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Abstract: Modern XAFS (X-ray Absorption Fine Structure) data-analysis is based on accurate
multiple-scattering (MS) calculations of the X-ray absorption cross-section. In this paper, we present
the inclusion and test of relativistic corrections for the multiple-scattering calculations within the
GnXAS suite of programs, which is relevant to the treatment of the XAFS signals when atoms with
high atomic number are contained into the system. We present a suitable strategy for introducing
relativistic corrections without altering the basic structure of the programs. In particular, this is
realized by modifying only the Phagen program calculating the atomic absorption cross sections and
scattering t-matrices for the selected cluster. The modification incorporates a pseudo-Schrödinger
Equation (SE) replacing the Dirac relativistic form. The phase-shift calculations have been put to
a test in two known molecular and crystalline cases: molecular bromine Br2 and crystalline Pb.
Calculations in an extended energy range have been shown to be very close to the non-relativistic
case for Br2 (Br K-edge) while corrections have been found to exceed 25% for amplitude and phases
of the XAFS multiple-scattering signals (Pb L3-edge). Benefits in the structural refinement using
relativistic corrections are discussed for crystalline Pb at room temperature.

Keywords: relativistic corrections; GNXAS analysis package; XAFS signal

PACS: 33.80.Eh; 31.70.-f; 33.60.+q

1. Introduction

The GnXAS package [1,2] is an advanced software for XAFS (X-ray Absorption Fine
Structure) data analysis. The suite of programs implements state-of-the-art methods for the
computation of the XAFS signal in the framework of the multiple-scattering theory (MST),
using a complex effective optical potential for the photoelectron moving in a cluster of
atoms modeling the system under study. The XAFS signal so obtained constitutes the input
for a rigorous fitting procedure to the raw experimental data in order to derive structural
and dynamical information on the system [3,4]. The underlying theory, basic methodology
and practical applications have been widely discussed elsewhere. The GnXAS package
is currently available for scientific research and numerous successful applications of the
GnXAS package have been published so far by different research groups.

In this approach for XAFS data-analysis, the effective optical potential is assumed to be
a functional of only the electron density of the selected cluster of atoms, which is obtained
by superposition of self-consistent relativistic atomic charge densities in the muffin-tin
(MT) approximation [5]. For these atomic potentials, one solves the local non-relativistic
Schrödinger Equation (SE) to calculate the atomic t-matrices (tl = e i δl sin δl , where δl are
the phase-shift functions) describing the scattering process for each atom and relevant l.
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These quantities, together with the spherical wave free propagators for the photo-electron,
constitute the ingredients to calculate the wanted XAFS signal.

One of the present limitations of the package is the use of the non-relativistic SE (and
consequently t-matrices) which may prevent accurate XAFS data-analysis when atoms
with ‘high’ atomic number Z are involved in the system under study. By ‘high’ we mean
atoms for which relativistic corrections are important (non negligible) for the definition
of physical properties, such as, for example, scattering power and transition probabilities.
The introduction of relativistic effects in XAFS multiple-scattering calculations has been
described in several papers (see Refs. [6,7] for example) but few examples of applications
and detailed studies of the effect of the various approximations were given so far.

The purpose of this paper is to present a suitable strategy for eliminating this limita-
tion without altering too much the present non-relativistic structure of the GnXAS suite of
programs, putting to a test the multiple-scattering (MS) simulations in selected molecular
and crystalline systems. In particular, the introduction of relativistic corrections is realized
by modifying the program (Phagen, part of the GnXAS suite) that generates atomic absorp-
tion cross sections and scattering t-matrices for the selected cluster. This goal is made
possible by deriving a pseudo-SE from the Dirac Equations that takes into account all of the
relevant relativistic corrections. Model XAFS relativistic and non-relativistic calculations
are performed for the Br K-edge in molecular bromine (Br2) and for the Pb L3-edge of crys-
talline lead (at room temperature). The latter is a system for which relativistic corrections
are expected to be higher. The importance of the relativistic corrections and the impact on
structural refinement for those systems can be thus evaluated by direct comparison with
experimental data.

