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Summary

Buckling‐restrained braces (BRBs) have proven to be very effective in improv-

ing the seismic performance of existing and new structures. They provide

strength, stiffness and add energy dissipation to the structure. However, being

BRBs characterized by a low post‐elastic stiffness, their use may lead to resid-

ual deformations hindering the building's reparability and to excessive cumu-

lative ductility demand possibly compromising the residual capacity of BRBs.

To overcome these drawbacks, BRB frames (BRBFs) can be coupled with

moment‐resisting frames (MRFs) to form dual systems. If properly designed,

MRFs acting as back‐up frames allow the control of the residual drifts and the

optimization of the performance of the BRBs. The contribution of this study is

to provide insights into the performance and residual capacity of BRBFs‐MRFs

dual systems and to shed light on the influence of the main BRB's design

parameters. To this end, a nondimensional formulation of the equation of

motion is introduced for a single degree of freedom system, and an extensive

parametric study is performed for a set of natural ground motion records with

different characteristics and scaled to various intensity levels. This allows the

investigation of a wide range of configurations, considering different levels of

the relative strength and ductility demand of BRBFs and MRFs, and obtains

useful information for their design. Finally, two case study frames, modeled as

two‐dimensional nonlinear multi‐degree of freedom systems, are analyzed,

and the results were compared to those obtained from the nondimensional for-

mulation to show the capabilities and the limitations of the adopted methodol-

ogy and of the SDOF approximation.
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1 | INTRODUCTION

Buckling‐restrained braced frames (BRBFs) are earthquake resisting systems employing elasto‐plastic passive energy
dissipation devices, i.e., buckling‐restrained braces (BRBs),1,2 to resist the horizontal seismic forces and to dissipate the
seismic energy. In a BRB, a sleeve provides buckling resistance to an unbonded core that resists the axial stress, and, as
buckling is prevented, the BRB's core can develop axial yielding in compression in addition to that in tension ensuring
an almost symmetric hysteretic behavior.3–6 This allows developing large and stable hysteretic cycles contributing to
the dissipation of the seismic energy. For this reason, the use of these devices is very effective for both new construc-
tions and the rehabilitation of existing buildings.7,8

The large and stable energy dissipation capacity of BRBs, proven by many experimental campaigns,5,6 is accompa-
nied by a low post‐yielding stiffness, which may result in inter‐story drift concentration9 and large residual inter‐story
drifts. In addition, experimental tests demonstrated the susceptibility of BRBs to low‐cycle fatigue fracture due to the
limited cumulative ductility capacity.10,11 Both these effects can influence the residual capacity of the structure. Inter‐
story drift concentration is generally related to the nonregular distributions of the brace over‐strength over the building
height that can lead to soft story formation. Large residual drifts can significantly compromise the building reparability,
leading to high repair costs and disruption of the building use or occupation.12 While investigating the seismic perfor-
mance of BRBFs, Sabelli et al13 reported residual drifts values on average in the range of 40% to 60% of the peak drift,
for example, 1.6% to 2.4% for a 4% peak drift. These values should be compared with the residual drift limit of 0.5% that,
for building frames, is conventionally associated to building reparability based on post‐earthquake reconnaissance.14

Hence, BRBFs designed according to modern seismic codes under the Design Basis Earthquake, i.e., probability of
exceedance of 10% in 50 years,15 may exhibit residual drift values higher than this limit. In addition, large residual drifts
and accumulation of ductility demand in the BRBs due to the mainshock may also jeopardize the building performance
under aftershocks.11 These issues, which may impair the cost‐effectiveness of BRBFs, could be avoided, or limited, by
using moment‐resisting connections within the BRBF,16 and/or by using steel moment‐resisting frames (MRFs) in par-
allel with the BRBFs to create a dual system configuration.17–25 Modern seismic codes, such as the SEI/ASCE 7‐10,26
encompass dual systems combining a stiff primary seismic force‐resisting system (e.g., BRBF) with an MRF, as schemat-
ically represented in Figure 1. According to this code, the MRF in dual systems should be capable of resisting at least
25% of the prescribed seismic force.

Kiggins and Uang17 investigated the seismic response of a three‐ and a six‐story BRBFs with and without a parallel
MRFs designed to resist 25% of the design base shear. The results show that MRFs in parallel allow the reduction of the
residual drifts by about 50%, while providing similar performances in terms of peak inter‐story drift demand, i.e,. to the
formation of dual systems with the MRFs often co, with a reduction of the order of 10%. Similar results have been
obtained also by Ariyaratana and Fahnestock18 while considering a seven‐story frame, where, also in this case, the
MRF is designed to resist 25% of the total base shear. Aukeman and Laursen19 assessed the significance of the SEI/-
ASCE 7‐1026 design requirement for MRFs in dual systems and showed that even with MRFs resisting only 15% of the
total base shear it is possible to achieve a good seismic performance. Mehdipanah et al20 illustrated the importance of
designing the BRBF and MRF subsystems with a suitable relative stiffness ratio to optimize the seismic performance.
Maley et al23 proposed a displacement‐based design method for steel dual systems with BRBs and MRFs and tested its
validity by performing nonlinear time‐history analysis on four case studies whereas Barbagallo et al24 recently proposed
a seismic design method for dual structures with BRBs and MRFs with semi‐rigid connections. Moreover, other

FIGURE 1 Dual system combining a buckling-restrained braced frame

(BRBF) and a moment resisting frame (MRF)
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authors27,28 investigated the seismic performance and design methods for steel dual systems with conventional steel
bracing and MRFs. In addition to the applications to newly designed steel frames, BRBs are also employed to enhance
the lateral strength, stiffness, and the dissipation capacity of existing reinforced concrete (RC) buildings,8,29,30 leading to
the formation of dual systems with the MRFs often contributing more than 25% of the total base shear.

The works discussed above evaluated the benefits of using MRFs in parallel with BRBFs to form dual systems by
considering only a few specific case studies, without the exploration of a wider range of possible design solutions. This
does not allow the definition of general indications regarding the influence of the strength ratio, stiffness ratio, and tar-
get design ductility of BRBFs and MRFs as well as the optimal choice of their values. Only recently, Guerrero et al31

performed a statistical analysis including dual systems modeled as single degree of freedom (SDOF) oscillators sub-
jected to a large set of ground motions records. This study provides insights on the influence of several design parame-
ters such as the post‐yielding stiffness ratio, the displacement ductility, and the lateral strength ratio, on the seismic
response of the structures. However, the focus is mostly on the influence of the design parameters on the residual dis-
placements, and additional studies are required to provide support for design recommendations.

It is noteworthy that both the lack of knowledge in this field and the need for further studies were highlighted in a
recent report32 from the European Convention for Constructional Steelwork (ECCS) on the development of the
Eurocode 8.15 The present work aims to provide additional insights to support the definition of guidelines and recom-
mendations on the optimum combination of strength, stiffness, and ductility of BRBFs and MRFs in dual systems. For
this purpose, the problem is approached by considering a simplified SDOF representation of the problem, providing
general information about the performance for a wide range of control parameters. This representation, demonstrated
suitable for low‐rise frames under some regularity conditions,33,34 allows the development of a nondimensional formu-
lation of the problem and the identification of the limited number of characteristics nondimensional parameters that
control the seismic performance. Engineering demand parameters (EDPs) such as the peak normalized response, the
normalized residual displacements, the cumulative ductility demand in the BRBFs, and the absolute accelerations are
considered. By varying the nondimensional problem parameters, the performance of a wide range of configurations can
be explored under a set of ground motion records representative of the uncertain seismic input, scaled to a common
value of the seismic intensity measure.35 It is noted that some response parameters, such as the residual displacements,
may exhibit larger dispersion due to record‐to‐record variability effects compared to other, as already shown by Ruiz‐
Garcia and Miranda36 for the residual deformations of bilinear hysteretic systems. Thus, the reported parametric study
results include not only the mean values but also the dispersion of the EDPs of interest. In order to provide useful rec-
ommendations for the optimal design of dual systems, different design choices are investigated, corresponding to vari-
ous combinations of the ductility demand of BRBFs and MRFs, within the respective capacity limit. Finally, the
generality of the findings and the model limitations are investigated by considering two realistic MRFs‐BRBFs dual sys-
tems, whose response is evaluated using state‐of‐the‐art finite element (FE) tools.

