this approach,
the parameter α gives rise to a phase transition in the high-dimensional case, and the pat-
tern capacity is determined by the critical value αc separating the SAT-phase, for α < αc,
where it is possible to satisfy all the constraints, i.e. classify all the patterns, from the
UNSAT-phase, α > αc, where the minimum number of unsatisfied constraints is larger than
zero.

Here, we will follow Gardner’s statistical approach to derive the pattern capacity of a par-
ticular model of quantum perceptron, based on a continuous variable multi-mode quantum
system, which was introduced in [14]. We show that this model offers no quantum advan-
tage over its classical counterpart, since its capacity is always smaller than that of its classical
limit.

The article is structured as follows. In section 2 we introduce the classical perceptron
and the definition of its pattern capacity. In section 3 we describe the model of quan-
tum perceptron under investigation, and present the resulting pattern capacity. In section 5
we explain in detail the techniques employed, based on the same statistical approach
used by Gardner to determine the pattern capacity of a classical perceptron. Finally, in
section 4 we discuss the results herewith achieved comparing them with the pattern capac-
ity also obtained by means of the statistical approach, but for a different model of quantum
perceptron.
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Figure 1. Schematic representation of the mathematical model of a perceptron.

2. The classical perceptron and its capacity

A classical perceptron is a mathematical model that mimics the functioning of a physical
neuron. By referring to figure 1, given an input pattern, namely an N-dimensional vector
x = (x1, . . . , xn) with xi real or discrete (eventually binary), a perceptron computes an affine
transformation

x �−→ z := x ·w + b, (1)

with real parameters w = (w1, . . . ,wn) and b, called weights and bias, respectively. Subse-
quently, the perceptron evaluates on the output z an activation function f : R→ R, eventually
yielding the final result y := f (z).

There exist different possible activation functions, some being more computationally effi-
cient like sgn(z), and others more biologically inspired as the hyperbolic tangent f (z) =
(ez − e−z)/(ez + e−z), or the sigmoid function f (z) = 1/(1 + e−z).

In the following, we consider the activation function sgn(z) and, for the sake of simplicity,
b = 0 (note however that one can always include a bias by adding a component to patterns and
weights, and consider for the additional component x0 = 1 and w0 = b). In such a context,
a binary classification problem amounts to assigning an input pattern to one of two possible
classes, indexed by a dichotomic variable ξ ∈ {−1, 1}. In the following, we focus on input
patterns with binary entries,

Π := {xμ ∈ {−1, 1}N : 1 � μ � p} , (2)

and denote with

Ξ :=
{
ξ = {ξμ}p

μ=1 : ξμ = ±1
}

(3)

the set containing the 2p = card(Ξ) possible classifications of the given p patterns. Such a
classical perceptron classifies the patterns by means of a suitably chosen weight vectorw ∈ R

N

which performs a linear separation of the input space choosing the activation function f (z) to
be f (z) = sgn(z). We then define:

yμ := sgn(w · xμ), 1 � μ � p. (4)

If a particular target classification ξ ∈ Ξ is fixed, we say that the perceptron correctly classifies
the input patterns if yμ = ξμ for each μ = 1, . . . , p. For later convenience it is useful to express
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this requirement in a different way introducing the pattern stabilities

Δμ = ξμ
w · xμ

‖w‖ , (5)

where ‖w‖ =
√∑

j w
2
j denotes the weight Euclidean norm. The classification of the input

patterns is correct with respect to a chosen target classification ξ if

Δμ � 0 for each μ = 1, . . . , p. (6)

From a geometric point of view, equation (6) expresses the fact that the hyperplane in R
N

perpendicular to w separates the patterns xμ with ξμ = +1 from patterns with ξμ = −1.

Example 1. The four binary patterns

Π = {x1 = (−1,−1) , x2 = (−1, 1) , x3 = (1,−1) , x4 = (1, 1)}

are associated with 24 = 16 dichotomies. Sending x �→ (1 + x)/2, the chosen patterns consti-
tute a two-bit random variable with values (i, j), i, j = 0, 1, and the choice ξ = (−1, 1, 1,−1)
implements the XOR binary gate

XOR(0, 0) = 0 , XOR(0, 1) = 1 , XOR(1, 0) = 1 , XOR(1, 1) = 0.

The so-called XOR problem [17] in machine-learning exactly corresponds to the impossibility
of computing the function XOR by means of a perceptron, since it is not possible to find a line
in R

2 which separates x1 and x4 from x2 and x3.

The XOR problem indicates that it is not always possible to associate to a set of patterns Π
the correct target classification ξ by using a perceptron. The existence of a particular choice
of weights which realizes the desired classification depends on the particular set Π and on
the target classification ξ considered. A natural way to proceed is to consider a statistical
approach, where one fixes the total number of patterns p and constructs the pattern set Π by
selecting randomly p points from {−1, 1}N, and choose independently the corresponding target
classifications ξμ.

