
Topological Interpretation of Interactive
Computation

Emanuela Merelli1 and Anita Wasilewska2

1 Department of Computer Science, University of Camerino, Italy
emanuela.merelli@unicam.it

2 Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
anita@cs.stonybrook.edu

Abstract. It is a great pleasure to write this tribute in honor of Scott
A. Smolka on his 65th birthday. We revisit Goldin, Smolka hypothesis
that persistent Turing machine (PTM) can capture the intuitive notion
of sequential interaction computation. We propose a topological setting
to model the abstract concept of environment. We use it to define a
notion of a topological Turing machine (TTM) as a universal model for
interactive computation and possible model for concurrent computation.

Keywords: Persistent Turing machine; Topological environment; Topo-
logical Turing machine.

1 Introduction

In 2004, Scott A. Smolka worked with Dina Goldin 3 and colleagues on a formal
framework for interactive computing; the persistent Turing machine (PTM) was
at the heart of their formalization [1,2,3]. A PTM is a Turing machine (TM)
dealing with persistent sequential interactive computation a class of computa-
tions that are sequences (possibly infinite) of non-deterministic 3-tape TMs. A
computation is called sequential interactive computation because it continuously
interacts with its environment by alternately accepting an input string on the
input-tape and computing on the work-tape a corresponding output string to
be delivered on the output-tape. The computation is persistent, meaning that
the content of the work-tape persists from one computation step to the next by
ensuring a memory function.
The definition of PTM was based on Peter Wegner’s interaction theory developed
to embody distributed network programming.

Interaction is more powerful than rule-based algorithms for computer problem

solving, overturning the prevailing view that all computing is expressible as

algorithms [4,5].

3 The work was developed in connection of the celebration of Paris Kanellakis for his
50th birthday. They were his first and last Ph.D student.

ar
X

iv
:1

90
8.

04
26

4v
1

 [
cs

.L
O

]
 3

 A
ug

 2
01

9

2 E. Merelli, A. Wasilewska

Since in this framework interactions are more powerful than rules-based algo-
rithms they are not expressible by an initial state described in a finite terms.
Therefore, one of the four Robin Gandy’s principles (or constraints) for com-
putability is violated, as stated in [6]. The need to relax such constraints allows
one to think that interactive systems might have a richer behavior than algo-
rithms, or that algorithms should be seen from a different perspective. Although
PTM makes the first effort to build a TM that accepts infinite input, we strongly
support the idea that the interaction model should also include the formal char-
acterization of the notion of environment.

In this paper, we focus on Smolka et al. original point of view on persis-
tent and interactive computation. We revisit and formalize a concept of com-
putational environment for PTM following Avi Wigderson’s machine learning
paradigm in [7].

Many new algorithms simply ′create themselves′ with relatively little
intervention from humans, mainly through interaction with massive data4.

We use the notion of computational environment to define class of abstract
computable functions as sets of relations between inputs and outputs of PTM.
The computational environment depends on time and space. It can evolve and
so the effectiveness of these functions depends on a given moment and a given
context.

Computational environment is defined in terms of ambient space. The am-
bient space is a generalization of a notion of ambient manifold introduced in [8]
to describe the topological quantum computation model.

We do it in such a way that the infinite computation can be reduced to
a set of relations, constrained within its ambient space by loops of non-linear
interactions. The ambient space is not necessarily a vector space, hence there
is a problem of linearity and non-linearity of computation. The non-linearity
originated from the shape that can be associated to the ambient space, which
can be obtained by the topological analysis of the set of data provided by the real
environment. Figure 1 shows the synthesis of this concept. The ambient space
and PTM can be thought as mathematical representation of complex systems,
merely defined as systems composed of many non-identical elements, constituent
agents living in an environment and entangled in loops of non-linear interactions.

We built a topological PTM to model both the behavior of an interactive ma-
chine and its computational environment. The main idea of the generalization is
that output-tape is forced to be connected to the input-tape through a feedback
loop. The latter can be modeled in a way that the input string can be affected by
the last output strings, and by the current state of the computational environ-
ment. A state of a topological PTM becomes a set of input and output relations
constrained to an environment whose geometric representation formally defines
the context of the computation. If many topological PTMs share the same com-
putational environment, the computation becomes a stream of interactions of
concurrent processes, which at higher dimension can be seen as a collection of

4 https://www.ias.edu/ideas/mathematics-and-computation

Topological Interpretation of Interactive Computation 3

streams, such as an n-string braid as examined in topological quantum informa-
tion [8]. In this scenario, the computational environment, envisaged as a discrete
geometric space, may even evolve while computations take place.

The informal description given above depicts the environment. We define it
as follows. Given a PTM, let X be a set of its input and output strings. Since
the computational environment depends on time and space. In this case the
time is represented by collection of steps. For each step i in time, we define an
equivalence relation ∼i on X such that inputi in X there exists an operator fi
such that fi(inputi) = outputi.