The major novelty aspects of the study are: (1) the use of a nondimensional formulation, allowing the exploration of
a wide range of configurations and design solutions, for example, existing RC frames retrofitted with BRBs, newly
designed steel MRFs‐BRBFs dual systems, gravity frames with BRBs as the only horizontal resisting elements (previous
studies considered separately specific structural typologies and investigated only a limited range of possible of designs);
(2) the use of an advanced numerical model for the BRBs, accounting for both hysteretic and isotropic hardening and
allowing the investigation of the effect of the design choices on the cumulative ductility demand of the devices (previ-
ous studies used simple elastic‐perfectly plastic models neglecting the effect of the hardening which could have led to
an overestimation of the residual drifts); and (3) the analysis of the dispersion of the results of the parameters of interest
(an aspect that was overlooked in previous studies that focused only on the mean values of the response parameters).

2 | PROBLEM FORMULATION

2.1 | SDOF model

The equation of motion governing the seismic response of the SDOF dual system of Figure 2A can be expressed as

m€u tð Þ+ c _u tð Þ+ f f tð Þ f b tð Þ¼ −m � €ug tð Þ, ð1Þ
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where m and c denote respectively the system mass and the inherent viscous damping constant of the system, ff(t) the
resisting force of the MRF, fb(t) the resisting force of the BRBF, and €ug tð Þ the ground acceleration input expected at
the site.

The MRF is assumed to have an elasto‐plastic behavior, with initial stiffness kf, yielding force ffy, yielding displace-
ment ufy = ffy/kf, ductility capacity μfc, and post‐elastic stiffness kfh. The BRBF is assumed to behave as a single BRB,
and it is described by the BRB's elasto‐plastic model developed by Zona and Dall'Asta.3 This assumption is realistic only
for BRBs yielding simultaneously at various stories, a condition which is usually sought in the design.7,8,33 The Zona
and Dall'Asta3 model features both kinematic and isotropic hardening, the latter controlled by the cumulative plastic
deformation. Moreover, it allows the description of the tension‐compression asymmetry characteristic of the BRBs,
where the maximum forces resisted in compression are typically about 10% to 15% higher than forces resisted in ten-
sion. However, it is worth mentioning that the asymmetry in the yielding strength and hardening behavior of the BRBs
differs in general from manufacturer to manufacturer.3 In this study, in order to keep the problem as simple as possible,
the BRB's behavior is described only by the parameters which exhibit significant variation from device to device and
that are explicitly reported in manufacturers catalogs, namely, initial stiffness kb, initial yielding force fby, initial yielding
displacement uby = fby/kb, and ductility capacity μbc. The values of the other parameters characterizing the kinematic
and isotropic hardening as well as the different behavior in tension and in compression are assumed equal to those
identified in Zona and Dall'Asta3 based on the tests carried out by Tremblay et al.5

The MRF and BRBF modeled as SDOF systems are arranged in parallel (Figure 2B) to form a system which can
describe a wide range of structural configurations and behaviors such as the case of BRBFs with moment‐resisting
connections,16 BRBFs combined with MRFs to form a dual system,17–25 or retrofit applications where BRBs are intro-
duced within existing RC frames.8,29

The seismic input is characterized by significant uncertainties affecting not only its intensity but also the duration
and frequency content. As usual, in Performance‐Based Earthquake Engineering,37 the seismic input is treated by intro-
ducing a random variable IM describing the intensity measure and a function €ug,1 tð Þ with IM = 1 describing the tempo-
ral evolution of the ground motion. Hence, the system response for a ground motion with an IM level im can be
expressed as

m€u tð Þþ c _u tð Þþ f f tð Þþ f b tð Þ¼−m � im � €ug,1 tð Þ: ð2Þ

The choice of an appropriate IM for the problem should be driven by criteria of efficiency, sufficiency, and hazard
computability.35 In this paper, the spectral acceleration, Sa(ω0, ξ), at the fundamental circular frequency of the system,
ω0, and for the damping factor ξ is employed as IM.

FIGURE 2 A, Single degree of freedom (SDOF) system of the dual moment-resisting and buckling-restrained braced frames and B,

constitutive laws of the dual system
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2.2 | Nondimensional form of the equation of motion

In order to reduce the number of variables to be considered in the parametric study, a nondimensional form of the
equation of motion (Equation 2) is derived. For this purpose, the peak displacement of the system, umax, under the fixed
ground motion with history €ug,1 tð Þ, can be expressed as

umax ¼ f m,c,kf ,ufy,kb,uby, im
� �

: ð3Þ

The eight variables of Equation 3 have dimensions [umax] = L; [m] = M; [c] = MT−1; [kf] = MT−2; [ufy] = L;
[kb] = MT−2; [uby] = L; [im] = LT−2 where the three physical dimensions are the time T, the mass M, and the length L.
By applying the Buckingam Π‐theorem,38–43 Equation 3 can be conveniently reformulated in terms of dimensionless
parameters, denoted as Π‐terms. This approach permits the identification of the characteristic problem parameters that
control the seismic response of the system also reducing the number of variables in Equation 3.

In the problem, there are three fundamental physical dimensions and eight dimensional variables. Thus, only
8–3 = 5 Π dimensionless parameters are needed. By selecting the systems mass m, the seismic intensity measure im,
and the initial frame stiffness kf as repeating variables, the following Π‐terms are derived:

Πu ¼ umaxkf
m � im , Πc ¼ cffiffiffiffiffiffiffiffiffiffiffi

m �kf
p , Πufy ¼

ufykf
m � im , Πk ¼ kb

kf
, Πuby ¼

ubykf
m � im : ð4Þ

After manipulation of these terms, the following alternative set of Π‐terms, which are given below a physical inter-
pretation, can be obtained:

δ¼umaxω2
0

im
, μf ¼

umax

ufy
, μb ¼

umax

uby
, ξ¼ c

2mω0
, α¼ f by

f fy
, ð5Þ

where ω0
2 = (kb + kf)/m denotes the square of the circular frequency of the SDOF dual system. It is noteworthy that in

Equations 5, the first three parameters depend on the system response. The choice of the nondimensional parameters
facilitates the performance assessment described in the next section.

The parameter δ denotes the peak displacement demand umax normalized with respect to the displacement value
im/ω0

2. By considering Sa(ω0, ξ) as IM, δ can be interpreted as the displacement amplification factor, being the ratio
between the maximum displacement of the linear system umax and the pseudo‐spectral displacement Sd(ω0, ξ) = Sa(ω0,
ξ)/ω0

2, which is the maximum displacement of a linear system with the same initial stiffness and damping ratio ξ. The
parameters μf and μb denote the ductility demand respectively of the MRF and the BRBF. The parameter α, rep-
resenting the ratio between the yield strength capacity of the bracing system and that of the frame, was already
employed in Freddi et al8 while evaluating the seismic performance of a RC frame retrofitted with BRBs. The strength
ratio considered in SEI/ASCE 7‐1026 to define a dual system is equal to

f fy
f byþ f fy

¼ 1
αþ1

: ð6Þ

Thus, based on the minimum base shear contribution of 25% required for the MRF by SEI/ASCE 7‐10,26 the system
can be considered as dual if the parameter α is lower than 3.