The paper is organized as follows: (i) derivation of the equations used by the modified
Phagen program; (ii) presentation of phase-shift calculations using non-relativistic and
relativistic calculations for the selected systems; (iii) comparison and discussion of results.

2. Derivation of the Pseudo-Schrödinger Equation

In the present form, Phagen numerically solves the non-relativistic SE by the Numerov
method for the continuum states in the effective optical potential Ve f f (r, ε), a sum of the
electrostatic (Coulomb) potential Vc(r) and the energy-dependent exchange-correlation
potential of the Hedin–Lundqvist type [8]. For short, we shall write in the following
Ve f f (r, ε) as V(r).

The Dirac Equation (DE) is the starting point for a fully relativistic calculation of the
atomic t-matrices. In atomic units for lengths and Rydberg units for energies, indicating
by α = e2/(h̄c) = 1/137.036 the fine structure constant, the DE for an electron with
total energy (including rest mass) E in presence of the central potential V(r), specified
above, writes

α2

2

(
E−V(r)

)
Ψ =

(α

i
~α · ~∇+ β

)
Ψ (1)

Here, Ψ is the Dirac bi-spinor

Ψ =

(
gκ(r) χ

µ
κ

i fκ(r) χ
µ
−κ

)
(2)

where gκ(r) and fκ(r) are the upper and lower radial function components, and

~α =

(
0 ~σ
~σ 0

)
β =

(
1 0
0 −1

)
(3)

are the velocity and mass term operators,~σ denoting the Pauli matrices. In the bi-spinor
Equation (2), χ

µ
κ is the spin–orbital

χ
µ
κ = Y Jµ

l 1/2 = ∑
ν

〈l µ− ν|J µ〉Yl µ−ν(r̂) χν (4)
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labeled only by the orbital projection µ and the relativistic quantum number κ. 〈l µ− ν|J µ〉
is the usual Clebsh–Gordan coefficient. Since the spin–orbital is an eigenstate of J2, L2 and
S2, one can easily derive that

(1 + 2~s ·~l)Y Jµ
l 1/2 = −κ Y Jµ

l 1/2 (5)

Therefore, the relativistic quantum number κ determines both J = |κ| − 1/2 and l
according to κ = l for J = l− 1/2 and κ = −(l + 1) for J = l + 1/2. We refer the interested
reader to [9] for the steps leading from the bi-spinor DE to the following radial equations

uκ(r) =
−2

α (ε−V(r))

(
d
dr
− κ

r

)
vκ(r)

vκ(r) =
α

2
1

1 + 1
4 α2 (ε−V(r))

(
d
dr

+
κ

r

)
uκ(r)

(6)

in terms of
uκ(r) = r gκ(r); vκ(r) = r fκ(r) (7)

where now ε = E − 2/α2 is the electron energy less its rest mass. This is positive for
continuum scattering states.

Following Ref. [10], we use the second equation of (6) to replace vκ(r) into the first
equation, obtaining

α

2
(ε−V(r)) uκ(r) =

(
κ

r
− d

dr

)
α

2
1

1 + 1
4 α2 (ε−V(r))

(
d
dr

+
κ

r

)
uκ(r). (8)

By performing the derivative on the r.h.s. and introducing the quantity

B(r) =
1

1 + 1
4 α2

(
ε−V(r)

) (9)

we find(
d2

dr2 + ε−V(r)− κ(κ + 1)
r2 +

α2

4
(
ε−V(r)

)2

+
α2

4
B(r)

[
d
dr

V(r)
(

d
dr
− 1

r

)
+

1 + κ

r
d
dr

V(r)
])

uκ(r) = 0(
d2

dr2 + ε−V(r)− κ(κ + 1)
r2 + Hm(r) + HD(r) + Hso(r)

)
uκ(r) = 0

(10)

which is the sought pseudo-SE. The Hm(r) term is known as the mass relativistic correction,
the HD(r) one as the Darwin correction and Hso(r) is the spin–orbit potential. Indeed,
according to Equation (5), 1 + κ acting on a spin–orbital state is equivalent to −2~s ·~l. To
make contact with the non-relativistic SE, we observe that κ(κ + 1) = l(l + 1) ∀κ.