In classical Turing machine the set of operators fi is called rules or trans-
formations. Our goal is to build an environment where this set of functions fi
can be discovered. Each element of X represents a transition from one state of
the machine to a next guided by the operator fi (unknown for the model) con-
strained over the computational environment. The mathematical objects we are
looking for should reflect the collective properties of the set X in a natural way
to support the discovery of the set of operators fi. These operators allow us to
represent X as a union of quotient spaces of the set of equivalence classes X/ ∼i
of all the feasible relations hidden in X. The resulting functional matrix of fi,
also called interaction matrix, represents the computational model or what we
called the learnt algorithm [9].

In order to characterize the set of operators {fi}, we decided to analyze the
set X of environmental data by a persistent homology, a procedure used in topo-
logical data analysis (TDA). TDA is a subarea of the computational topology
that filters the optimal space among simplicial complexes [10]. A simplicial com-
plex can be seen as a generalization of the notion of graph, where the relations
are not binary between vertices, but n-ary among simplices. A simplex expresses
any relation among points. For example, a 0-dimensional simplex is a unary re-
lation of a single point, a 1-dimensional simplex is a binary relation of two points
(a line), a 2-dimensional simplex is a three points relation (a full triangle), and
so on. For the interested reader, Appendix 1 gives some useful definitions for
algebraic and computational topology. Although a simplicial complex allows us
to shape the environment as a discrete topological space, the new model of PTM
also requires to express the feedback loop between the output at step i with the
input at the next step i+ 1 of the computation. To this end, we follows a recent
approach proposed in the context of big data and complex systems for embed-
ding a set of correlation functions (e.g. the encoding of a given data set) into
a field theory of data which is relied on a topological space naturally identified
with a simplicial complex [11]. The resulting mathematical structure is a fiber
bundle [12], whose components are summarized in Figure 1.

The framework consists of three topological spaces B,H,G, and one projec-
tion map π. The base space B, the set of input/output strings embedded in a
simplicial complex; the fiber H, the set of all possible computations (the set of
fi) constrained by the ′gauged′ transformations over the base point PB of the
fiber; the total space G of the fiber bundle obtained by the product of the other
two spaces (G = B ×H), and the projection map π : G → G/H that allows

4 E. Merelli, A. Wasilewska

Fig. 1. Example of topological interpretation of computation. The base space B is a
two-dimensional handlebody of genus 3, such as a trifold. The small red circles around
some points of the fiber space H indicate the presence of states that make the com-
putation inconsistent. The violet lines over the base space B show the corresponding
unfeasible paths to be avoided due to the topological constraints imposed by the base
space. The non-linear transformations of the fibers states, induced by the projection
map π over the simplicial complex, guarantees the choice of the admissible paths with
respect to the topology of the base space. The lines marked with a black cross cor-
respond to inconsistent states of the system, which do not exist in the topological
interpretation. The picture at the bottom right corner is an example of computation,
it refers to the notion of contextuality [18], informally a family of data – a piece of
information – which is locally consistent and globally inconsistent.

us to go from the total space G to the base space B obtained as a quotient
space of the fiber H. In Figure 1, the π projection map is represented by dashed
lines and used to discover if the geometry of the base space can constrain the
ongoing computation in order to predict and avoid unfeasible transformations,
the red lines in the figure. In our model, the obstructions that characterize the
ambient space and constraint the computation are represented by the presence
of n-dimensional holes (n > 1) in the geometry of the topological space. In our
framework the holes represent the lack of specific relations among input and out-
put of topological Turing machine. It means that the topological space, in our

Topological Interpretation of Interactive Computation 5

representation as simplicial complex, has a non trivial topology. As an example,
in Figure 1, the base space B is two-dimensional handlebody of genus 3. The
formal description of the proposed approach rests on three pillars: i) algebraic
and computational topology for modeling the environment as a simplicial space
B; ii) field theory to represent the total space G of the machine as a system of
global coordinates that changes according to the position PB of the observer re-
spect to the reference space H, and iii) formal languages to enforce the semantic
interpretation of the system behaviour into a logical space of geometric forms,
in terms of operators fi that here we call correlation functions in the space of
the fiber H.
Consequently, an effective PTM is nothing but a change of coordinates, consis-
tently performed at each location according to the ′field action′ representing the
language recognized by the machine.
While the algorithmic aspect of a computation expresses the effectiveness of the
computation, the topological field theory constraints the effectiveness of a com-
putation to a specific environment where the computation might take place at
a certain time in space.

It is right here to recall Landin’s metaphor of the ball and the plane, in-
troduced to describe the existence of a double link between a program and
machine [13]:

One can think of the ball as a program and the plane as the machine on which it

runs. ... the situation is really quite symmetric; each constrains the other [14].

Alan Turing himself, in his address to the London Mathematical Society in
1947, said

. . . if a machine is expected to be infallible, it cannot also be intelligent [15].

It is becoming general thinking that intelligence benefits from interaction and
evolves with something similar to adaptability checking [9]. Accordingly, the
PTM, and its topological interpretation seem to be a good starting point for
modeling concurrent processes as interactive TMs [19]. Also considering that
the set of PTMs reveals to be isomorphic to a general class of effective tran-
sition systems as proved in Smolka et al. in [1]. This result allows to make the
hypothesis that the PTM captures the intuitive notion of sequential interactive
computation [2], in analogy to the Church-Turing hypothesis that relates Turing
machines to algorithmic computation.