It is noteworthy that the parameters δ, μf, and μb of Equations 5 depend on the response of the system, and their
maximum values can be assumed as EDP, whereas parameters α and ξ are independent from the response. Other EDPs
of interest for the performance assessment can be derived from the nondimensional solution. In particular, the follow-
ing EDPs are considered:

FREDDI ET AL. 5
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μb,cum ¼ubp,cum
uby

,δres ¼ ures
umax

, αabs ¼ amax

im
, ð7Þ

where μb,cum denotes the cumulative ductility demand defined by the cumulative plastic displacement demand
ubp,cum of the BRBF normalized with respect to its yielding displacement, δres the ratio between the residual and
the peak displacement of the system umax, and αabs the absolute peak acceleration amax normalized by the seismic
intensity im.

3 | PERFORMANCE ASSESSMENT METHODOLOGY

The objective of the study is to evaluate how the circular frequency ω0, the frame damping ratio ξ, the parameter α, and
the values of the target ductility demand of the BRBF and of the MRF,8,9 respectively, μbt and μft, affect the performance
of the system. In order to achieve this objective, it is not possible to follow the approach conventionally followed in
other studies,39–43 where a free variation of the nondimensional problem parameters is considered. This is because the
two nondimensional parameters related to the response, μbt and μft, are defined by the design condition and hence fixed
a priori rather than being observed. This problem is an extension, to the system at hand, of the well‐known and widely
investigated problem of finding constant‐ductility inelastic displacement ratios for elasto‐plastic systems (see,
e.g., Miranda44). It is an extension in the sense that the investigated system is more complex being a dual one, multiple
response parameters are considered (not only the inelastic displacement ratio), and their statistical distribution is of
interest (not only the mean value).

The procedure illustrated below solves the following problem: Given the system properties independent from the
response ω0, α, and ξ, find the values of the normalized peak displacement demand δ and of the other response parame-
ters such that �μf ¼ μft and �μb ¼ μbt , where the overscore denotes the mean across the samples for the different records
of the ground motion set. The procedure consists in the following steps:

1. Assign arbitrary target mean values to the peak mean displacement demand �umax,t and to the mass m, e.g., �umax,t

= 1 m and m = 1 ton. The obtained results are independent from the choice of these values. The corresponding

values of the parameters of the physical system are

c = 2mω0ξ, ufy ¼ �umax,t=�μf , uby ¼ �umax,t=�μb, kf ¼ω2
0m= 1þαufy=uby

� �
, kb = (αufy/uby)kf ,

2. Scale the records to a common value of the intensity measure, e.g., im = 1;
3. Perform nonlinear dynamic analyses for the different records of the ground motion set;
4. Evaluate the mean value of the peak displacement response �umax . If �umax is equal to the target value �umax,t , then go

to step 5. Otherwise, multiply im by the ratio �umax,t=�umax and restart from step 2. This procedure corresponds to a
linear interpolation between the relation �umax and im. If this procedure does not converge, resort can be made to
any optimization algorithm;

5. Evaluate the statistics of δ, δres, αabs, and μb,cum for the identified IM level.

Steps 1 to 4 ensure that the design condition of the MRF and the BRBF attaining simultaneously their target perfor-
mance under the design earthquake input is achieved. Step 5 corresponds to the evaluation of the statistics of the other
response parameters of interest at this condition.

4 | PARAMETRIC STUDY

This section illustrates the results of the parametric study carried out to evaluate the performance of the dual system
with MRF and BRBF. The performance of the systems corresponding to different values of ω0, α, μft, μbt, and ξ is
assessed by also considering the constraint posed by the attainment of the design condition. The parameter ω0 is varied
in a range corresponding to values of the vibration period T0 = 2π/ω0 between 0.1 and 4 s, although due to space

6 FREDDI ET AL.
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constraints, only the results corresponding to 0.3, 1, and 2 s are reported in the paper. The strength ratio α assumes
values in the range 0–100. The lower bound α = 0 represents the case of the bare frame, whereas the upper bound of
α = 100 represents the case where the contribution of the MRF is negligible, and it is possible to consider the system as
a frame with “pinned” connections where the horizontal stiffness and resistance is provided only by the BRBF. The
parameter μft is varied in the range 1–4. The case μft = 1 corresponds to a design condition where the frame behaves in
its elastic range under the design earthquake whereas the case μft = 4 corresponds to a high ductility demand for the
frame under the design earthquake. The parameter μbt is assumed to vary in the range 5–20. Values of 15–20 are typical
for the ductility capacity of a BRB device.45 The lower bound of 5 is considered because often, such as in case of the seis-
mic retrofit of RC frames,8 the BRB devices are arranged in series with an elastic brace and this leads to reduced values
of the ductility capacity, which can be as low as 5 for flexible braces.7,46 Finally, in order to limit the parameters to be
varied in the parametric analysis, the values for the damping factor and the post‐elastic stiffness ratio of the frame are
assumed constant and respectively as ξ = 5% and kfh = 5%.

The nonlinear behavior of the system at the design condition is affected mainly by the design parameters α, μft, and
μbt. For the benefit of the subsequent discussion and interpretation of the results, it is useful to introduce the concept of
equivalent ductility demand μeq of the dual system. For the sake of simplicity, μeq is derived by neglecting the hardening
behavior of the two systems. Under this assumption, the two components of the dual system behave as equivalent
elastic‐perfectly plastic systems leading to a total strength capacity equal to fby + ffy. The equivalent ductility can be
derived by the equivalence between the areas under the response curve of the dual system and of the equivalent elastic‐
perfectly plastic system as

μeq ¼
αþ1
α
μbt
þ 1

μft

: ð8Þ

The expression of Equation 8 shows that for a given value of the frame ductility demand μft, the equivalent ductility
demand μeq of the dual system increases by increasing α and μbt as shown in Figure 3. Obviously, for α = 0, the
equivalent ductility of the system coincides with that of the MRF, whereas for very high values of α, the target duc-
tility of the BRBF is attained. It is also worth observing that for α = 3, that is, the maximum BRBF to MRF strength
ratio, according to SEI/ASCE 7‐10,26 and μbt = 20, i.e., the maximum ductility capacity of the BRBF, μeq spans the
interval from 3.5 to 10 by varying μft in the range from 1 to 4. In reality, both the MRF and the BRBF usually
exhibit a hardening behavior after yielding, and thus, Equation 8 provides only an approximate estimate of the
equivalent ductility of the system.