In the approach introduced by Gardner in [20], the capacity of a perceptron is related to the
volume of the subset of RN consisting of those weights w ∈ R

N of definite length ‖w‖ that
correctly classify the given input patterns Π. In this context the condition (6) is strenghtened
in order to include the possibility of the additional requirement of finite stability κ > 0, which
amounts to requiring that the quantity defined in (5)

Δμ > κ for each μ = 1, . . . , p. (7)

Remark 2. From a practical perspective, the introduction of a finite stability requirement
allows one to obtain a perceptron that may diminish classification errors in the presence of
wrong input patterns. For example, because of the presence of some noise, it can happen that
instead of the correct pattern xμ, an altered version of it is presented to the perceptron, say x̃μ,
where some sign is changed, i.e. x̃μj = −xμj for some j = 1, . . . , N. In such a case, the request
κ = 0 might lead to an error if the corresponding stability Δμ > 0. On the other hand, the more
restrictive request κ > 0 would not if Δμ < κ.
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Due to the definition of the quantities Δμ, the validity of the conditions (6) is independent
on the normalization of the weight vector w, which implies that we can suitably fix it and
compute the relative volume of weights that satisfy the conditions (7) among the weights with
a fixed norm. We choose it to be ‖w‖2 = N (which corresponds to taking vectors w whose
components are O(1)), so that the relative volume of interest can be written as:

V :=V
(
{ξμxμ}p

μ=1

)
=

1
CN

∫
RN

dw δ(‖w‖2 − N)
p∏

μ=1

θ (Δμ − κ) , (8)

where θ denotes the Heaviside step function, θ(z) = 1 for z � 0 and zero otherwise,

CN =

∫
RN

dw δ(‖w‖2 − N) =
πN/2NN/2−1

Γ(N/2)
∼
√

(2πe)N

4πN
(9)

is the reference volume of weights contained in the hypersphere of radius
√

N, Γ(z) is the
Gamma function and the large N behaviour follows from the Stirling approximation. The
expression (8) resembles a statistical-mechanical partition function, where the conventional
exponential weight is replaced by an all-or-nothing weight given by the step functions. In
analogy with statistical mechanics, the relevant quantity is actually ln V rather than V itself,
of which we will compute the average 〈ln V〉 with respect to the identically and independently
distributed stochastic variables ξμ, xμj , with μ = 1, 2, . . . , p, and j = 1, 2, . . . , N.

Using the replica method [20], Gardner showed the existence of a critical value of α,
given by

αc(κ) =

[∫ ∞

−κ

dt√
2π

e−t2/2(t + κ)2

]−1

, (10)

such that for α < αc(κ) the following limit holds:

lim
N,p→∞
p/N=α

〈ln V〉
N

= min
0�q�1

{
α

∫
dt√
2π

e−
t2
2 ln

[
1 − Φ

(
t
√

q + κ√
1 − q

)]
+

q
2(1 − q)

+
ln(1 − q)

2

}
≡ F (α,κ), (11)

where

Φ(x) :=
1√
2π

∫ x

−∞
e−t2/2dt, (12)

while for α > αc(κ):

lim
N,p→∞
p/N=α

〈ln V〉
N

= −∞. (13)

Gardner’s statistical approach was later reformulated in a mathematically rigorous setting
[23, 24], where it was pointed out that the random variable N−1 ln V is self-averaging. Namely,
deviations from the average N−1〈ln V〉 become vanishingly small in the limit N →∞. In other
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words, the average N−1〈ln V〉 is a good representative of what happens for almost all realiza-
tions of the random variable N−1 ln V , each realization corresponding to a particular choice of
the random patterns and classifications {xμ, ξμ}p

μ=1.
According to such an observation, equations (11) and (13) can be interpreted as follows: for

α < αc(κ) the relative volume of weights that are able to correctly classify a random choice
of the patterns is approximately V ∼ exp(−F (α,κ) N), while above the critical value, that is
when α > αc(κ), the relative volume is more than exponentially vanishing with N, i.e. V =
o(exp(−cN)).