What is computation? Turing, Church, and Kleene independently formalized
the notion of computability with the notion of Turing machine, λ-calculus, partial
recursive functions. Turing machine manipulates strings over a finite alphabet,
λ-calculus manipulate λ-terms, and µ-recursive functions manipulate natural
numbers. The Church-Turing thesis states that

every effective computation can be carried out by a Turing machine or
equivalently a certain informal concept (algorithm) corresponds to a certain

mathematical object (Turing machine) [16].

6 E. Merelli, A. Wasilewska

The demonstration lies on the fact that the three notions of computability are
formally equivalent. In particular, the Turing machine is a model of computa-
tion like a finite states control unit with an unbounded tape used to memorize
strings of symbols. A deterministic sequence of computational steps transforms
a finite input string in the output string. For each step of the computation, a
Turing machine contains all the information for processing input in output, an
algorithmic way to computing a function, those functions that are effectively
computable. The Universal TM is the basic model of all effectively computable
functions, formally defined by a mathematical description.

Definition 1 (Turing machine) A Turing machine (TM) is M = 〈Q,Σ,P〉,

– Q is a finite set of states;

– Σ is a finite alphabet containing the blank symbol #; L and R are special
symbols.

– P ⊆ Q×Σ ×Σ ×Q× {L,R}, the set of configurations of M.

A computation is a chain of elements of P such that the last one cannot be
linked to any possible configuration of P.

The multi-tape Turing machine is a TM equipped with an arbitrary number k
of tapes and corresponding heads.

Definition 2 (k-tape Turing machine) A non-deterministic k-tape TM is a
quadruple 〈Q,Σ,P, s0〉, where

– Q is a finite set of states; s0 ∈ Q is the initial state and h /∈ Q is the halting
state.

– Σ is a finite alphabet containing the blank symbol #. L and R are special
symbols.

– P ⊆ Q×Σk × (Q ∪ {h})× (Σ ∪ {L,R})k is the set of configurations.

The machine makes a transition from its current configuration (state) to a new
one (possibly the halt state h). For each of the k tapes, either a new symbol is
written at the current head position or the position of the head is shifted by one
location to the left (L) or right (R).

The above definitions of TMs do not take into account the notion of environ-
ment; the input is implicitly represented in the configurations P of M machine
modulo feasible relations. The objective of this contribution is to represent the
environment explicitly in a way such that the admissible relations are natu-
rally determined. Our view is supported by a recent, even though not formal,
definition of computation.

Computation is the evolution process of some environment via a sequence of simple

and local steps [7].

Topological Interpretation of Interactive Computation 7

A Computational environment is the base space over which the process of
transformation of an input string happens. For the TM, an environment is any
configuration of P of a machine M, from the initial one to the final one. It is
a closed set – represented by the functional matrix, – whose feasible relations
should be known a priori to assure the algorithmic aspect of the computation.
Indeed, in TM the environment does not evolve, it remains unchanged during
the computation.

If we consider the environment as an open set - the set of configurations
may changes along the way due to computation - accordingly, the set of feasible
relations may change. As Section 3 describes, one way to capture this variation
is to associate a topology to the space of all possible configurations and use
the global invariants of the space to classify the relations in categories whose
elements are isomorphic to those of some model of computation, such as the TM.
In this setting, the local steps (feasible relations) – the functional matrix – are
affected by global topology. As a consequence, the evolution of an environment
corresponds to a change of the topological invariants. Then the classical TM is
equivalent to working with a space of states whose topology is invariant, which
allows the process of transformation to run linearly.

While an interactive computation takes into account the non-linearity of the
computation due to the structure of the transformations characterizing it. The
non-linearity is implied by the topology of the base space B, and induced by
the semi-direct product factorization of the transformation group, the simplicial
analog of the mapping class group, denoted by GMC .

In the viewpoint of computation as a process, the global context induces
non-linear interactions among the processes affecting the semantic domain of
the computation. The semantic object associated to TM, that is the function
that TM computes, or the formal language that it accepts, becomes an interac-
tive transition system for a PTM. In the topological setting it changed into the
pair of 〈function, structure〉, entangled as a unique object. The function repre-
sents the behavior and the structure the context. Formally represented by the
fiber subgroup in the semi-direct product form of the group of computations
(connected to process algebra), denoted by GAC , and GMC the group of self-
mapping of the topological spaces (the environmentself-transformations algebra,
i.e. automorphisms which leave the topology invariant), quotient by the set of
feasible relations. The new semantic object, a gauge group G = GAC ∧ GMC ,
provides another way to understand the meaning of contextuality [17], as a tool
to distinguish effective computation from interactive computations. That is to
identify configurations that are ′locally consistent, but globally inconsistent′, as
shown in Figure 1 and informally summarised in the following sentence

Contextuality arises where we have a family of data which is locally consistent
but globally inconsistent.

Section 3 introduces the new interpretation. We leave the formal definition
and full formalization of the theory corresponding to the group of computations
for an evolving environment as future work.