4.1 | Seismic input description and analysis model

A set of 240 ground motions is used to achieve confident estimates of the median response and dispersion accounting
for the record‐to‐record variability.47 This set was selected by Baker et al48 for the analysis of a variety of structural sys-
tems located in active seismic regions. The records are representative of a wide range of variation in terms of source to
site distance (R) (from 8.71 to 126.9 km), soil characteristics (Vs30 spans from 203 to 2016.1 m/s), and moment magni-
tude (Mw) (from 5.3 to 7.9). A large number of zeros acceleration points (i.e., 40 s) have been added at the end of each
record in order allow the free vibrations to stop and to correctly capture the residual displacements. Pulse‐like records

FIGURE 3 Equivalent

ductility demand μeq of the dual

system vs. base shear ratio α, for

different values of μft (1 and 4)

and of μbt (5, 10, 15, and 20)

[Colour figure can be viewed at

wileyonlinelibrary.com]
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are not included in the set. The large number of records considered allows the estimation, with good confidence, of the
statistics of the response parameters, even of those commonly characterized by a significant dispersion such as the
residual displacement.36

The seismic analyses are carried out with OpenSees.49 The model of the SDOF dual system consists of two “truss”
elements, arranged in parallel, fixed at one end, and connected to a mass at the other end. The nonlinear response of
the two elements is described by the uniaxial elasto‐plastic material models “Steel01” and “SteelBRB”3,4 for the MRF
and the BRBF, respectively. As previously explained, the model parameters of the “SteelBRB” material not involved in
the parametric analysis are assumed equal to those in Zona and Dall'Asta3 identified from the experimental tests by
Tremblay et al.5

4.2 | Parametric study results

Figures 4 to 14 show the results of the parametric analysis. Plotted in each figure is the variation of a response parame-
ter with the base shear ratio α obtained for different values of the BRBF's ductility demand μbt (i.e., 5, 10, 15, and 20).
Different combinations of T0 (i.e., 0.3, 1, and 2 s) and of the MRF's ductility demand μft (i.e., 1 and 4) are also
considered.

In order to facilitate the discussion of the results, it is worth reminding that, as demonstrated at the beginning of
the section, increasing μft, μbt, and α yields an increase of μeq and hence of the system nonlinearity. Moreover, it is
worth mentioning that α = 0 represents the case of the bare frame and hence, for α = 0 the results are independent
from the value of μbt. Similarly, α = 100 corresponds to the frame with “pinned” connections where the horizontal stiff-
ness and resistance is provided only by the BRBF. Hence, for α = 100, the results are expected to be independent from
μft. It is important to highlight that the results of Figures 4 to 14 are plotted in a logarithmic scale for the α values and
the first value plotted refers to α = 0.025. The values for α = 0 are numerically reported in the figures.

As mentioned before, the analyses were performed also for intermediate values of the parameters and a smooth
transition of the results was observed while looking at intermediate values of μft and T0.

Figure 4 shows the geometric mean (GM) of the normalized peak displacement demand δ. Peak displacement
(or drift) demand parameters are conventionally used as global EDPs for the assessment of building structures as they
are strongly correlated with both structural and non‐structural damage. The following observations can be made:

• All the curves, in each subplot, attain the same value of about 1 for α = 0 and μft = 1. This result is expected, because
for α = 0 and for μft = 1, the system behaves (on average) elastically so that the inelastic displacement coincides with
the elastic one;

FIGURE 4 Geometric mean (GM) of the normalized peak displacement demand δ versus base shear ratio α, for different values of T0

(0.3, 1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]
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• On the other hand, for α = 0 and μft = 4, the nonlinear behavior of the MRF leads to values of δ significantly different
than 1. In particular, for short periods structures (i.e., T0 = 0.3 s), the normalized peak displacement δ attains values
higher than 1;

• In the case of dual systems (α > 0), the increase of α and/or of the BRBF's ductility demand μbt corresponds to an
increase of the equivalent ductility demand μeq and hence, for short periods structures (i.e., T0 = 0.3 s), of the normal-
ized peak displacement δ;

• Differently, for higher periods (i.e., T0 = 2 s), the normalized peak displacement δ is almost independent from the
equivalent ductility demand μeq and attains values close to 1. Recalling that δ can be interpreted as the displacement
amplification factor, these results are in agreement with the current state of knowledge reported in literature
(i.e., equal energy and equal displacement rules).50

Figure 5 shows the dispersion β, expressed by the lognormal standard deviation, of the normalized peak displace-
ment demand δ. The following observations can be made:

• The lowest dispersion values are observed for the systems corresponding to the elastic MRF only (α = 0 and μft = 1),
as expected;

• Overall, the dispersion increases for increasing μeq values, i.e., by increasing α, μbt and μft, and for decreasing values
of T0;

• For μft = 1, the dispersion varies significantly with α, whereas for μft = 4, this variation is smaller, and this is related
to the lower influence that α has on μeq for high μft values (see Figure 3);

• For low values of T0, the dispersion can attain values of the order of 0.7 in the case of BRBF only (α = 100);
• The observed trends reflect the efficiency of the IM considered in this study (i.e., Sa(ω0, ξ)), which yields an almost

null dispersion only in the case of α = 0 and μft = 1, i.e. For inelastic systems, for the elastic bare frame. However, it
is noteworthy to highlight that the dispersion is not exactly zero even for this case, because only the mean ductility
demand is equal to 1, and thus, for some records, the system slightly exceeds the yielding force.

In is interesting to observe that both the normalized peak displacement demand δ (Figure 4) and its dispersion
values (Figure 5) remain nearly constant for values of α larger than 3.

Figure 6 shows the time histories of umax and δ under a single ground motion (i.e., record #100) for two design situa-
tions, corresponding to T0 = 0.3 s, μft = 1, μbt = 20 and α respectively equal to 0.025 and 3. It is possible to observe how
the increase of α, and hence of the equivalent ductility demand μeq, yields to larger values of the normalized displace-
ment demand δ. Differently, the time histories for the displacement demand umax show how both cases attain the same

FIGURE 5 Dispersion of the normalized peak displacement demand δ versus base shear ratio α, for different values of T0 (0.3, 1, and

2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]
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maximum displacement value equal to about 1. This offers the opportunity to remind the reader that, in order to use
the nondimensional parameters, for each system of the parametric analysis, the ground motions are scaled in order to
attain the design condition. This is attained when the mean values of the peak displacement demand �umax,t = 1 m under
the set of records (the results of the parametric analysis are independent from the choice of this value given that the
structural properties are defined as a function of �umax,t).

Figure 7 shows the GM of the normalized peak absolute acceleration αabs. This demand parameter is conventionally
used as EDP to assess the seismic performance of acceleration‐sensitive nonstructural components (e.g., mechanical
equipment and elevators) and building contents. The following observations can be made:

• As can be expected, αabs is about equal to 1 for the systems corresponding to the elastic MRF only (μft = 1 and α = 0)
and reduces by increasing μeq (i.e., by increasing the values of α, of μbt and of μft);

• For inelastic systems, i.e., μft ≠ 1 and/or α > 0, αabs slightly increases as T0 decreases;
• For μft = 1, the value of αabs varies significantly with α. On the other hand, for increasing values of μft this variation

becomes less significant and, in the cases with μft = 4, αabs is almost independent of α. However, even for the case of
elastic MRF (μft = 1), αabs does not decrease significantly for values of α increasing beyond 1;

• The results show that an increase of μbt leads to an about consistent reduction of αabs independently from the struc-
tural periods T0 and MRF's ductility demand μft. A similar outcome but opposite in terms of variation is observed in
Figure 4 while considering the variation of normalized peak displacement demand δ.