The associated indicial equation is obtained by inserting the assumed low r behavior
of uκ(r) ∼ rρ [a0 + a1 r + ...] into Equation (10) and equating to zero the coefficient of the
lowest power of r, (rρ−2), taking into account that limr→0 B(r) ∼ 2r/(Zα2). We have
assumed, as usual, that V(r) ∼ −2Z/r at the origin, where Z is the atomic number.
One finds

ρ(ρ− 1) + ρ− (κ2 −
(
Z α)2) = 0 (11)

which gives ρ = [κ2 − (Z α)2]1/2 (taking only the positive root for regular behavior at the
origin). This is obviously the same low r behavior of the DE.

The solution of Equation (10) provides the upper component of the radial DE. The
lower one can be obtained by inserting this solution into the second equation in (6). We
shall neglect the lower component, so that only dipole transition matrix elements will be
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affected, whereas the upper component is sufficient to provide the exact relativistic atomic
t-matrix.

The Equation (10) is numerically solved by the Numerov procedure after elimination
of the first order derivative (as detailed in Ref. [10]), by applying the method of Gaussian
elimination [11]. We also use the more flexible linear-log mesh [12]

ρ = α̃r + β ln r (12)

instead of the usual Herman–Skillman (HS) mesh, since the relativistic corrections take
effect at much smaller values of r than the initial point of the HS mesh. In Equation (12),
α̃ and β are constants to be conveniently determined, as illustrated below. We should,
therefore, perform a change of variable from r to ρ before applying the Numerov procedure,
which requires constant spacing of the integration variable. A constant mesh size of ρ can
be constructed in the interval ρ0 ≤ ρ ≤ ρN as follows. The initial value of ρ0 is chosen
according to the empirical formula

ρ0 = −β(12 + ln Z) (13)

which gives a minimum value of r already of the order of 10−6 for Z = 1, taking β = 1, as
usually done in atomic physics. The final ρN is determined by

ρN = ρ0 + Nh (14)

so that α̃ is given by
α̃ = (ρN − ln rN)/rN (15)

where the value of rN is taken to be slightly greater than the MT radius of the atom under
consideration. A convenient value of N is given by N = 100 rN , so that Equation (14)
determines the mesh size h. The value of r = r(ρ) corresponding to a given value of ρ can
be readily found by application of the Newton technique. Ref. [13] describes in great detail
the Numerov method of integration together with Gaussian elimination, using a linear-log
mesh, in the case of a non-relativistic SE in three dimensions. The method applied here
is an extension of that method to the relativistic pseudo-SE of Equation (10) (and all the
related approximations as illustrated below) in one dimension, after elimination of the first
order derivative.

In order to find the atomic t-matrices in the relativistic framework we need the free
radial solutions of the DE for positive energies, both regular and irregular. They are
obtained from Equations (6) (via Equation (10)) by setting V(r) to zero and are given in
Ref. [9].

For a MT potential, as in the non-relativistic framework, the t-matrix is obtained by
matching smoothly at the MT radius Rs the solution of the DE inside the MT sphere with
the free solution outside the sphere(

gκ(r) χ
µ
κ

i fκ(r) χ
µ
−κ

)∣∣∣∣
r=Rs

=

(
jlκ (pr) χ

µ
κ

i CSκ jl(pr) χ
µ
−κ

)
− ip tκ

(
h+lκ (pr) χ

µ
κ

i CSκ h+
l
(pr) χ

µ
−κ

)∣∣∣∣∣
r=Rs

(16)

where C = α/[2 (1 + 1
4 α2 ε)], Sκ = κ/|κ| and p2 = ε(1 + α2

4 ε) ∼ ε is the free electron
energy. Therefore, indicating by lκ the l-value associated to κ so that l = lκ − Sκ , we find

tκ =
i
p

[gκ(r) j′lκ (pr)− g′κ(r) jlκ (pr)]