8 E. Merelli, A. Wasilewska

2 Interactive Computation

n this section, we recall the definition of the persistent Turing Machine, PTM as
defined by Smolka et al. in [1] and the related notion of environment introduced
in their earlier work [2]. We introduce the definitions needed to support the
construction of a new topological model that is a generalization of the PTM.
The new model allows one to re-interpret the classic scheme of computability,
which envisages a unique and complete space of problems.

The PTM provides a new way of interpreting TM computation, based on
dynamic stream semantics (comparable to behavior as a linear system). A PTM
is a non-deterministic 3-tape TM (N3TM) that performs an infinite sequence of
classical TM computations. Each such computation starts when the PTM reads
input from its input-tape and ends when the PTM produces an output on its
output-tape. The additional work-tape retains its content from one computa-
tional step to the next to carry out the persistence.

Definition 3 (Smolka, Goldin Persistent Turing machine) A persistent Tur-
ing machine (PTM) is a N3TM having a read-only input-tape, a read/write
work-tape, and a write-only output-tape.

Let wi and w0 denote the content of the input and output tapes, respectively,
while w and w′ the content of work-tape, and # empty content, then

– an interaction stream is an infinite sequence of pairs of (wi, wo) representing
a computation that transforms wi in wo;

– a macrostep of PTM is a computation step denoted by w
wi/wo−−−−→ w′, that

starts with w and ends with w′ on the work-tape and transforms wi in wo;
– a PTM computation is a sequence of macrosteps.

w
wi/µ−−−→ sdiv denotes a macrostep of a computation that diverges (that is a

non-terminating computation); sdiv is a particular state where each divergent
computations falls, and µ is special output symbol signifying divergence; µ /∈ Σ.

Moreover, the definition of the interactive transition system (ITS) equipped
with three notions of behavioral equivalence – ITS isomorphism, interactive
bisimulation, and interaction stream equivalence – allows them to determine
the PTMs equivalence.

Definition 4 (Interactive transition system) Given a finite alphabet Σ not
containing µ, an ITS over Σ is a triple 〈S,m, r〉 where

– S ⊆ Σ∗ ∪ {sdiv} is the set of states;
– m ⊆ S ×Σ∗ × S × (Σ∗ ∪ {µ})) is the transition relation;
– r denotes the initial state.

It is assumed that all the states in S are reachable from r. Intuitively, a transition
〈s, wi, s′, wo〉 of an ITS states that while the machine is in the state s and having
received the input string wi from the environment, the ITS transits to state s′

and output wo.

Topological Interpretation of Interactive Computation 9

Unfortunately, the sake of space economy forced to omit most of the results;
we only recall Theorem 24, Theorem 32 and Thesis 50 (in the sequel renumbered
Theorem 1, Theorem 2 and Thesis 1, respectively) and address the reader eager
for more information to the original article [1].

Theorem 1 The structures 〈M,=ms〉 and 〈T,=iso〉 are isomorphic.

Theorem 1 states that there exists a one-to-one correspondence between the class
of PTMs, denoted by M up to macrostep equivalence, denoted by =ms, and the
class of ITSs, denoted by T up to isomorphism, denoted by =iso.

Theorem 2 If a PTM M has unbounded nondeterminism, then M diverges.

Theorem 2 states that a PTM M diverges if there exists some w ∈ reach(M),
wi ∈ Σ∗ such that there is an infinite number of wo ∈ Σ∗∪{µ}, w′ ∈ Σ∗∪{sdiv},
such that w

wi/wo−−−−→ w′.

Thesis 1 Any sequential interactive computation can be performed by a PTM.

Like the Church-Turing Thesis, Thesis 1 cannot be proved. Informally, each
step of a sequential interactive computation, corresponding to a single input/output-
pair transition, is algorithmic. Therefore, by the Church-Turing Thesis, each step
is computable by a TM. A sequential interactive computation may be history-
dependent, so state information must be maintained between steps. A PTM is
just a TM that maintains state information on its work-tape between two steps.
Thus, any sequential interaction machine can be simulated by a PTM with pos-
sibly infinite input.

The PTM environment. In her earlier work [2], D. Goldin proposed a notion
of environment to highlight that the class of behaviors captured by the TM, the
class of algorithmic behaviors, is different from that represented by the PTM
model, the sequential interactive behaviors. The conceptualization of the envi-
ronment provides the observational characterization of PTM behaviors given by
the input-output streams. In fact, given two different environments O1 and O2

and a PTM machine M, the behavior of M observed by interacting with an
environment O1 can be different if observed by interacting with O2. Also, given
two machines M1 and M2 and one environment O, if the behaviors of the two
machines are equal (one can be reduced to the other), they must be equivalent
in O. This claim gives the go-ahead to Theorem 3. Any environment O induces
a partitioning of M into equivalence classes whose members appear behaviorally
equivalent in O; the set of equivalence classes is denoted by βo. Indeed, the
equivalences of the behaviors of two PTMs can be expressed by the language
represented in the set of all interaction streams.

