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The diversity of species combinations observable in sampling units reflects a species’ 
uneven distribution and preference for specific abiotic and biotic conditions – a phe-
nomenon most commonly expressed in terms of ecological assembly rules of plant 
communities and other sessile organisms (e.g. subtidal algae, invertebrates and coral 
reefs). We present comspat, a new R package that uses grid or transect data sets 
to measure the number of realized (observed) species combinations (NRC) and the 
Shannon diversity of realized species combinations (compositional diversity; CD) as a 
function of spatial scale. NRC and CD represent two measures from a model family 
developed by Pál Juhász-Nagy based on information theory. Classical Shannon diver-
sity measures biodiversity based on the number and relative abundance of species, 
whereas the specific version of Shannon diversity presented here characterizes biodi-
versity and provides information on species coexistence relationships; both measures 
operate at fine-scale within the sampling unit or within the community. comspat 
offers two commonly applied null models, complete spatial randomness and random 
shift, to disentangle the textural, intraspecific and interspecific effects on the observed 
spatial patterns. Combined, these models assist users in detecting and interpreting 
spatial associations and inferring assembly mechanisms. Our open-sourced package 
provides a vignette that describes the method and reproduces the figures from this 
paper to help users contextualize and apply functions to their data.

Keywords: beta diversity, community assembly rules, information theory, multi-
species co-occurrence, Shannon diversity, spatial scale

Background

Here we introduce a bioinformatic version of Shannon diversity to analyze within-
community spatial organization using species combinations. The classical Shannon 
diversity uses both the number and the relative abundance of species to characterize the 
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biodiversity of a sample or a community (Magurran 2004). 
Whereas the bioinformatic version of Shannon’s diversity of 
species combinations (compositional diversity; CD) uses the 
number and relative abundance of realized (observed) spe-
cies combinations (NRC) to characterize the biodiversity and 
provide information on species coexistence relationships at 
fine-scale within the sampling unit or within the commu-
nity. The variability of species combinations are important 
because they reflect a species’ uneven distribution and prefer-
ence for specific abiotic and biotic conditions (Wilson 1999). 
Communities are usually characterized by the overall species 
composition and mean species abundances, yet relatively lit-
tle is known about how the fine-scale patterns contribute to 
these general patterns (Chase and Knight 2013, Sandel 2015, 
Ben-Hur and Kadmon 2020).

Let us imagine a plant community with ten species. 
Several patterns may emerge when we sample this commu-
nity with many sampling units (plots) of a given size. In the 
simplest theoretical case, all sampling units can have no spe-
cies or be monodominant (i.e. in both cases, NRC, is one, 
please see the worked examples in the package vignette). In 
the opposite case, all sampling units can have different spe-
cies combinations (NRC = 2s = 210 = 1024). Different NRCs 
(i.e. ranging from 1 to 1024) appear when different spatial 
patterns emerge; classical Shannon diversity does not reflect 
differences in the fine-scale species combinations (we describe 
these calculations in the Supporting information). Due to 
this variation, the number and diversity of within-commu-
nity species combinations are sensitive indicators of within-
community species coexistence (Juhász-Nagy and Podani 
1983, Bartha et al. 1998).

Theoretically, we could determine the optimum size of 
plots for detecting species combinations based on the size of 
individuals (or ramets) and the magnitude of scales relevant 
for biotic interactions, dispersal distances and environmental 
heterogeneity. However, these scales cannot be set as con-
stant attributes in a community as they may vary by species, 
ontogenetic stages and many other factors. Instead, ecologists 
should apply a series of increasing plots sizes (Dengler et al. 
2018) to deal with the scale dependence of species combina-
tions (Chase and Knight 2013; e.g. the size of the sampling 
unit affects diversity estimates, Wilson et al. 2012). By plot-
ting the NRC against the increasing plot sizes, we can visual-
ize unimodal curves with the maxima emerging at specific 
plot sizes. These observed maximum values and correspond-
ing scales express the optimum size of plots for capturing the 
species’ local behavior and overall relationship (i.e. see char-
acteristic maximum scales in Juhász-Nagy 1967b, Juhász-
Nagy and Podani 1983).

To analyze the within-community patterns of the num-
ber and diversity of species combinations, Pál Juhász-Nagy 
(Juhász-Nagy 1967a, 1976, 1984a, b, 1993, Juhász-Nagy and 
Podani 1983) developed several diversity measures including 
information about the spatial structure of the data based on 
information theory. Juhász-Nagy Pál’s models (JNP models) 
provide a suite of diversity measures designed for representing 
the spatial dependence of populations within a community 

and have been thoroughly tested and verified in the past 
(Podani  et  al. 1993, Bartha  et  al. 1998). In the absence of 
rigorous sampling and experimentation, the detailed analyses 
of the patterns of within-community species combinations 
compared with null models can potentially reveal the rules 
and history of the local assembly (Juhász-Nagy and Podani 
1983, Bartha et al. 1998). For example, they have been impli-
cated in the hunt for assembly rules (Bartha  et  al. 1998), 
applied and led to the improvement of restoration practices 
after open cut mining (Bartha 1992) and detecting composi-
tional changes along ecological gradients (Bartha et al. 2011, 
2020).