[gκ(r) (h+lκ )
′(pr)− g′κ(r) h+lκ (pr)]

∣∣∣∣∣
r=Rs

=
i
p

[ fκ(r) j′
l
(pr)− f ′κ(r) jl(pr)]

[ fκ(r) (h+l )
′(pr)− f ′κ(r) h+

l
(pr)]

∣∣∣∣∣
r=Rs

(17)
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As a consequence, tκ is determined solely by the knowledge of the upper component
gκ(r). As a check, we have verified that the second expression in terms of the lower
component fκ(r) provides the same t-matrix. Note that the smooth matching conditions
renormalize the pair of functions gκ(r) and fκ(r) into new ones gn

κ (r) and f n
κ (r) that are

continuous with the free solutions at Rs, where the superscript n stands for “normalized”.
In the course of a fitting procedure, it is useful sometimes to establish the relevance of

the various potential terms in the effective Equation (8). To this purpose, Phagen generates
three kinds of tpa

κ -matrices, according to the kind of potential approximations (pa) retained.
In Equation (10), the potential V(r) ≡ Ve f f (r, ε) appears in four terms. Retaining,

from left to right, only the first, one recovers the usual non-relativistic SE (pa = nr),
integrated numerically on a linear-log mesh as for the relativistic calculations. According to
Equation (17), the corresponding radial solution generates the non-relativistic tnr

κ -matrices.
Since the program keeps the same quantities generated with the HS mesh, the matching
comparison is a good check that there are no unexpected surprises.

By adding to the non-relativistic potential V(r) the second Hm(r) and the third HD(r)
term we obtain the scalar relativistic Equation (pa = sr) that provides the tsr

κ -matrices in
the same approximation.

Finally, when the potential includes also the spin–orbit term Hso(r) we recover the
fully relativistic potential, including spin–orbit effects (pa = so). In this case, the value of
the quantum number κ determines both J and l. Correspondingly, according to the value
of the quantum number J = |κ| − 1/2, the program generates two sets of t-matrices, tsojm

for J = l − 1/2 (κ positive) and tsojp for J = l + 1/2 (κ negative).
The wave-functions used in the generation of the t-matrices in the various approxi-

mations serve also to calculate the corresponding atomic absorption. These are calculated
from the knowledge of the atomic Green Function (GF) as

σabs(ω) = −4 π α h̄ ω
∫
〈φc(r)|(ε ·~r)∗|=G+

at(r, r′; ε)| ε ·~r ′|φc(r′)〉dr dr′ (18)

where h̄ω is the energy of the incoming photons with complex polarization ε, |φc(r′)〉 is
the initial core state and the scalar product ε ·~r is between spherical components of the
respective complex vectors. Restricting oneself to non-magnetic materials, it is intended
that one should perform the sum over the magnetic quantum number projections of the
initial core and final states, and all the components of the dipole (l = 1) transition operator
Clm(r̂) =

√
4π/(2l + 1)Ylm(r̂).

The expression of the upper component of the relativistic GF, in analogy with the
non-relativistic one, is

G+
at(r, r′; ε) = ∑

κµ

gn
κ (r<)h

n
κ (r
′
>)χ

µ
κ ⊗ (χ

µ
κ )

† (19)

where, as usual, r<(r>) is the lesser (greater) of r, r′ and hn
κ (r) is the irregular upper solution

of the DE matching smoothly to the Hankel function h+l (r) of the first kind at Rs.
The double integral in Equation (18) breaks up into a radial part and an angular part.