Let B(M) denote the operator that extracts the behavior of a given machine
M, and O(M) a mapping that associates any machineM to the class of the be-
haviors feasible for the environment O. Therefore, each machine can be classified
by analyzing its interaction streams with the two operators, B and O.

10 E. Merelli, A. Wasilewska

Definition 5 (Environment) Given a class M of PTMs and a set of suitable
domains βO, that is the set of equivalence classes of feasible behaviours. An
environment O is a mapping from machines to some domains O : M→ βO and
the following property holds:

∀M1,M2 ∈M, if B(M1) = B(M2) then O(M1) = O(M2)

When O(M1) 6= O(M2), we say that M1 and M2 are distinguishable in O;
otherwise, we say that M1 and M2 appear equivalent in O.

Theorem 3 Let Θ denote the set of all possible environments. The environ-
ments in Θ induce an infinite expressiveness hierarchy of PTM behaviors, with
TM behaviors at the bottom of the hierarchy.

So far, we have assumed that all the input streams are all feasible. However,
this is not a reasonable assumption for the context in which interactive machines
normally run. Typically an environment can be constrained and limited by some
obstructions when generating the output streams. In our view, this is the case
where the space of all possible configurations lies on a topological space with not
trivial topology. In order to contribute to this theory, in the following we will
tackle the issue of specifying these constraints, and relating them to the PTM
model.

3 Topological Interpretation of Interactive Computation

Topological environment This section deals with the notion of topological
environment as an integral part of the model of topological computation. In a
classical TM the environment is not represented (Def:1), whereas in a PTM the
environment is a mapping between the class of PTMs and their feasible domains.
As described above the two functions B and O permit to identified the behavior
of a PTM machine by observing its stream of interactions. In this case the
environment O is a static mapping that associates machines with an equivalent
behavior B(M) to the same equivalence class. In this case the environment
plays the role of an observer. In our approach the environment is part of the
system that evolves together with the behavior of the machine over time step i.
The environment constrains the behavior of a machine PTM so as the output
generated by the machine affects the evolution of the environment.

To detect dynamic changes in the environment, we propose to define a dy-
namic analysis of the set of all the interactions streams available at any single
PTM computation step i. Since interaction streams are infinite sequences of
pairs of the form (wi, wo) representing the input and output strings of PTMs
computation step i, we use the set P of PTM configurations to represent them.

The resulting model of computation consists of two components entangled
and coexisting during the interactive computation, a functional unit of compu-
tation and a self-organizing memory.

Topological Interpretation of Interactive Computation 11

In our model, the infinite input of the PTM should be seen as a feedback
loop of a dynamic system. Its functional behavior is represented by a class T
of ITS constrained by the information contained in the self-organizing memory
associated with the notion of topological environment. The data structure used
to store information is the simplicial complex SP , that is a topological space S
constructed over the set of PTM configuration P. The SP is equipped with a
finite presentation in terms of homology groups whose relations are fully repre-
sentable. In this view the PTM functional behavior can be determined by SP
modulo ITS isomorphism. We operate in a discrete setting where full information
about topological space is inherent in their simplicial representation. Appendix 1
provides some useful definitions for algebraic and computational topology.

Definition 6 (Topological environment) Given the set of PTM configura-
tions Pi available at a given time i, the topological environment is the simplicial
complex SPi

constructed over Pi.

The topological environment SP , as any topological space is equipped with
a set of invariants that are important to understand the characteristics of the
space. For the sake of simplicity we will refer to topological space as a contin-
uous space. The n-dimensional holes, the language of paths, the homology and
the genus are topological invariants. The n-dimensional holes are determined
during the process of filtration, called persistent homology, that is used to con-
struct a topological space starting from a set of points. The numbers of holes
and their associated dimensions are determined by the homology structure fully
represented by the homology groups associated with a topological space. Also
the homology is a topological invariant of the space, it is always preserved by
homeomorphisms of the space.

A path in a topological space S is a continuous function f : [0, 1]→ S from
the unit interval to S. Paths are oriented, thus f(0) is the starting point and f(1)
is the end-point, if we label the starting point v and the end-point v′, we call f
a path from v to v′ as shown in Figure 2-(a). Two paths a and b, that is two
continuous functions, from a topological space S to a topological space S ′ are
homotopic if one can be continuously deformed into the other. Being homotopic
is an equivalence relation on the set of all continuous functions from S to S ′.
The homotopy relation is compatible with function composition.

Therefore, it is interesting to study the effect of the existence of holes (at
any dimension) in a topological space S (for simplicity the discussion is made
thinking of S as a 2D surface) built from the space of configurations P where
a sequential interactive computation takes place as a sequential composition of
paths. Figures 2-(b) and -(c) show the composition of two paths a and b, and the
proof that they are not homotopic, respectively. Given two-cycle paths, a and
b, with a point in common in x, if the composition of the two paths ab or ba is
not commutative, the two composed paths are not equivalent. In this case, the
two cycle paths, a and b can be considered the generators of a topological space
with one 2-dimensional hole, as shown in Figure 3. Each generator represents a
distinct class of paths, [a] those going around the neck, and [b] those around the
belt of the torus, respectively.