FIGURE 7 Geometric mean (GM) of the normalized peak absolute accelerations demand αabs versus base shear ratio α, for different

values of T0 (0.3, 1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Seismic response of systems with T0 = 0.3 s, μft = 1, μbt = 20, and α = 0.025 and 3. A, Seismic record #100, B, peak

displacement demand umax at the design condition, and C, normalized peak displacement demand δ [Colour figure can be viewed at

wileyonlinelibrary.com]
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Figure 8 shows the dispersion β of the normalized peak absolute acceleration αabs. In general, the values of β are
quite low and always below 0.3. This is a consequence of the yielding of the system that limits the maximum accelera-
tions that can be attained. The following observations can be made:

• Also in this case, the lowest dispersion values are observed for the systems corresponding to the elastic MRF (α = 0
and μft = 1), and as previously discussed, the dispersion is not exactly zero even for this case, because the design pro-
cedure impose a ductility demand is equal to 1 only on average;

• In all cases, the dispersion increases for increasing values of μbt whereas an increase of the MRF's ductility demand
μft yields a reduction of the dispersion;

• For the cases with an elastic MRF (i.e., μft = 1), a larger variation of the dispersion values with α can be noted,
whereas for μft = 4, this variation is smaller. In addition, different from what observed in the dispersion of the nor-
malized displacement demand δ (Figure 5), where the trends are consistent, the use of an elastic MRF (i.e., μft = 1)
leads to higher dispersion values within the range of α between 0 and 1. The obtained results show a maximum dis-
persion value equal to 0.3 for the case with μft = 1, μbt = 20 and α = 0.25.

Also in this case, it is interesting to observe that both the normalized peak absolute acceleration αabs (Figure 7) and
its dispersion values (Figure 8) remain almost constant for values of α larger than 3.

Figure 9 shows the time histories of amax and αabs under a single ground motion (i.e., record #100) for two design sit-
uations. Two cases are represented, corresponding to T0 = 0.3 s, μft = 1, μbt = 20 and α respectively equal to 0.025 and
3. It is observed that increasing α, and hence, the equivalent ductility demand μeq, yields to lower values of the normal-
ized acceleration demand αabs.

FIGURE 8 Dispersion of the normalized peak absolute accelerations demand αabs versus base shear ratio α, for different values of T0

(0.3, 1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Seismic response of systems with T0 = 0.3 s, μft = 1, μbt = 20, and α = 0.025 and 3. A, Seismic record #100, B, peak

acceleration demand, and C, normalized peak acceleration demand αabs [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 10 shows the GM of the BRBF's normalized cumulative ductility demand μb,cum. This is also an important
response parameter that controls not only the isotropic hardening of the BRB3 but also its failure, as acknowledged in
several capacity models of these devices.10,11 The following observations can be made:

• For this parameter, values for the systems with α = 0 are not reported because this corresponds to the case of MRF
only;

• In the case of dual systems (i.e., α > 0), the increase of α, of the BRBF's ductility demand μbt and/or of the MRF's duc-
tility demand μft corresponds to an increase of the equivalent ductility demand μeq resulting in fewer cycles at the
maximum deformation and a smaller BRBF's ductility accumulation;

• This effect is clearly reported in Figure 6 where the seismic response of the system with α = 3 shows a significant
lower number of cycles with large displacements with respect to the case with α = 0.025.

• The observed trends suggest that higher α values permit a better control of the cumulative ductility demand in the
BRBFs. However, the decrease is higher for low α values, whereas for α > 3, the cumulative ductility does not
decrease significantly, similar to the normalized peak absolute accelerations demand αabs of Figure 7;

• A high sensitivity of the parameter μb,cum with respect to α is observed only for the case with elastic MRF
(i.e., μft = 1) and short period structures (i.e., T0 = 0.3 s). For higher periods (i.e., T0 = 2 s), the BRBF's normalized
cumulative ductility demand is almost independent from α;

• The highest value of the BRBF's normalized cumulative ductility demand μb,cum reaches the value of about 800 in the
case with elastic MRF (i.e., μft = 1), highly ductile BRBF (i.e., μbt = 20) and small α values;

• This value is about half in the case with μft = 4 where the inelastic MRF contributes to the seismic dissipation capac-
ity of the system with plastic deformations that are not accumulated in the devices;

• Moreover, as expected, the results show that an increase of the BRBF's ductility demand μbt leads to a consistent
increase of the value μb,cum independently from the structural periods T0 and MRF's ductility demand μft. This out-
come is similar to what observed in Figure 4 for the variation of normalized peak displacement demand δ;

• These trends are in agreement with the results obtained in Choi and Kim,34 which investigated the case of BRBF only
(i.e., α = 100).

Figure 11 shows the dispersion β of the BRBF's normalized cumulative ductility demand μb,cum. In general, the
values of β are quite high, and can reach a maximum of 0.65. This reflects the variation of duration of the considered
records. Overall, the dispersion does not significantly change with the period, with μft, and with μbt, and in most of the
cases is slightly increases for increasing α values.

Beside the dispersion values, it is interesting to observe that, similarly to the previous cases, also the BRBF's normal-
ized cumulative ductility demand μb,cum (Figure 10) and its dispersion values (Figure 11), remain almost constant for

FIGURE 10 Geometric mean (GM) of the BRBF's normalized cumulative ductility demand μb,cum versus base shear ratio α, for

different values of T0 (0.3, 1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]
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values of α larger than 3. This result, observed also for the parameters δ and αabs, justifies the limit posed by SEI/ASCE
7‐1026 on the maximum values of α = 3 in dual systems. In fact, based on the results for the parameters δ, αabs, and
μb,cum, the influence of the MRF within the dual system is negligible for α values larger than 3.

Figure 12 shows the time history of μcum and μb,cum under a single ground motion (i.e., record #100) for the two
design situations corresponding to T0 = 0.3 secs, μft = 1, μbt = 20 and α respectively equal to 0.025 and 3. The-
consequence of the different displacement history, i.e., lower number of cycles with large displacements for the system
with α = 3, observed in Figure 6, and summarized in Figure 10, can be clearly observed in this figure.

Figure 13 shows the GM of the normalized residual displacement demand δres. As previously discussed, this
response parameter is related to building reparability. The following observations can be made:

• All the curves, in each subplot, attain the same value of about 0 for α = 0 and μft = 1. This result is expected, because
this case corresponds to the elastic MRF only. On the other hand, for α = 0 and μft = 4, the nonlinear behavior of the
MRF leads to δres values that can be significantly different than 0;

• Overall, the normalized residual displacement demand δres increases for increasing μeq (i.e., for increasing values of
α, of μbt, and of μft) and is almost independent from T0;

• In the case of elastic MRFs (i.e., μft = 1), the variation of α significantly affects the increase of the residual displace-
ments δres, whereas this parameter is almost constant with α in the case of systems with ductile MRF (i.e., μft = 4).
The elastic MRF works, within the dual system, as a back‐up frame and this has a beneficial contribution in terms of
reduction of δres. This result confirms the effectiveness of coupling a dissipative system with an elastic system as a
way to reduce residual drifts;

FIGURE 11 Dispersion of the BRBF normalized cumulative ductility demand μb,cum versus base shear ratio α, for different values of T0

(0.3, 1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Seismic response of systems with T0 = 0.3 s, μft = 1, μbt = 20, and α = 0.025 and 3. A, Seismic record #100, B, BRBF's

cumulative ductility demand, and C, BRBF's normalized cumulative ductility demand μb,cum [Colour figure can be viewed at

wileyonlinelibrary.com]
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• Amongst all the analyzed cases, the normalized residual displacement demand δres assumes maximum values of the
order of 0.3. It is noteworthy that the values of δres for α = 0 and μft = 4 are similar to the ones observed in Liossatou
and Fardis51 for an elasto‐plastic system with a strength reduction factor of 4 under a different set of records than the
one considered in this study.

Figure 14 shows the dispersion β of the normalized residual displacement demand δres. These values are very high,
especially for low values of the MRF ductility demand and low values of α.