3. Continuous variable quantum perceptron: pattern capacity

We will now use the classical statistical approach outlined above to compute the pattern capac-
ity of the particular quantum perceptron introduced in [14] and schematically represented by
the quantum circuit in figure 2. In this model, the components x j of an input pattern x are
encoded by states of the form

|ψ j〉 =
1

(2πσ2
j )1/4

∫ +∞

−∞
dq j exp

(
− (q j − x j)2

4σ2
j

)
|q j〉 , (14)

which are Gaussian weighted normalized superpositions of pseudo-eigenstates |q j〉 of position-
like operators q, centered around the pattern components x j with width σ j. A pattern x is then
encoded into the tensor product state

|Ψ〉 =
N⊗

j=1

|ψ j〉 =
N∏

j=1

1
(2πσ2

j )1/4

∫ +∞

−∞
dq j exp

(
− (q j − x j)2

4σ2
j

)
N⊗

j=1

|q j〉 . (15)

Such state is then provided as input to the quantum circuit in figure 2, which firstly operates
with a series of independent squeezing operators

S j(r j) = ei r j (q jpj+pjq j) , e−2r j = w j, (16)

where pj is a momentum-like operator conjugated to q j, [qj, pj] = i. In order to implement

negative weights, a phase shift gate ei π2 (q2+p2) is operated after the squeezing, thus sending
position eigenstates |q j〉 into |w jq j〉.

Then, the circuit acts with an entangling controlled addition gate CX on pairs of consecutive
states:

CX := exp
(
−i q j ⊗ pj+1

)
, CX |q j, q j+1〉 = |q j, q j + q j+1〉. (17)

The combined action on the attenuated multi-mode position eigen-state of the n − 1 CX gates
of the circuit in figure 2 is then given by

|w1q1,w2q2, . . . ,wnqn〉 → |w1q1,w1q1 + w2q2, . . . ,wnqn〉 → . . .

. . .→
∣∣∣∣w1q1,w1q1 + w2q2, . . . ,

N∑
j=1

w jq j

〉
.

(18)

6
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Figure 2. Scheme for a continuous valued quantum perceptron.

Then, the amplitude associated to the last mode position eigenstate is given by the Gaussian
distribution centered around w · xμ:

ψw,xμ(s) =
1(

2π
∑

j w
2
jσ

2
j

)1/4 exp

(
− (s −w · xμ)2

4
∑

j w
2
jσ

2
j

)
. (19)

The variances σ2
j can be suitably chosen. Here, we will consider the case σ2

j = σ2 for all j.
Homodyne detection operated on the last mode yields the outcome probability

Pw,xμ,σ(s) = |ψw,xμ(s)|2 = 1√
2π‖w‖σ

exp

(
− (s −w · xμ)2

2‖w‖2σ2

)
. (20)

Consequently a pattern xμ is classified as σ = +1 if the result is above some threshold
κ‖w‖, and σ = −1 if it is below −κ‖w‖, while the pattern is not classified when the mea-
surement result is between (−κ‖w‖,κ‖w‖). Then, whether a pattern is correctly classified or
not becomes a binary stochastic variable for which the probability of correct classification of
the pattern μ is

Rμ(κ) =
∫ +∞

−∞
ds Pw,xμ,σ(s)θ

(
ξμ

s
‖w‖ − κ

)
. (21)

Depending on the actual outcome of the measurement process, the ancilla mode appended to
the initialized first N ones will then be changed accordingly. For this classification problem
the ancilla can be taken as a qutrit, which is initialized in some reference state, while two
orthogonal states are used to store respectively the classifications σ = +1 and σ = −1.

Remark 3. Notice that the classical perceptron action is exactly encoded by the position-like
pseudo-autokets |q1, q2, . . . , qN〉. However, such an ideal situation can only be approximated
in practice. One useful way to achieve it is via Gaussian smoothening, the narrowing of the
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weights thus corresponding to the classical deterministic limit of the proposed continuous
quantum perceptron.

3.1. Results

Notice that a pattern which would be correctly classified by a classical perceptron (i.e. a pat-
tern for whichΔμ > 0) has a non-vanishing probability of being misclassified by such a model
of quantum perceptron, namely Rμ < 1 even if Δμ > κ. Viceversa, even if the classical per-
ceptron misclassifies ξμ yielding Δμ < κ, the quantum one would classify it correctly with
some probability. This kind of error comes from the random character of the outcomes s of the
homodyne measurement which yields the value s either in (−∞,κ‖w‖] ∪ [κ‖w‖,∞) or in
(−κ‖w‖,κ‖w‖). Because of the unavoidable presence of the stochastic error due to the quan-
tum setting and the corresponding rendering of the perceptron non-linearity by a homodyne
quantum measurement, the computation by Gardner requires the introduction of an additional
parameter ε establishing a threshold for the acceptable probability of error in the classification
of each pattern. Then, the relative volume we are interested in is given by

V :=V({xμ, ξμ}p
μ=1) =

1
CN

∫
RN

dw δ(‖w‖2 − N)
p∏

μ=1

θ (Rμ(κ) − 1 + ε) . (22)

Remark 4. In equation (22) we are computing the volume in the space of weights which
guarantees that the probability of making an error on each pattern is smaller than ε, that will
then be chosen smaller than 1/2. This does not imply that εp � p/2 errors will occur on average
for the ppatterns, but rather that εp � p/2 is an upper bound to the number of the patterns which
will be misclassified by the perceptron.