12 E. Merelli, A. Wasilewska

a
b

x

•

>

>

|v〉 |v′〉• •

a

b

• • •

•

•

•

•

•

•

•

x
x

x

x

x

x

|v〉 |v′〉

|v′〉 |v〉

a b

b a

Fig. 2. a) homotopic paths a ∼ b; b) composition of paths ab; c) not homotopic paths
ab � ba

Computable functions and topological space. We start taking into ac-
count those classes of problems whose computable functions are defined over a
space S endowed with a trivial topology, and it is a Vector Space. Figure 4 shows
how an algorithmic computation A associated with the function fA : S → S,
evolves over S, representing the space of the states. Each state v is defined by a
vector that moves over S driven by the configurations of the TM. In Figure 4,
from left to right, the first two pictures represent a successful computation and a
computation with an infinite loop, respectively. When the algorithm moves the
vector towards a boundary, see the last picture, the computation is deadlocked.
This happens because S has not been defined globally. In fact, the boundary
breaks the translational symmetry. If we allow the boundary to disappear by
adding an extra-relation, global in nature, we obtain a global topology that is
not trivial – the space is characterized by a not empty set of n-dimensional holes
(n ≥ 2). Figure 5 shows how the computation with a deadlock on the plane
could have succeeded if the manifold of the space is a torus.

Figure 6 shows how we can transform a rectangle, 2-dimensional space S
homomorphic to 2-manifold with boundary, into a cylinder and then into a torus
by adding two relations among the generators of the manifold P that will be
proved to be without boundary.

Hence, we proceed to analyze those classes of problems whose computable
functions are defined over a space S endowed with non-trivial topology. The
class of functions FS effectively computable over a space S, and for each single
function fA ∈ FS and a couple of points v, v′ ∈ S, we associate a computation

Topological Interpretation of Interactive Computation 13

a
b

x

•
b

a

x•

Fig. 3. From cycling paths to generators of a space S

Fig. 4. a) successful computation, b) computation with an infinite loop, c) computation
with a deadlock.

fA(v) = v′, as a path that connects the two points v and v′ in the space S. The
path can be semantically interpreted as an interaction stream.

In Figure 7, the first two pictures from left to right, show that a close path π
in a surface that starts and ends to a fixed point PB is homotopic to 0; it means
that any π can be reduced to the point PB . The class of behavioral equivalence
to τ denoted by [π] belongs to space or subspace space with trivial topology
g = 0 (g is the genus). The other pictures show irreducible paths belonging to
space with a topological genus g 6= 0. E.g. if g = 1, i.e. is a torus there are three
different classes of behaviors: i) the set of closed paths homotopic to 0. In this
case, we are given a local interpretation and we are not aware that at the global
level the genus can be different from 0; ii) the set of closed paths homotopic to
the first generator a of the homology group of the topological space S. The cycle
fixed on the base point PB can be used to reduce any path going around the
belt of the torus to a by a continuous deformation; iii) similar to the previous
set, but the paths are homotopic to the second generator b of S. The cycle fixed

14 E. Merelli, A. Wasilewska

|v〉

|v′〉

Fig. 5. A deadlocked computation on the plane may successes over a space with non-
trivial topology.

on the base point PB goes around the belt of the torus. The last picture shows
the composition of paths.

The interpretation of interaction streams over a SP is indeed nothing but
its identification with an element of the path algebra corresponding to a quiver
representation of the transformation group G of S, say Q (or, more generally, a
set of quivers, over some arbitrary ring). The different ways to reach any point
p ∈ P from PB generate a path algebra A whose elements are describable words
in a language L. Any point of P can be related to any other point by a group
element. By selecting a point p0 of P as a unique base point, every point of P is
in one-to-one correspondence with an element of such group GMC ≈MCG, the
simplicial analog of the mapping class group. GMC is a group of transformations
which do not change the information hidden in the data, such as the group of
diffeomorfisms that do not change the topology of the base space. MCG is an
algebraic invariant of a topological space, that is a discrete group of symmetries.
Since the algebras manipulate the data, the transformations applied to space
are ′processes′ carried on through the fiber, which is the representation space
of the process algebra. Whenever Q can give the representation of the algebra,
the algebra can be exponentiated to a group GAP and t a gauge group. We
have now all the ingredients for defining a fiber bundle enriched with a group
G = GAP ∧ GMC , called gauge group, (see Figure 1). Summarizing, fiber bundle
is the mathematical structure that allows us to represent computation and its
context (the environment) as a unique model. In terms of TM, the context
represents the transition function, also called the functional matrix.

While the algorithmic aspect of a computation expresses the effectiveness of
the computation, the topology provides a global characterization of the

environment.

Both the computation and the environment can be represented as groups (alge-
bras), and their interaction is captured as the set of accessible transformations
of the semi-direct product of the two groups, carrying constrained by the restric-

Topological Interpretation of Interactive Computation 15

a

b

a

b

A) B)

C)

b

a
x•

D)

Fig. 6. The pictures (A–D) summarize the main steps to transform a space S of PTM
into a topological space SP . The construction is obtained by gluing together – put
in relation – the two boundaries of the space S, a and b respectively, which become
the generators a and b of the new space SP . The topological space SP , finite but not
limited, naturally supports the notion of the environment of PTM.

tions imposed by topology. Incidentally, it is this set of constraints together with
the semidirect product structure that implies the non-linearity of the process.