Among others, for this response parameter, and differently from the others, it is interesting to observe that, in the
case of an elastic MRFs (i.e., μft = 1), the variation of α significantly affects the results also for α values larger than

FIGURE 13 Geometric mean (GM) of the normalized residual displacement demand δres versus base shear ratio α, for different values

of T0 (0.3, 1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Dispersion of the normalized residual displacement demand δres versus base shear ratio α, for different values of T0 (0.3,

1, and 2 s), of μft (1 and 4), and of μbt (5, 10, 15, and 20) [Colour figure can be viewed at wileyonlinelibrary.com]
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3. This result has significant implications when controlling the residual displacements is a required design objective in
order to allow reparability and achieve structural resilience.

It is worth mentioning that the parametric analyses were repeated also using other ground motion sets such as the
SIMBAD database52 and the far‐fault records of the FEMA P695 project,53 leading to only slightly different results, thus
confirming the overall trend of variation of the dispersion values with respect to the nondimensional parameters ana-
lyzed. Moreover, the obtained estimates may change significantly by using a different constitutive law for describing
the hysteretic response of the SDOF system representing the frame (see, e.g., Guerrero et al31 and Liossatou and
Fardis51).

5 | COMPARISONS WITH MDOF RESULTS

The generality and the limitations of the results obtained by considering an SDOF system are evaluated by considering
two realistic dual systems structures, modeled as multi‐degrees of freedom (MDOF) systems. The first case consists of a
newly designed three‐story dual steel MRF with BRBs, where the MRF is designed to remain elastic at the design condi-
tion. This corresponds to a target ductility of the MRF μft = 1, as controlled by the top story displacement (TSD)
(i.e., control node in the pushover analysis). The second case consists of an existing three‐story RC MRF retrofitted with
BRBs. In this case, the MRF is allowed to undergo inelastic deformations and the target ductility is assumed equal to
μft = 4. This corresponds to a situation where the MRF experiences large deformations beyond its elastic limit and is
close to the collapse condition.

Three values of the base shear ratio α are considered for each case study, i.e., 0.1, 1, and 3 for the dual steel MRF
with BRBs and 0.1, 0.5, and 1 for the RC MRF retrofitted with BRBs. High values of α in the RC MRF retrofitted with
BRBs may require the introduction of local strengthening of beams and columns in the bays of the frame where the
BRBs are installed,8 interventions excluded in the cases analyzed in this study. Different from what is done in the para-
metric analysis of the SDOF systems, in this part of the study, the MRFs are kept constant, and the different α values
are obtained by increasing the BRBs dimensions. This leads to an increase of the overall stiffness of the system, hence,
in a reduction of the natural period.

The design of the dissipative braces follows the procedure described in Freddi et al,8 where the stiffness and strength
of the dissipative brace components, i.e., elastic brace and dissipative device, are calibrated according to the first mode‐
shape with the aim of achieving the simultaneous yielding of the BRB devices at various stories. This condition is usu-
ally sought in the design because it maximizes the dissipation capacities of the system. Additional details on the design
procedure can be found in the literature.7,8,33 Strength, Fb, stiffness, Kb, and ductility, μb, of the dissipative brace are
function of the properties of the two components according to the following relationships:

Fb ¼F0, Kb ¼ K0Keb

K0þKeb
, μb ¼

K0þKebμ0
K0þKeb

, ð9Þ

where F0, K0, and μ0 are respectively the yielding force, the stiffness, and the ductility capacity of the BRB device
whereas Keb is the stiffness of the elastic brace. Obviously, the elastic brace must be designed such that the yielding and
buckling resistance is higher than F0.

In both the cases, the ductility capacity of the BRB device μ0 is assumed equal to 20 whereas the ductility of the dis-
sipative brace μb is chosen equal to 10 and 15 respectively for the cases of newly designed dual steel MRF and existing
RC MRF. The target values for the ductility of the dissipative brace μb can be obtained by the proper design of the elas-
tic brace placed in series with the BRB device according to Equation 9. The analyses performed on the MDOF systems
follow the same approach used for the SDOF where the ground motion records are scaled in an iterative way until the
design condition is attained.

5.1 | Newly designed dual steel MRF and BRBF

The first case is a three‐story six‐bay by four‐bay dual system composed by a steel MRF and a BRBF. The building has a
constant inter‐story height of 3.5 m, a total height of 10.5 m, and plan dimensions of 39 m by 26 m respectively along
the x and y directions. Figure 15 shows the plan and elevation views of the building. For both the directions, the
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horizontal actions are resisted by two perimeter MRFs and by two internal BRBFs. The design basis earthquake, with a
probability of exceedance of 10% in 50 years, is expressed by the type 1 elastic response spectrum of Eurocode 815 with
peak ground acceleration equal to 0.306 g and ground type C. The gravity loads and the live loads are assumed as uni-
formly distributed and assume values respectively of G = 5.4 kN/m2 and qk = 3 kN/m2. The gravity loads are trans-
ferred directly to the beams lying in the orthogonal direction due to the presence of a one‐way slab, which runs parallel
to the direction of the seismic action. The total mass of the building is equal to 325.6 tons at each story. In this case, the
MRF is designed to behave elastically up to a performance displacement of the top story equal to 0.105 m, which corre-
sponds to a top floor drift of 1%. Both beams and columns are made with steel S355 (yield stress fy = 355 MPa) and the
design leads to the sections' dimensions reported in Figure 15. It is worth mentioning that, although designed to meet
the Eurocode 8 prescriptions, US W‐type sections instead of European sections were used for the steel MRF in order to
simplify the design procedures, as commented in Maley et al.23

Given the symmetry of the structure and of the loading condition, only half of the structure comprising one dual
system is analyzed, by developing a two‐dimensional FE model in OpenSees.49 Columns of the MRF are modeled by a
distributed plasticity approach by using “nonlinearBeamColumn” elements49 where the bilinear elastoplastic material
“Steel01” with yield strength equal to 355 MPa and strain hardening of 0.2% is assigned to the steel fibers. Differently,
beams are modeled through a lumped plasticity approach where the plastic hinges at beams ends are modeled by
“zeroLength” rotational springs. Such springs are characterized by the degrading modified Ibarra‐Medina‐Krawinkler
hysteretic bilinear model.54,55 Stiffness matrices of the elastic elements between plastic hinges are modified through the
“n” modification factor56 allowing for the use of initial stiffness proportional Rayleigh damping, with 3% of the critical
damping assigned to the first and second modes. MRF panel zones are modeled using the Scissors approach57 where
two independent rotational springs modeled as “zeroLength” elements are used to account for the deformability of col-
umns' webs and flanges. On the other side, the BRBF is described using “elasticBeamColumn” elements with negligible
inertia for beams and columns in order to reproduce pinned connections. The dissipative braces are modeled by two
“truss” elements in series to represent respectively the elastic component of the brace and the BRB device. As for the
case of the SDOF system, the “steelBRB” material model3,4 describes the hysteretic behavior of the BRB devices, with
the model parameters assumed equal to those reported in Zona and Dall'Asta3 and identified from the tests described
in Tremblay et al.5 P‐Δ effects are taken into account by modeling the gravity columns with an equivalent continuous
lean‐on column, pinned at its base, as described in Freddi et al.58 Finally, diaphragm action is accounted by means of
rigid truss elements connecting the nodes of the lean‐on column to the ones of the beams of the MRF and of the BRBF.
A similar dual frame configuration was studied in Morfuni et al,59 who investigated the seismic behavior of an eight‐
story building structure.

The structural period of the MRF alone is equal to T1 = 1.80 s. After adding the BRBF, the structural period
decreases to 1.28, 0.55, and 0.33 s, respectively, for α = 0.1, 1, and 3. Figure 16 shows the pushover curves for the three
design conditions, exhibiting different proportion of the base shear (Vb) between the MRF and the BRBs.