The radial part has the standard expression [14]

2=
(∫ Rs

0
r3dr φc(r)hn

κ (r)
∫ r

0
(r′)3dr′ gn

κ (r
′)φc(r′)

)
(20)

where the radial functions gn
κ and hn

κ take the appropriate form according to the approxi-
mation retained.
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The angular part varies according to whether in Equation (8) one retains or not the
spin–orbit potential. Without spin–orbit interaction, one can work in the l, σ representation,
so that, according to the Wigner–Eckart theorem [15] and in the standard notations,

∑
m m f

∣∣∣〈Ylcmc(r̂)|C1m(r̂)|Yl f m f
(r̂)
〉∣∣∣2 =

∣∣∣〈lc||C1||l f
〉∣∣∣2 = (2l f + 1)

∣∣∣∣( lc l f 1
0 0 0

)∣∣∣∣2 (21)

Therefore, taking into account the spin and orbital degeneracy of the initial state
2(2lc + 1), transitions to a final state l f = lc + 1 bear a weight 2(lc + 1), whereas transitions
to l f = lc − 1 bear a factor 2lc. This result is valid both for the non-relativistic and scalar-
relativistic cases. Since they are already coded in, there is no need to change anything in
case of scalar-relativistic corrections.

Including the spin–orbit interaction, one has to work in the κ, µ representation,
whereby

∑
m µ f

∣∣∣〈χµc
κc (r̂)|C1m(r̂)|χ

µ f
κ f (r̂)

〉∣∣∣2 =

∣∣∣∣〈lc
1
2

Jc

∣∣∣∣∣∣∣∣C1

∣∣∣∣∣∣∣∣l f
1
2

J f

〉∣∣∣∣2 = (2J f + 1)
∣∣∣∣(Jc J f 1

1
2 − 1

2 0

)∣∣∣∣2 (22)

with the usual selection rules: lc + l f + 1 = 2n and |Jc − J f | = 0, 1. Reference [15] gives at
page 95 ∣∣∣∣〈lc

1
2

Jc

∣∣∣∣∣∣∣∣C1

∣∣∣∣∣∣∣∣l f
1
2

Jc

〉∣∣∣∣2 =
1

4Jc(Jc + 1)∣∣∣∣〈lc
1
2

Jc

∣∣∣∣∣∣∣∣C1

∣∣∣∣∣∣∣∣lc + 1,
1
2

, Jc + 1
〉∣∣∣∣2 =

2Jc + 3
4(Jc + 1)∣∣∣∣〈lc

1
2

Jc

∣∣∣∣∣∣∣∣C1

∣∣∣∣∣∣∣∣lc − 1,
1
2

, Jc − 1
〉∣∣∣∣2 =

2Jc − 1
4Jc

(23)

Considering, e.g., the allowed transitions from an initial state 2p3/2, as appropriate to
Pb, we find, indicating in parenthesis the value of the reduced matrix element in (23),

2p3/2 → εd5/2(9/15); 2p3/2 → εd3/2(1/15); 2p3/2 → εs1/2(5/15); (24)

The final weight for these transitions is obtained by multiplying by 2Jc + 1 = 4.
Appropriate corrections have been coded in the new version of Phagen.

3. Phase-Shift Calculations for Br2 and Pb

We have explicitly calculated the t-matrices using different approximations for se-
lected well-known systems and in this paper we present the results for molecular Br2 and
crystalline Pb, for which average interatomic distances are known and previous EXAFS
experiments and data-analysis were already carried out (see Refs. [16,17] for Br2 and [18]
for Pb). In those systems, the first-neighbour interatomic distances were rather precisely
defined at room temperature using non-relativistic models and compared with previous
experiments (RBrBr = 2.289± 0.001 Å [17] and RPbPb = 3.496± 0.008 Å [18]). We refer to
the original publications for details about experimental data, modelling of the X-ray absorp-
tion background including double-electron excitation channels and full (non-relativistic)
structural analysis.