As before, the statistically relevant quantity is 〈ln V〉, which can be computed using the
replica method together with the replica symmetric ansatz, as detailed in the next section.
We obtain that the pattern capacity of the quantum model presented is given by the critical
value

αq
c(κ, ε, σ) = αc(κ̃), (23)

where

κ̃ = κ+ σΦ−1(1 − ε). (24)

In particular, the following limits hold (they can be obtained from (44), (46) and (52) in
section 5):

lim
N,p→∞
p/N=α

〈ln V〉
N

= F (α, κ̃) (25)

for α < αc(κ̃), where F is the same as in equation (11), while for α > αc(κ̃)

lim
N,p→∞
p/N=α

〈ln V〉
N

= −∞. (26)

Sinceαc(κ) is decreasing in κ, equation (24) implies that (recall that 0 < ε < 1/2) the quan-
tum pattern capacity cannot be larger than its classical counterpart (see also figure 3). The proof
of the above result is detailed in a dedicated section after the discussion.
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Figure 3. αc(κ) is monotonically decreasing in κ, and Φ−1(1 − ε) is positive for
0 < ε < 1/2. Then, for 0 < ε < 1/2, αq

c(κ, ε,σ) < αc(κ).

4. Discussion

In the specific setting considered, a continuous variable quantum perceptron cannot thus pro-
vide any quantum advantage as far as its pattern capacity is concerned. The main reason under-
lying such conclusion is that the quantum perceptron closely resembles a stochastic classical
perceptron due to the uncertainty in the outcomes of the (homodyne) measurements necessary
to extract the relevant information, namely the stabilities Δμ in (5). Notice that, according to
remark 3, the functioning of the classical perceptron is recovered from the quantum model pro-
posed by letting the Gaussian widths σ → 0, so that (20) gives limσ→0 Pw,xμ,σ = δ(s −w · x),
and κ̃→ κ, as it should be.

The statistical, replica-trick techniques adopted in our investigation are however quite flex-
ible, so that they could be possibly employed to explore different and less classically inspired
models of quantum perceptrons. Indeed, upon completion of this work, we discovered that one
such attempt has been recently made in [25]. The model considered there is a discrete vari-
able model where the step functions are computed not on Δμ − κ, rather on |Δμ|2 − κ. In this
way, Gardner’s statistical approach results insensitive to the sign of the stability. Instead, in
our case we infer the value of sgn(Δμ) by measuring a Gaussianly distributed parameter (see
(20) and the corresponding discussion), which mimics the functioning of a stochastic classical
perceptron. Using the same statistical techniques employed here, the authors of [25] find that
the pattern capacity of that model is twice the classical capacity. Also, differently from the case
studied in this work, the use of the measured probabilities as arguments of activations func-
tions makes somewhat difficult to provide a classical limit for this discrete-variable quantum
perceptron with which to compare the advantages it brings about.

In this respect, in order to better understand whether quantum advantages can be expected
and how they can be achieved, an avenue certainly to be explored is the more information-
rooted approach [26] that considers the information stored in a perceptron rather than the
number of patterns. Furthermore, the fact that in the continuous model of binary classifica-
tion by means of a single quantum perceptron here discussed there is no quantum advantage,
does not exclude that quantum advantages could come from networks of continuous quantum
perceptrons. Assemblies consisting of more than one perceptron should indeed be used for
non-binary classification schemes; in such cases constructive quantum interferences could in
line of principle lead to higher pattern capacities than in the classical case. However, for that

9
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purpose Gardner’s statistical approach should be extended to networks first in the classical and
then in the quantum scenario, which is outside of the scope of the present work and will be
matter of further investigation.

5. Methods

In the following we present the derivation of equation (23). Using the replica trick, one has to
compute

〈ln V〉 = lim
n→0

〈Vn〉 − 1
n

, (27)

by evaluating 〈Vn〉 for n integer, and then taking the limit n → 0. The quantity we need is then:

〈Vn〉 = 1
Cn

N

〈
n∏

γ=1

∫
RN

dwγ δ(‖wγ‖2 − N)
p∏

μ=1

θ
(
Rμ
γ (κ) − 1 + ε

)〉
. (28)

Using the integral representation

θ(x − γ) =
∫ ∞

γ

dz δ(z − x) =
∫ ∞

γ

dz
∫ ∞

−∞

dy
2π

eiy(z−x), (29)

one writes

θ
(
Rμ
γ (κ) − 1 + ε

)
=

∫ ∞

1−ε

dzμγ
2π

∫ ∞

−∞
dyμγ eiyμγ zμγ e−iyμγRμ

γ (κ). (30)