Definition 7 (Topological Turing machine) A Topological Turing machine
(TTM) is a group G consisting of all interaction streams generated by the group
of PTMs entangled with the group of all transformations of the topological space
SP preserving the topology. Formally G = GAP ∧ GMC , where GAP is the group
of PTMs and GMC the simplicial analog of the mapping class group.

Proposition 1 If G is automatic, the associated language L is regular. Since the
representations of G can then be constructed in terms of quivers Q with relations
induced by the corresponding path algebra induced by PTMs, the syntax of L is
fully contained in T and its semantics in M.

Definition 8 (Constrained interactive computation) An interactive com-
putation is constrained if it is defined over a topological space SP and it is an
element of the language of paths of SP .

Theorem 4 Any constrained interactive computation is an effective computa-
tion for a TTM.

Thesis 2 Any concurrent computation can be performed by a TTM.

4 Final remarks

In 2013, Terry Tao in his blog [20] posted this question: if there is any computable
group G which is ′′Turing complete′′ in the sense that the halting problem for

16 E. Merelli, A. Wasilewska

α•PB α•PB

λ

•
PB

PB

γ

Fig. 7. A class of behaviors over a torus α close paths, λ path around the neck, µ
path around the belt, γ complex path

any Turing machine can be converted into a question of the above form. In other
words, there would be an algorithm which, when given a Turing machine T ,
would return (in a finite time) a pair xT , yT of elements of G with the property
that xT , yT generate a free group in G if and only if T does not halt in finite
time. Or more informally: can a ′group′ be a universal Turing machine?

Acknowledgements

E. M. thanks Mario Rasetti for bringing her to conceive a new way of think-
ing about computer science and for numerous and lively discussions on topics
related to this article; and Samson Abramsky with his group for insightful con-
versations on the topological interpretation of contextuality and contextual se-
mantics. E. M. and A.W. thank the anonymous referees for suggesting many
significant improvements.
Funding statements. We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Pro-
gramme (FP7) for Research of the European Commission, under the FP7 FET-
Proactive Call 8 - DyMCS, Grant Agreement TOPDRIM, number FP7-ICT-
318121.

References

1. D.Q. Goldin, S.A. Smolka, P.C. Attie, E.L. Sondereggera. Turing machines, transi-
tion systems, and interaction. Information and Computation 194, 2004. - ENTCS

Topological Interpretation of Interactive Computation 17

Vol. 52, No. 1, Elsevier, 2001
2. D. Goldin. Persistent Turing Machines as a Model of Interactive Computation.

LNCS, Vol.1762, Springer, 2000.
3. D.Q. Goldin, S.A. Smolka, P. Wegner. Interacting Computation: The new

paradigm. Springer, 2006.
4. P. Wegner. Why Intera. is More P Than Algorit. CACM, Vol. 40, No.5, ACM,

1997.
5. P. Wegner. Interactive foundations of computing. TCS, Vol.192, Elsevier, 1998.
6. R.O Gandy. Churchs Thesis and Principles for Mechanisms. J. Barwise, H. J.

Keisler and K. Kunen, eds, The Kleene Symposium, North-Holland Publishing
Company, 1980.

7. A. Wigderson. Mathematics and Computation. IAS, Draft: March 2018.
8. S. Garrone, A. Marzuoli, M. Rasetti. Spin networks, quantum automata and link

invariants. Journal of Physics: Conference Series 33, 2006.
9. E. Merelli, M. Pettini, M. Rasetti. Topology driven modeling: the IS metaphor.

Natural Computing Vol.14, No.3, 2015.
10. G. Carlsson. Topology and data. Bulletin of the American Mathematical Society

Vol.46, No.2, 2009.
11. M. Rasetti, E. Merelli. Topological Field Theory of Data: mining data beyond

complex networks. Ed. P. Contucci, Laganà, In Advances in disordered systems,
random processes and some applications. Cambridge University Press, 2016.

12. N. Steenrod. The topology of Fiber Bundles. Princeton Mathematical Series.
Princeton University Press, 1951.

13. P.J. Landin. A Program Machine Symmetric Automata Theory. Machine Intelli-
gence Vol. 5, ed. Meltzer and Michie, Edinburgh University Press.

14. S. Abramsky. An algebraic characterisation of concurrent composition. ArXiv
1406.1965v1, 2014.

15. A. M. Turing. Lecture to the London Mathematical Society, 20 February 1947.
Quoted in B. E. Carpenter and R. W. Doran (eds.), A. M. Turing’s Ace Report of
1946

16. H. Lewis, C.H. Papadimitriou. Elements of the Theory of Computation. 2nd Ed.
Prentice Hall, 1998.

17. S. Abramsky. Contextuality: At the Borders of Paradox. Categories for the Work-
ing Philosophers, Ed. by Elaine Landry.2017.