Structural models for those systems can be easily introduced in GnXAS and calculations
of the t-matrices are performed using the present new version of Phagen, containing the
relevant relativistic corrections. For Br2 and Pb phase-shift calculations have been carried
out using a complex Hedin–Lundqvist energy-dependent optical potential. In Br2, we have
considered a typical interatomic Br− Br distance RBrBr = 2.286 Å and RMT = 1.143 Å for
the muffin-tin radius (Br 1s excited atom). For Pb (2p3/2 excited atom), we have considered
a face-centered-cubic structure (lattice spacing a = 4.941 Å at 300 K) consistent with the
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present accepted value around room temperature (see Ref. [18] and references therein). In
this case the muffin-tin radius for the excited Pb atom was RMT = 1.222 Å corresponding
to about 80 electrons for the charge density integral. In both cases, atomic phase-shifts have
been calculated for the photoabsorbing (excited) and neutral atoms, following standard
procedures used for muffin-tin MS calculations.

The Phagen program has been used to produce various non-relativistic and relativistic
outputs including the scalar relativistic and the full-Dirac calculation. Following the
outlines of the previous section, these are denoted, respectively, as ‘nr’, ‘sr’ and ‘so’. In
particular, the fully-relativistic t-matrices and atomic absorptions of the ‘so’ case are written
into two different outputs, classified as ‘sojp’ and ‘sojm’ following the notation introduced
in the preceding Section 2.

The results of these phase-shift calculations for Br2 and Pb are reported in Figure 1
for the lower angular momenta l = 0, 1, 2 as a function of the photoelectron kinetic energy
(results shown are only for the photoabsorbing Br and Pb atoms, since no substantial
differences have been observed for neutral Br and Pb). As expected, minor corrections are
found for the Br case, while substantial changes are observed in Pb. Those corrections are
especially important at low kinetic energies and low angular momenta as it is shown by
differences between non-relativistic and scalar-relativistic phase shifts. Differences up to
about 0.5 rads are found in Pb for l = 0 in the entire energy range, although relativistic
corrections tend to be less important for increasing l. This trend is more evident looking
at the difference curves |δ(nr)

l − δ
(sr)
l | shown in the lower panels of Figure 1. The energy

dependence of the difference curves is rather smooth, showing only weak oscillations,
but the increasing importance of relativistic corrections for low angular momenta is clear.
This is in line with what is known to take place for electrons bound within central-field
potentials [19].

Figure 1. Cont.
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Figure 1. Upper figures: phase-shifts δl (l = 0, l = 1, l = 2) (real part) for the photabsorbing Br
atom in the Br2 molecule (left panels) and of Pb atoms in solid Pb (right-hand panels) calculated
by the new Phagen program as a function of the photoelectron energy. Non-relativistic (nr) and
scalar relativistic (sr) corrections are indicated, respectively, by blue and orange (continuous) lines;
spin–orbit relativistic (sojp, J = l + 1/2) and (sojm, J = l − 1/2) are denoted, respectively, by green
and red (dashed) lines. Lower figures: difference between non-relativistic (nr) and scalar relativistic
(sr) phase-shift calculations for Br and Pb. The importance of accounting for relativistic effects in Pb
is evident. All phase-shifts and differences are shown in rads.

4. Results and Discussion

The atomic t-matrices calculated by Phagen using non-relativistic and relativistic
approximations have been used to compute the irreducible two-body γ(2) and three-body
γ(3) (and η(3)) MS signals relevant for the final XAFS data-analysis carried out by GnXAS. We
refer to the original publications [1,2] for details about this procedure. In Figure 2, we report
the results for the calculations of the single-scattering signals χ2 (first MS contribution to the
two-body term γ(2)) related to Br2 and Pb, as a function of the photoelectron wave-vector
k. Those χ2 signals are related to the first-neighbor shell in the two systems, corresponding
to typical interatomic distances RBrBr = 2.286 Å and RPbPb = 3.494 Å.