Now resorting to the fact that each pattern is independent from the other ones, we can factor
the average into:〈

p∏
μ=1

n∏
γ=1

θ
(
Rμ
γ (κ) − 1 + ε

)〉
=

p∏
μ=1

〈
n∏

γ=1

θ
(
Rμ
γ (κ) − 1 + ε

)〉

=

p∏
μ=1

∫
[1−ε,∞)n

(
n∏

γ=1

dzμγ
2π

)∫
Rn

(
n∏

γ=1

dyμγ

)

× ei
∑n

γ=1yμγ zμγ

〈
n∏

γ=1

e−iyμγRμ
γ (κ)

〉
. (31)

Then, we have to go through the computation of:〈
n∏

γ=1

e−iyμγRμ
γ (κ)

〉
Π,ξ

, (32)

10
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where we wrote explicitly the variables over which we are averaging. The details of the
calculation are given in appendix A, the final result being:〈

p∏
μ=1

n∏
γ=1

θ
(
Rμ
γ (κ) − 1 + ε

)〉

=

[∫
[1−ε,∞)n

(
n∏

γ=1

dzγ
2π

)∫
Rn×Rn×Rn

(
n∏

γ=1

dλγdyγdωγ

2π

)
eK({λγ},{yγ},{ωγ},{qγδ})

]p

, (33)

where

K({λγ}, {yγ}, {ωγ}, {qγδ}): = i
n∑

γ=1

yγ
[
zγ − Φ(λγ)

]
− i

n∑
γ=1

(κ
σ
+ λγ

)
ωμ
γ

− 1
2σ2

n∑
γ,δ=1

qγδωγωδ (34)

and

qγδ =
1
N

N∑
j=1

wγ
j w

δ
j , for γ, δ = 1, . . . , n, (35)

(satisfying qγγ = 1 due to the constraint ‖wγ‖ =
√

N) are order parameters introduced by
means of delta functions,

δ

⎛⎝qγδ −
1
N

N∑
j=1

wγ
j w

δ
j

⎞⎠= N
∫ +∞

−∞

dFγδ

2π
exp

⎛⎝−iNqγδFγδ + iFγδ

N∑
j=1

wγ
j w

δ
j

⎞⎠ ,

(36)

which involves the introduction of further parameters Fγδ , for γ �= δ. Similarly, from the
integral representation

δ

⎛⎝ N∑
j=1

(wγ
j )2 − N

⎞⎠ =

∫ +∞

−∞

dEγ

4π
exp

⎡⎣i
Eγ

2

⎛⎝N −
N∑

j=1

(wγ
j )2

⎞⎠⎤⎦ , (37)

we get further order parameters Eγ , for γ = 1, . . . , n. Then, 〈Vn〉 can be globally rewritten as:

〈Vn〉= 1
Cn

N

∫
Rn×Rn(n−1)/2×Rn(n−1)/2

(
n∏

γ=1

dEγ

)⎛⎜⎜⎝ n∏
γ,δ=1
γ<δ

dqγδ dFγδ

⎞⎟⎟⎠ eNG({qγδ},{Fγδ},{Eγ}) , (38)

where

G({qγδ}, {Fγδ}, {Eγ}) = αG1({qγδ}) + G2({Fγδ}, {Eγ}) + G3({qγδ}, {Fγδ}, {Eγ}), (39)

11
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with

G1({qγδ}) = ln

[∫
[1−ε,∞)n

(
n∏

γ=1

dzγ
2π

)∫
Rn×Rn×Rn

(
n∏

γ=1

dλγdyγdωγ

2π

)
eK({λγ},{yγ},{ωγ},{qγδ})

]
(40)

G2({Fγδ}, {Eγ}) = ln

⎡⎢⎢⎣∫
Rn

(
n∏

γ=1

dwγ

)
exp

⎛⎜⎜⎝− i
2

n∑
γ=1

Eγ(wγ)2 + i
n∑

γ,δ=1
γ<δ

Fγδw
γwδ

⎞⎟⎟⎠
⎤⎥⎥⎦ (41)

G3({qγδ}, {Fγδ}, {Eγ}) = −i
n∑

γ,δ=1
γ<δ

Fγδqγδ +
i
2

n∑
γ=1

Eγ. (42)

When N is large, the behaviour of 〈Vn〉 can be obtained using the saddle-point approximation:

〈Vn〉 � 1
Cn

N
eNG(zS)

√
2π

N|det G′′(zS)| , (43)

where zS = ({qS
γδ}, {FS

γδ}, {ES
γ}) is the stationary point of G, and G′′(zS) denotes the Hessian

matrix of G at the stationary point.
Using (43), and the fact that 〈Vn〉 → 1 as n → 0, we can write:

〈ln V〉
N

= lim
n→0

〈Vn〉 − 1
nN

= lim
n→0

ln〈Vn〉
nN

= lim
n→0

1
n

[
G(zS) − ln Cn

N

N
+

1
2N

ln

(
2π

N|det G′′(zS)|

)]
= lim

n→0

G(zS)
n

− ln(2πe)
2

+ O

(
ln N

N

)
. (44)

5.1. Replica-symmetric ansatz

At this point the replica-symmetric ansatz is made, which consists in the assumption that the
stationary point of G can be found among the points z = ({qγδ}, {Fγδ}, {Eγ}) such that:

qγδ = q Fγδ = F Eγ = E, (45)

12
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for all γ, δ = 1, . . . , n, with γ �= δ. In the following, we denote with

GRS(q, F, E) = αGRS
1 (q) + GRS

2 (F, E) + GRS
3 (q, F, E)

the restriction of G onto the replica-symmetric subspace. The details of the derivation of GRS
1 (q)

are given in appendix B, which yields:

GRS
1 = ln

[∫ ∞

−∞
dt

e−t2/2

√
2π

(
1 − Φ

(
κ̃+ t

√
q√

1 − q

))n
]
. (46)

In the limit n → 0 we obtain the asymptotic expansion

GRS
1 = n

∫ ∞

−∞
dt

e−t2/2

√
2π

ln

(
1 − Φ

(
κ̃+ t

√
q√

1 − q

))
+ O(n2), (47)

which follows from the fact that for n → 0:

ln

[∫ ∞

−∞
dt

e−t2/2

√
2π

f (t)n

]
= ln

[
1 +

∫ ∞

−∞
dt

e−t2/2

√
2π

( f (t)n − 1)

]

=

∫ ∞

−∞
dt

e−t2/2

√
2π

( f (t)n − 1) + O(n2)

= n
∫ ∞

−∞
dt

e−t2/2

√
2π

ln( f (t)) + O(n2). (48)

The derivation of GRS
2 follows simply by a Gaussian integration:

GRS
2 (F, E) =

1
2

ln

(
(2πi)n

det Λ

)
, (49)

whereΛγδ = −(E + F)δγδ + F. The determinant is easily computed by noticing that the matrix
Λ has one non-degenerate eigenvalue λ1 = −E + nF and a (n − 1)-degenerate eigenvalue
λ2 = −(E + F), so that we can write

GRS
2 =

1
2

ln

[
(2πi)n

(−1)n(E + F)n−1(E − (n − 1)F)

]
=

n
2

(
ln(2π) − ln(iE + iF) +

F
E + F

)
+ O(n2). (50)

Finally, the last term is simply given by;

GRS
3 (q, F, E) = i

n
2

(E + qF) + O(n2). (51)

13
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Therefore, in the limit n → 0 we have:

1
n

GRS(q, F, E) = α

∫ +∞

−∞

dt√
2π

e−t2/2 ln

[
1 − Φ

(
t
√

q + κ̃√
1 − q

)]
+

1
2

(
ln(2π) − ln(iE + iF) +

F
E + F

+ iE + iqF

)
. (52)

The saddle point equations ∂GRS

∂E = 0 and ∂GRS

∂F = 0 can readily be solved, giving

FS(q) = − iq
(1 − q)2

, ES(q) = −i
1 − 2q

(1 − q)2
, (53)

which, substituted into GRS, yield:

1
n

GRS(q, FS(q), ES(q)) = α

∫ +∞

−∞

dt√
2π

e−t2/2 ln

[
1 − Φ

(
t
√

q + κ̃√
1 − q

)]
+

ln(2π)
2

+
ln(1 − q)

2
+

q
2(1 − q)

+
1
2
. (54)

Setting ∂GRS/∂q = 0 in (54) we get the saddle point equation

α

∫
dt√
2π

e−t2/2A
(
κ̃+ t

√
q√

1 − q

)
t + κ̃

√
q

2
√

q(1 − q)3/2
=

q
2(1 − q)2

, (55)

where

A(u) :=
1√
2π

e−u2/2

1 − Φ(u)
. (56)

The most important order parameter is q, whose value at the replica symmetric-saddle point
represents the most probable average overlap (35) between a pair of solutions to (7). Forα→ 0,
equation (55) gives q → 0: in this case almost allw’s solve (7), and the typical overlap between
random pairs of w in the space of interactions is vanishing. As α grows, it becomes harder
and harder to find solutions, hence the typical overlap between them increases. The optimal
perceptron corresponds to the limit q → 1, when there is only a single solution solving the
problem with the given stability κ, and the corresponding value of α is the critical storage
capacity αq

c(κ, ε, σ). The critical value of αq
c (κ, ε, σ) is obtained thus by equation (55) taking

the limit q → 1:

1
αq

c(κ, ε, σ)
= lim

q→1

∫
dt√
2π

e−t2/2A
(
κ̃+ t

√
q√

1 − q

) √
1 − q
q3/2

(t + κ̃
√

q). (57)

Using the asymptotic expansion

A(u) = u + O

(
1
u

)
for u →∞ (58)

and A(u) → 0 as u →−∞, one obtains that

lim
q→1

A
(
κ̃+ t

√
q√

1 − q

) √
1 − q
q3/2

(t + κ̃
√

q) = (t + κ̃)2θ(t + κ̃). (59)
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Then, by the dominated convergence theorem, equation (57) gives the final result:

αq
c(κ, ε, σ) =

[∫ ∞

−κ̃

dt√
2π

e−t2/2(t + κ̃)2

]−1

= αc(κ̃). (60)
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Appendix A. Derivation of (33)

Since xμj and ξμ are independent random variables, the average over the ξμ’s can be carried out
immediately, yielding:

〈
n∏

γ=1

e−iyμγRμ
γ (κ)

〉
Π,ξ

=
1
2

⎡⎣〈 n∏
γ=1

exp

(
−iyμγ

∫ ∞

κ‖wγ‖
ds Pwγ ,xμ(s)

)〉
Π

+

〈
n∏

γ=1

exp

(
−iyμγ

∫ −κ‖wγ‖

−∞
ds Pwγ ,xμ(s)

)〉
Π

⎤⎦ . (A.1)

Now noting that ∫ ∞

κ‖w‖
ds Pw,x(s) = 1 − Φ

(
κ

σ
− w · x

‖w‖σ

)
, (A.2)

∫ −κ‖w‖

−∞
ds Pw,x(s) = Φ

(
−κ

σ
− w · x

‖w‖σ

)
, (A.3)

using the fact that 1 − Φ (x) = Φ (−x), and recalling that we are integrating over the sphere
with ‖w‖ =

√
N, we have

〈
n∏

γ=1

e−iyμγRμ
γ (κ)

〉
Π,ξ

=
1
2

⎡⎣〈 n∏
γ=1

exp

(
−iyμγΦ

(
wγ · xμ

σ
√

N
− κ

σ

))〉
Π

+

〈
n∏

γ=1

exp

(
−iyμγΦ

(
−κ

σ
− wγ · xμ

σ
√

N

))〉
Π

⎤⎦ .
(A.4)
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In order to compute the averages of the two terms inside the square brackets, we write the
functions fy(λ) = e−iyΦ(λ) in terms of their Fourier transforms:

fy(λ) =
1√
2π

∫
dω eiωλ f̂y(ω), f̂y(ω) =

1√
2π

∫
dt e−iωt fy(λ). (A.5)

We can then write:〈
n∏

γ=1

exp

(
−iyμγΦ

(
wγ · xμ

σ
√

N
− κ

σ

))〉
Π

=
1

(2π)n/2

∫
Rn

(
n∏

γ=1

dωμ
γ

)〈
exp

(
i

n∑
γ=1

ωμ
γ

wγ · xμ

σ
√

N

)〉
Π

e−i κσ
∑n

γ=1 ω
μ
γ

n∏
γ=1

f̂ yμγ
(ωμ

γ )

=
1

(2π)n/2

∫
Rn

(
n∏

γ=1

dωμ
γ

)
exp

⎡⎣ N∑
j=1

ln cos

(
1

σ
√

N

n∑
γ=1

wγ
j ω

μ
γ

)⎤⎦e−i κσ
∑n

γ=1 ω
μ
γ

n∏
γ=1

f̂ yμγ
(ωμ

γ )

� 1
(2π)n/2

∫
Rn

(
n∏

γ=1

dωμ
γ

)
exp

⎛⎝− 1
2σ2

n∑
γ,δ=1

qγδω
μ
γω

μ
δ

⎞⎠ e−i κσ
∑n

γ=1 ω
μ
γ

n∏
γ=1

f̂ yμγ
(ωμ

γ ),

(A.6)

where qγδ are the order parameters introduced in (35).
Using equation (A.5) we get:〈

n∏
γ=1

exp

(
−iyμγΦ

(
wγ · xμ

σ
√

N
− κ

σ

))〉
Π

� 1
(2π)n

∫
Rn

(
n∏

γ=1

dλμ
γ

)
e−i

∑n
γ=1 yμγΦ(λμγ )

×
∫
Rn

(
n∏

γ=1

dωμ
γ

)
e−i

∑n
γ=1 (κ/σ+λ

μ
γ )ωμ

γ

× exp

⎛⎝− 1
2σ2

n∑
γ,δ=1

qγδω
μ
γω

μ
δ

⎞⎠ . (A.7)

The computation of the second term in square brackets of equation (A.4) is completely
analogous and leads to the same result. We can thus write〈

n∏
γ=1

e−iyμγRμ
γ (κ)