18. S. Abramsky. Contextual Semantics: From Quantum Mechanics to Logic,
Databases, Constraints, and Complexity. arXiv:1406.7386v1, 2014.

19. S. Abramsky. What are the Fundamental Structures of Concurrency? We still dont
know! Electronic Notes in Theoretical Computer Science Vo.162, 2006.

20. Mathoverflow. https://mathoverflow.net/questions/88368/can-a-group-be-a-
universal-turing-machine

http://arxiv.org/abs/1406.7386

18 E. Merelli, A. Wasilewska

Appendix 1: Definitions of Algebraic and Computational
Topology

Definition 9 Topology
A topology on a set X is a family T ⊆ 2X such that

- If S1, S2 ∈ T, then S1 ∩ S2 ∈ T (equivalent to: If S1, S2, . . . , Sn ∈ T then ∩n
i=1Si ∈

T)
- If {Sj |j ∈ J} ⊆ T, then ∪j∈JSj ∈ T.
- ∅, X ∈ T.

Definition 10 Topological spaces
The pair (X,T) of a set X and a topology T is a topological space. We will often use
the notation X for a topological space X, with T being understood.

Definition 11 Simplices
Let u0, u1, ..., uk be points in Rd. A point x =

∑k
i=0 λiui is an affine combination of the

ui if the λi sum to 1. The affine hull is the set of affine combinations. It is a k-plane
if the k+1 points are affinely independent by which we mean that any two affine com-
binations, x=

∑k
i=0 λiui and y =

∑k
i=0 µiui are the same iff λi = µi for all i. The k+1

points are affinely independent iff the k vectors ui . . . u0, for 1 ≤ i ≤ k, are linearly
independent. In Rd we can have at most d linearly independent vectors and therefore
at most d+1 affinely independent points.
k-simplex is the convex hull of k+1 affinely independent points, σ = {u0, u1, u2, ...uk}.
Its dimension is dimσ = k. Any subset of affinely independent points is again indepen-
dent and therefore also defines a simplex of lower dimension.

Definition 12 Face
A face of σ is the convex hull of a non-empty subset of the ui and it is proper if the
subset is not the entire set. We sometimes write τ ≤ σ if τ is a face and τ < σ if it
is a proper face of σ. Since a set of k+1 has 2k+1 subsets, including empty set, σ has
2k+1 − 1 faces, all of which are proper except for σ itself. The boundary of σ, denoted
as bdσ, is the union of all proper faces, and the interior is everything else.

Definition 13 Simplicial complexes
A simplical complex is a finite collection of simplices K such that σ ∈ K and τ ∈ K,
and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face of both.

Definition 14 Filtration
A filtration of a complex K is a nested sequence of subcomplex, ∅ = K0 ⊆ K1 ⊆ K2 ⊆
.... ⊆ Km = K. We call a complex K with a filtration a filtered complex.

Definition 15 Chain group
The k-th chain group of a simplicial complex K is 〈Ck(K),+〉, let F be a field. The
F−linear space on the oriented k-simplices, where [σ] = −[τ] if σ = τ and σ and τ have
different orientations. An element of Ck(K) is a k-chain,

∑
q nq[σq], nq ∈ Z, σq ∈ K.

Definition 16 Boundary homomorphism
Let K be a simplicial complex and σ ∈ K,σ = [v0, v1, ..., vk] The boundary homo-
morphism ∂k : Ck(K) → Ck−1(K) is ∂kσ =

∑
i(−1)i[v0, v1, ..., v̂i, ..., vn] where v̂i

indicates that vi is deleted from the sequence.

Topological Interpretation of Interactive Computation 19

A simplicial complex (left) and not valid simplicial complex (right).

A simplicial complex and its simplices.

Definition 17 Cycle and boundary
The k-th cycle group is Zk = ker∂k. A chain that is an element of Zk is a k-cycle. The
k-th boundary group is Bk = im∂k+1. A chain that is an element of Bk is a k-boundary.
We also call boundaries bounding cycles and cycles not in Bk nonbounding cycles.

Definition 18 Homology group
The k-th homology group is Hk = Zk/Bk = ker∂k/im∂k+1.
If z1 = z2+Bk, z1, z2 ∈ Zk, we say z1 and z2 are homologous and denote it with z1 ∼ z2

Definition 19 k-th Betti number
The k-th Betti number Bk of a simplicial complex K is the dimension of the k-th homol-
ogy group of K. Informally, β0 is the number of connected components, β1 is the number
of two-dimensional holes or ”handles” and β2 is the number of three-dimensional holes
or ”voids” etc. . . .

Definition 20 Invariant
A topological invariant is a property of a topological space which is invariant under
homeomorphisms. Betti numbers are topological invariants.

Definition 21 Genus
The genus is a topological invariant of a close (oriented) surface. The connected sum
of g tori is called a surface with genus g. genus refers to how many ′holes′ the donut
surface has.
As an example, a torus is homeomorphic to a sphere with a handle. Both of them have
just one hole (handle). The sphere has g = 0 and the torus has g = 1.

	Topological Interpretation of Interactive Computation