Looking at Figure 2, upper panels, it is possible to observe that the χ2 signal in Br2 is
visibly affected by relativistic corrections only at moderate wave vector values k < 4 Å−1,
while substantial modifications are found in Pb at least up to 8 Å−1. The χ2 signals can be
expressed as the product of amplitude and phase functions χ(k) = A(k) sin(φ(k)) (see for
example Refs. [1,2]), both generated by GnXAS and shown in the center panels of Figure 2 (as
usual, phase functions are shown removing the linear distance factor: Ψ(k) = φ(k)− 2kR).
Those two functions are related to the backscattering amplitude and to the phase shifts
experienced by the photoelectron and are obviously affected by the approximations used
in the calculation. While differences are very limited in Br2, we observe some important
effects in Pb. In this case, the amplitudes shows fluctuations and minima close to zero
in the typical region used for XAFS data-analysis (k > 4 Å−1). The k regions for which
amplitudes are near zero (highlighted in figure) or shows minima, are also characterized
by changes in phase and may appear as typical beats in the XAFS χ(k) signal.
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Figure 2. Results of calculations of the single-scattering χ2(k) signals in Br2 molecules (left panels)
and in solid Pb (right-hand panels, first shell) as a function of the photoelectron wavevector k. From
top to bottom, the total single-scattering signals χ(k) = A(k) sin(φ(k)), amplitudes A(k), and total
phase functions Ψ(k) = φ(k)− 2kR (where R is the first-neighbour distance), are reported. Non-
relativistic (nr) and scalar relativistic (sr) corrections are indicated, respectively, by blue and orange
(continuous) lines; spin–orbit relativistic (sojp and sojm) are denoted, respectively, by green and red
(dashed) lines. The k regions for which amplitudes are near zero (highlighted) or show minima, are
also characterized by changes in phase and may appear as typical beats in the XAFS χ(k) signal. The

lower panels display the difference of ‘nr’ and ‘sr’ reported as normalized residuals,
∣∣∣ A(sr)−A(nr)

A(nr)

∣∣∣.
Deviations well below 5% are found for Br2 in the typical XAFS range k > 4 Å−1, while substantial
corrections are needed for Pb also in this high-energy regime. Average deviations were found to be
6% and 25% for Br2 and Pb, respectively. Corrections may be critical near amplitude minima and in
the near-edge region (low k values), reaching deviations more than 30%.

We have performed a full structural refinement of the Pb L3-edge experimental sig-
nal [18] of face-centered-cubic (fcc) crystalline Pb at room temperature (299 K), using the
GnXAS data-analysis method and the new Phagen program including relativistic corrections.
The individual irreducible multiple-scattering signals related to a typical fcc structure [1,2]
were calculated up to the fourth coordination shell. The most important contribution is of
course that related to the first neighbors two-body γ

(2)
1 signal, while MS effects are limited

in Pb due to a combination of effects: (i) large atomic vibrational amplitudes at room temper-
ature for this low-melting point metal; (ii) large interatomic distances; (iii) short lifetime of
the excited state (effect of the ∼3 eV HWHM core-hole width and electron mean-free-path).
However, weak MS high-frequency signals can be introduced, related to first-neighbor
equilateral configurations γ

(3)
1 (pure three-body signal), and to the effective second η

(3)
2 ,

third η
(3)
3 and fourth η

(3)
4 signals corresponding to first-neighbors configurations at 90, 120

and 180 degrees (which include both two-body and three-body contributions).
An important aspect of the XAFS data-analysis is the modeling of the atomic back-

ground that for the Pb L3-edge is particularly complex, being affected by the presence of
multielectron channels involving 4 f electrons [20]. In GnXAS, XAFS data analysis is carried
out including realistic models for the absorption background that are refined with the
structural signal (fitheo refinement program). The absorption background used in the
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present structural refinement includes a smooth polynomial spline and the contribution of
double-electron excitation 2p4 f channels.