FIGURE 15 Newly designed dual steel MRF and BRBF. A, Plan view, B, elevation view of the MRFs, and C, elevation view of the BRBFs
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5.2 | RC MRF retrofitted with BRBs

The second case consists in a three‐story four‐bay by three‐bay ordinary RC MRF that was already considered in previ-
ous works by the authors.8,35 This structure was chosen because an extended experimental campaign was carried out
on a 1:3 reduced scale models of the frame and of its subassemblies, allowing an accurate validation of the FE model at
global and local scale.60 The building was designed for gravity loads only and without any seismic detailing, by applying
the design rules existing before the introduction of modern seismic codes. The frame has an inter‐story height of
3.66 m, for a total height of 11 m, and three bays each 5.49 m wide. Columns have a 300 × 300 mm2 square section,
whereas beams are 230 × 460 mm2 at each floor. Grade 40 steel (fy = 276 MPa) and concrete with compression resis-
tance fc = 24 MPa were employed in the design. Because earthquake loads were neglected and wind induced forces on
such a low‐rise structure were relatively small, no lateral load was considered for the design. Figure 17 shows the eleva-
tion view and sections of the RC frame. Complete detailing regarding the structure and the experimental campaign can
be found in Bracci et al.60

A two‐dimensional FE model of the structure was developed in OpenSees49 and validated against experimental
results (see Freddi et al8,35). The model employed in the present study is an enhanced version that employs the Zona
et al3 model for describing the BRBs. The design of the dissipative braces follows the same procedure described in the
previous section.

As discussed, the design displacement of the coupled system is such that the ductility demand on the MRF μft is
equal to 4. This value is derived after bi‐linearization of the capacity curve as reported in Figure 18. In the present case,
the design displacement corresponds to a top story displacement equal to 0.339 m, i.e., a drift of 3.1%.

The structural period of the MRF alone is equal to T1 = 1.28 s whereas, when adding the BRBF working in parallel,
the structural period decreases and is equal to 1.10, 0.79, and 0.64 s, respectively, for α equal to 0.1, 0.5, and 1. Figure 18
shows the pushover curves for the three design conditions with the different contributions of the base shear (Vb) from
the MRF and the BRBs.

FIGURE 17 Seismic

retrofitting of the RC MRF with

BRBs. Elevation view

FIGURE 16 Newly designed dual steel MRF and BRBF. Pushover curves for α equal to A, 0.1, B, 1, and C, 3 [Colour figure can be

viewed at wileyonlinelibrary.com] [Colour figure can be viewed at wileyonlinelibrary.com]
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5.3 | Comparison of the results

Figures 19 to 22 compare the results obtained with the MDOF systems to the corresponding results obtained using the
SDOF system approximation. In particular, Figures 19 and 21 show the variation with α and T0 of the GM of the four
nondimensional response parameters of interest, whereas Figures 20 and 22 show the variation of their dispersion. The
values reported for the MDOF cases are the maximum ones observed throughout the system height. Tables 1 and 2
reports the values of the median and dispersion of the parameters according to the MDOF and SDOF model respec-
tively for the newly designed dual steel MRF and BRBF and for the RC MRF retrofitted with BRBs. The results for the
SDOF case are obtained by linear interpolation of the values obtained in the parametric study.

It can be observed that the results of the two MDOF systems follow trends similar to those obtained with the simpli-
fied SDOF models, with few exceptions. The observed differences are mainly due to (1) the influence of higher modes
of vibration not accounted by the SDOF systems and (2) the simplified description of the post‐elastic hysteretic behavior
of the MRF in the SDOF models. Higher discrepancies are expected for taller structures due to the increment of the
effects of higher modes, and for the frames that undergo significant inelastic deformations, due to the inevitable differ-
ences between the hysteretic behavior of the MDOF and SDOF models. The effect of higher modes can be observed in
Figures 19B and 21B, showing that the normalized peak absolute acceleration demand is significantly underestimated
by the SDOF model. Differently, the simplified description adopted for the hysteretic behavior of the SDOF system
affects only the response estimates obtained for the retrofitted RC frame, because the steel MRF behaves almost
elastically.

FIGURE 18 Seismic retrofitting of the RC MRF with BRBs. Pushover curves for α equal to A, 0.1, B, 0.5, and C, 1 [Colour figure can be

viewed at wileyonlinelibrary.com] [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 Newly

designed dual steel MRF and

BRBF. Comparison of the

parametric analyses for SDOF

and MDOF. Geometric mean

(GM) of the A, normalized peak

displacement demand δ, B,

normalized peak absolute

accelerations demand αabs, C,

BRBF's normalized cumulative

ductility demand μb,cum, D,

normalized residual

displacement demand δres versus

base shear ratio α, for different

values of T0 and of μft = 1 and

μbt = 10 [Colour figure can be

viewed at wileyonlinelibrary.

com]
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Tables 1 and 2 report also the relative differences between the estimates obtained with the SDOF model and the
MDOF model, normalized by dividing them by the values obtained with the SDOF model. Based on the obtained
results, for the newly designed dual steel MRF and BRBF, the following consideration can be made: (i) for the GM of
the normalized peak displacement demand δ, the differences in the three cases range between 14% and 31%; (ii) for the
GM of the normalized peak absolute accelerations demand αabs, the values obtained with the MDOF model can be
more than double the SDOF model; (iii) for the GM of the BRBF's normalized cumulative ductility demand μb,cum, the
values obtained with the SDOF and MDOF models are much closer, with differences spanning from 4 to 15%; (iv) for
the GM of the normalized residual displacement demand δres, the MDOF models yield values that are about twice as
those of the SDOF models. Similar considerations can be made for case of the RC frame retrofitted with BRBs, with
some exceptions. In particular, compared with the results of Tables 1, the influence of the nonlinear behavior of the

FIGURE 21 Seismic

retrofitting of a RC MRF with

BRBs. Comparison of the

parametric analyses for SDOF

and MDOF. Geometric mean

(GM) of the A, normalized peak

displacement demand δ, B,

normalized peak absolute

accelerations demand αabs, C,

BRBF's normalized cumulative

ductility demand μb,cum, D,

normalized residual

displacement demand δres versus

base shear ratio α, for different

values of T0 and of μft = 4 and

μbt = 15 [Colour figure can be

viewed at wileyonlinelibrary.

com]

FIGURE 20 Newly

designed dual steel MRF and

BRBF. Comparison of the

parametric analyses for SDOF

and MDOF. Dispersion of the A,

normalized peak displacement

demand δ, B, normalized peak

absolute accelerations demand

αabs, C, BRBF's normalized

cumulative ductility demand

μb,cum, D, normalized residual

displacement demand δres versus

base shear ratio α, for different

values of T0 and of μft = 1 and

μbt = 10 [Colour figure can be

viewed at wileyonlinelibrary.

com]
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TABLE 1 Newly designed dual steel MRF and BRBF

Parameter

Case 1 Case 2 Case 3

(T = 1.28 s, α = 0.1) (T = 0.55 s, α = 1) (T = 0.33 s, α = 3)