〉
Π,ξ

�
∫
Rn

(
n∏

γ=1

dλμ
γ

2π

)∫
Rn

(
n∏

γ=1

dωμ
γ

)

× exp

(
−i

n∑
γ=1

yμγΦ(λμ
γ ) − i

n∑
γ=1

(κ
σ
+ λμ

γ

)
ωμ
γ −

1
2σ2

n∑
γ,δ=1

qγδω
μ
γω

μ
δ

⎞⎠
(A.8)
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which can be inserted into (31) to finally obtain:〈
p∏

μ=1

n∏
γ=1

θ
(
Rμ
γ (κ) − 1 + ε

)〉
�

p∏
μ=1

∫
[1−ε,∞)n

(
n∏

γ=1

dzμγ
2π

)

×
∫
Rn×Rn×Rn

(
n∏

γ=1

dλμ
γdyμγdωμ

γ

2π

)
eK({λμγ},{yμγ},{ωμ

γ },{qγδ}),

(A.9)

where K is given in (34). Then, using the fact that the factors in the product corresponding to
each μ = 1, . . . , p are all equal, we can drop the μ index from the integration variables and
finally obtain (33).

Appendix B. Derivation of GRS
1 (q)

The restriction of (34) to the replica symmetric subspace gives

KRS({λγ}, {yγ}, {ωγ}, q) = i
n∑

γ=1

yγ
[
zγ − Φ(λγ )

]
− i

n∑
γ=1

(κ
σ
+ λγ

)
ωγ

− 1 − q
2σ2

n∑
γ=1

ω2
γ −

q
2σ2

(
n∑

γ=1

ωγ

)2

(B.1)

and the integration over the ωγ variables in (40) can now be carried out, yielding:

∫
Rn

(
n∏

γ=1

dωγ

)
exp

⎛⎜⎜⎝−i
n∑

γ=1

(κ
σ
+ λγ

)
ωμ
γ − q

2σ2

n∑
γ,δ=1
γ �=δ

ωγωδ −
1

2σ2

n∑
γ=1

(ωγ)2

⎞⎟⎟⎠

= σn

∫
Rn

(
n∏

γ=1

dω̃γ

)
exp

⎛⎝−i
n∑

γ=1

(
κ+ σλγ

)
ω̃μ
γ −

q
2

(
n∑

γ=1

ω̃γ

)2

− 1 − q
2

n∑
γ=1

(ω̃γ)2

⎞⎠

=

∫ +∞

−∞
dt

e−t2/2

√
2π

n∏
γ=1

[√
2πσ2

1 − q
exp

(
− (κ+ λγσ +

√
qt)2

2(1 − q)

)]
, (B.2)

where the first equality follows from a change of variables and the second one follows from
a Gaussian integration after a linearization of the quadratic term using the Gaussian integral
trick

e−
q
2

(∑n
γ=1 ωγ

)2

=

∫ ∞

−∞

dt√
2π

e−
t2
2 +i

√
q

t
∑n

γ=1 ωγ . (B.3)

Using (B.2) into (40) and a rescaling of the λ variables, we can write the integral inside the
logarithm in (40) as:
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∫ +∞

−∞
dt

e−t2/2

√
2π

n∏
γ=1

∫ +∞

−∞

dλγ√
2π(1 − q)

∫ ∞

1−ε

dzγ
2π

∫
dyγ e−iyγ [zγ−Φ(λγ/σ)]

× exp

(
− (κ+ λγ +

√
qt)2

2(1 − q)

)

=

∫ +∞

−∞
dt

e−t2/2

√
2π

(∫ +∞

−∞

dλ√
2π(1 − q)

∫ ∞

1−ε

dz
2π

∫
dy e−iy[z−Φ(λ/σ)]

× exp

(
− (κ+ λ+

√
qt)2

2(1 − q)

))n

=

∫ +∞

−∞
dt

e−t2/2

√
2π

(∫ +∞

−∞

dλ√
2π(1 − q)

θ

[
Φ

(
λ

σ

)
− 1 + ε

]

× exp

(
− (κ+ λ+

√
qt)2

2(1 − q)

))n

, (B.4)

where the first equality follows from the fact that factors corresponding to different γ’s are all
equal to each other, and the second equality follows from the integral representation of the θ
function. After a further change of the integration variables, (B.4) can be rewritten as∫ +∞

−∞
dt

e−t2/2

√
2π

(∫ ∞

κ+σΦ−1(1−ε)

dλ√
2π(1 − q)

exp

(
− (λ+

√
qt)2

2(1 − q)

))n

=

∫ +∞

−∞
dt

e−t2/2

√
2π

(
1 − Φ

(
κ̃+

√
qt√

1 − q

))n

, (B.5)

which is the argument of the logarithm in (46).
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