The improvement in XAFS refinements obtained using relativistic approximations has
been clearly assessed by our tests and allowed us to obtain a very good agreement with the
experimental data, using a realistic background model of Pb L3 data and structural values
compatible with the known crystalline structure. In fact, the quality of the refinement
measured by the residual value R (see Ref. [2]) was found to improve by a factor of 2, a
statistically significant value. The agreement of the scalar relativistic approximation with ex-
perimental data has been always found to be better than that of non-relativistic calculations,
for any tested background model. The better quality of the relativistic XAFS calculations
can be appreciated looking at Figure 3, where we compare total best-fit multiple-scattering
(MS total, scalar relativistic) and experimental signals. The agreement with experimental
data is particularly improved using relativistic approximations in a wide wave-vector
region k < 6 Å−1. Similar good results were found using the MS signals generated by
spin–orbit relativistic (sojp, see above) phase-shifts. We have also verified that the best-fit
structural parameters found in this study are compatible with previous results. In solid
Pb at room temperature, the first neighbor distance distribution can be reproduced using
a Γ-like function (see Ref. [18] and refs. therein) which depends on four parameters: N,
the number of neighbours (coordination number, 12 in this case); R, the average bond
distance; σ2, the distance variance (the so-called Debye–Waller-like disorder factor); β, a
dimensionless asymmetry parameter which tends to zero at low temperatures (limit of a
Gaussian function). For scalar relativistic MS calculations, the best-fit structural parameters
resulted to be R = 3.498 Å, bond variance σ2 = 0.032 Å2, β = 0.38, in line with previous
results [18].

Figure 3. XAFS Pb L3-edge structural refinement of crystalline Pb (face centered cubic, 299 K) using
the GnXAS data-analysis method and the new Phagen program including relativistic corrections. The
two panels show the results of non-relativistic (left) and scalar relativistic (right-hand) refinements.
From top to the bottom the individual irreducible multiple-scattering signals [1] up to the fourth

coordination shell in crystalline Pb are presented (first neighbors γ
(2)
1 , equilateral configurations γ

(3)
1 ,

second η
(3)
2 , third η

(3)
3 and fourth η

(3)
4 shells corresponding to first-neighbors configurations at 90, 120

and 180 degrees. The improvement in XAFS refinement obtained using scalar relativistic phase-shift
calculations can be appreciated looking at the comparison between the total multiple-scattering (MS
total) and experimental (expt. data, blue) signals and the residuals (red color).
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5. Conclusions

In this paper, we have described the inclusion of relativistic corrections in the multiple-
scattering calculations used for XAFS data-analysis within the GnXAS suite of programs.
This task has been accomplished by realizing a new code for the program generating
the scattering t-matrices (Phagen), without altering the basic structure of the programs.
The modification incorporates a pseudo-Schrödinger equation containing several terms
including scalar relativistic and fully relativistic spin–orbit potentials. The new scheme for
phase-shift calculations has been put to a test in two known molecular and crystalline cases:
molecular bromine Br2 and crystalline Pb. Non-relativistic, scalar relativistic and fully
relativistic scattering t-matrices (and phase shifts) have been calculated for the two cases
showing the importance of taking into account relativistic effects especially for Pb. Phase-
shift corrections are extended to the whole photoelectron energy range and have found to
be more important for low angular momenta. Therefore, relativistic corrections may be
less important for high photoelectron energies where high angular momenta components
are needed to describe the final state. Relativistic corrections were found to be much more
pronounced in Pb than in Br (up to about 0.5 rads in δ0(E) for l = 0 in Pb) as expected due
to the higher atomic number.

Multiple-scattering calculations have been then carried out for the Br K-edge and
Pb L3-edge in molecular bromine and solid lead showing that clear modifications are
related to relativistic effects especially at lower photoelectron energies (or wave-vector).
In particular, large deviations in amplitudes and phases are observed in a wide vector
range k < 8 Å−1 in Pb, while corrections are limited to k < 4 Å−1 in Br. Amplitude
deviations are found to be 25% and 6% for solid Pb and Br2, respectively. The new
multiple-scattering signals generated using relativistic approximations for the scattering
t-matrices have been used for direct structural refinements of the XAFS experimental
signal of crystalline Pb. We have observed significative improvements in the agreement
between the experimental and calculated XAFS signals using relativistic phase shifts,
quantified by a decrease in the residual value up to a factor of 2 with a Pb–Pb distance
distribution compatible with previous works. In view of these results, we can conclude
that the new scheme implemented in GnXAS for relativistic MS calculations can be safely
used for XAFS structural refinements of systems containing atoms for which relativistic
corrections are important.
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