MDOF SDOF Δ MDOF SDOF Δ MDOF SDOF Δ

GM(δ) 1.261 0.966 31% 1.665 1.362 22% 2.084 1.832 14%

β(δ) 0.304 0.264 15% 0.485 0.504 4% 0.628 0.616 2%

GM(αabs) 1.982 0.562 253% 0.877 0.318 176% 0.671 0.346 94%

β(αabs) 0.458 0.162 183% 0.547 0.183 199% 0.249 0.178 40%

GM(μb,cum) 181.29 158.2 15% 108.63 102.1 6% 89.99 93.36 4%

β(μb,cum) 0.676 0.538 26% 0.639 0.566 13% 0.578 0.576 0%

GM(δres) 0.119 0.057 109% 0.176 0.09 96% 0.237 0.111 114%

β(δres) 2.853 2.361 21% 2.176 1.268 72% 2.02 1.01 100%

FIGURE 22 Seismic

retrofitting of an RC MRF with

BRBs. Comparison of the

parametric analyses for SDOF

and MDOF. Dispersion of the A,

normalized peak displacement

demand δ, B, normalized peak

absolute accelerations demand

αabs, C, BRBF's normalized

cumulative ductility demand

μb,cum, D, normalized residual

displacement demand δres versus

base shear ratio α, for different

values of T0 and of μft = 4 and

μbt = 15 [Colour figure can be

viewed at wileyonlinelibrary.

com]

TABLE 2 Seismic retrofitting of an RC MRF with BRBs

Parameter

Case 1 Case 2 Case 3

(T = 1.10 s, α = 0.1) (T = 0.79 s, α = 0.5) (T = 0.64 s, α = 1)

MDOF SDOF Δ MDOF SDOF Δ MDOF SDOF Δ

GM(δ) 1.561 1.064 47% 1.77 1.289 37% 1.957 1.439 36%

β(δ) 0.439 0.377 16% 0.49 0.469 4% 0.523 0.531 2%

GM(αabs) 1.487 0.299 397% 1.104 0.264 318% 0.924 0.255 262%

β(αabs) 0.514 0.089 478% 0.482 0.112 330% 0.42 0.131 221%

GM(μb,cum) 186.63 199.69 7% 150.57 165.66 9% 135.78 152.68 11%

β(μb,cum) 0.771 0.531 45% 0.756 0.56 35% 0.71 0.566 25%

GM(δres) 0.246 0.23 7% 0.284 0.265 7% 0.302 0.253 19%

β(δres) 2.2 1.07 106% 1.919 1.02 88% 1.905 1.059 80%
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frame (μft = 4) and of the BRBs (μbt = 15) produces (i) an increase of the difference between in terms of the GM of the
normalized peak absolute accelerations demand αabs and (ii) a reduction of the difference of the GM of the normalized
residual displacement demand δres. Further studies are required to provide a careful quantification of the effects of these
approximations in the estimation of the design parameters. Nevertheless, it can be concluded that the results of the
parametric analysis of the SDOF systems are quite general and useful to draw important design recommendations.

In order to provide more insight into the response of the MDOF models, the results presented in this paragraph are
complemented with those in Figures 23 and 24 showing the story distribution of the GM of the demand parameters
(i.e., max inter‐story drift ratio, max story accelerations, cumulative ductility demand, and residual inter‐story drift

FIGURE 23 Newly

designed dual steel MRF and

BRBF. Story distribution of the

geometric mean (GM) of the

demand parameters for A, max

inter-story drift ratio IDRmax, B,

max story accelerations

accmax, C, cumulative ductility

demand μb,cum, D, residual inter-

story drift ratio IDRres for

different values of the base shear

ratio α and of μft = 1 and

μbt = 10 [Colour figure can be

viewed at wileyonlinelibrary.

com]

FIGURE 24 Seismic

retrofitting of an RC MRF with

BRBs. Story distribution of the

geometric mean (GM) of the

demand parameters for A, max

inter-story drift ratio IDRmax, B,

max story accelerations

accmax, C, cumulative ductility

demand μb,cum, D, residual inter-

story drift ratio IDRres for

different values of the base shear

ratio α and of μft = 4 and

μbt = 15 [Colour figure can be

viewed at wileyonlinelibrary.

com]
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ratio) in correspondence of the design condition respectively for the newly designed dual steel MRF‐BRBF case and for
the RC MRF with BRBs, for the different values considered for the base shear ratio α. Among others, it is worth observ-
ing that in the case of the existing RC frame, there is a nonuniform distribution of the drift demands at the different
stories. This is consequence of the design method used for the BRBs and of the behavior of the original, nonseismically
design, RC frame. Conversely, in the case of the newly designed steel frame, a uniform drift distribution is obtained,
thanks to the design approach followed.

6 | CONCLUSIONS

This paper presents an extensive parametric study investigating the seismic performance and residual capacity of dual
systems consisting of buckling‐restrained braced frames (BRBFs) coupled with moment‐resisting frames (MRFs). An
SDOF system assumption and a nondimensional problem formulation allow the estimation of the response of a wide
range of configurations while limiting the number of simulations. This permits the evaluation of how the system prop-
erties, including different levels of the relative strength and ductility demand of the BRBF and MRF, affect the median
demand and the dispersion of the normalized displacements, accelerations, residual displacements, and cumulative
BRB ductility demand. Two realistic dual systems, consisting of MRFs and BRBFs modeled as MDOF systems, are also
considered to evaluate the generality of the findings.

Based on the results of the study, the following conclusions are drawn. (1) Adding a very ductile BRBF in parallel to
the MRF may result in residual displacements that may exceed the reparability limit of 0.5%, particularly for high
values of α (i.e., the ratio between the base shear yielding forces of the BRBF and the MRF). The limit αd = 3 posed by
SEI/ASCE 7–10 on the maximum values of α in dual systems gives values of the median residual‐to‐peak displacements
ratio in the range 0.15–0.20, which may be excessive in some situations. In fact, for a maximum inter‐story drift ratio of
4%, the expected residual drift would be of the order of 0.60%–0.80%, higher than the limit of reparability. (2) The dis-
persion of the residual displacements is very high, and this should be taken into account when assessing the probability
of repairing a structure after an earthquake. (3) The median cumulative ductility demand of the BRBFs has an opposite
trend of variation with α compared to the residual displacement, i.e., it decreases by increasing α. This result has also
an impact on the choice of α in the design, because excessive accumulation of plastic deformations hampers the resid-
ual capacity of BRBs. (4) The observed results confirm the choice of a minimum value of α = 3 for considering the sys-
tem as dual. In fact, it is only for values of α less than 3 that many response parameters of interest (e.g., the peak
displacements, the peak accelerations, and the cumulative ductility demand in the BRBs) exhibit a significant change of
trend. (5) The SDOF model provides overall good estimates of the statistics of the response of the MDOF systems, with
the limitations highlighted in the text. Amongst others, the main exception refers to the absolute accelerations, which
are notably affected by higher order modes. Better agreement is observed for the case of the steel MRF, which is
designed to remain elastic, whereas worse results are obtained for the case of the RC frame, due to the high nonlinear
behavior of the systems that is not adequately described by the SDOF model.

Based on the conclusions and remarks on the results listed above, the following practical recommendations can
be given to inform the design of MRF‐BRBF dual systems. (1) Accelerations can be controlled by designing for α
values higher than 1. The acceleration reduction is more significant in the case of the elastic frame, because in the
case of the nonlinear frame, the yielding behavior already allows limiting accelerations. This has important implica-
tions for the performance of acceleration‐sensitive components. (2) Similarly, the cumulative ductility demand on
the BRB can be limited by increasing the values of α, i.e., by increasing the BRB frame contribution to the global
response of the dual system. This has important implications for the residual capacity of the BRB devices when sub-
jected to multiple earthquakes. (3) Increasing the BRB target ductility level has a different effect on accelerations
and ductility demands. Although the former decrease for increased ductility levels, the latter increase. (4) The
increase of the α value, which has beneficial effects in terms of control of acceleration and cumulative ductility
demands, has, however, a detrimental effect on the residual displacements. Thus, the choice of the level of α
depends on the performance objective.
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