The R environment is rich in contributed packages (ca  
20 000 current packages, <www.r-project.org>), and several 
exist which analyze biodiversity with information theory. 
entropy (Hausser and Strimmer 2009), entropart 
(Marcon and Hérault 2015) and EntropyEstimation 
(Cao and Grabchak 2015) are perhaps most widely known, 
while recent contributions of rasterdiv (Rocchini et al. 
2021) and SpatEntropy (Altieri  et  al. 2021) will 
undoubtedly gain popularity (see the total downloads in 
the Supporting information); all calculate the Shannon’s 
diversity index (Shannon 1948). Although colloquially 
described as a measure of diversity, the Shannon index is 
not a measure of diversity; instead, it is an entropy esti-
mation, giving uncertainty in the outcome of a sampling 
process (Jost 2006). entropy focuses on providing 
estimation-bias corrections for small samples. entro-
part focuses on partitioning entropy into alpha and beta 
components and providing phylogenetic and functional 
entropy measures and Simpson’s evenness index (Simpson 
1949). EntropyEstimation works in similar spaces 
to entropy and entropart but provides variants on 
Rényi’s entropy (Rényi 1961). The latter two packages 
contribute by incorporating entropy while considering the 
spatial location of the data. rasterdiv is optimized to 
calculate entropy using remotely sensed environmental ras-
ter data and provides the functionality for users to supply a 
single spatial sampling scale. SpatEntropy computes a 
large set of spatial entropy measures applied to biodiversity 
and environmental data sets. Despite the comprehensive 
literature on spatial entropy measures and available R pack-
ages, to our knowledge, none estimate entropy using spe-
cies combinations (an inherent property of JNP’s models, 
cf. individual species), include null models or accept a series 
of user-defined spatial scales.

We present our new R package comspat, which is short 
for ‘within-community spatial organization’. The main goal 
of comspat is to provide users with open access to the tools 
required to analyze and interpret within-community organi-
zation of vegetation across a range of spatial scales based on 
the spatial pattern of species combinations. Specifically, our 
package calculates two commonly used JNP models from 
grid or transect data at different spatial scales supplied by the 
user. The package offers null models and custom plotting to 
disentangle textural (i.e. the number of species combinations 
and their relative abundance) intraspecific and interspecific 
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effects on the observed spatial patterns. The package features 
a vignette showcasing an expanded explanation with simu-
lated and real transect data analysis.

Methods and features

We introduce comspat, which calculates the number of 
realized species combinations (NRC) and diversity of spe-
cies combinations (called compositional diversity; CD) as 
a function of the sampling scale. comspat provides two 
main functions: one to calculate results (‘comspat’) and 
one to assist in their interpretation (‘comspat_plot’). 
The package includes six data sets to demonstrate its opera-
tion; we used three in-text (described below) and present the 
remaining in the vignette. The main functions provided by 
the package are as follows:

1.	 comspat(data, params, dim_max, type, 
measures, randomization_type, itera-
tions) calculates the JNP measures (supplied as 
‘NRC’ and ‘CD’) over a range of secondary sample 
scales provided by the params argument. If a ran-
domization_type is specified, comspat generates 
null model distributions (using the number of supplied 
iterations). The function returns a list containing 
raw data and summary statistics for each secondary sam-
pling scale.

2.	 comspat_plot(data, params, type, mea-
sure, stats_output, su_size, …) is a func-
tion designed to interpret comspat results. The function 
accepts a list of comspat data results (or null model 
results) and returns base R plot objects. The stats_
output argument returns 95% confidence intervals.

The following section guides users through the Information 
Theory models (i.e. NRC and CD). Specifically, we provide 
notes on randomization and a guide showing how to use 
comspat to detect within-community spatial organization.

Information theory models

Our measures of beta-diversity are the number of realized 
(observed) species combinations (NRC) and the Shannon 
diversity of realized species combinations (compositional 
diversity; CD) at a given scale. NRC and CD are the two 
commonly used community-level models defined by Juhász-
Nagy (for a review, Bartha et al. 1998). CD is a descriptor of 
the frequency distribution of realized species combinations 
within a community expressed as the probability of the spe-
cies combinations in a sample:
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where A, B, …, Y are the s species of the community; pkj is 
the probability of finding a particular species combination 
(i.e. the kth combination of species) within the sample at a 

specific sampling unit size j; k ranges from 1 to 2s. Due to 
different assembly constraints, the observed number of spe-
cies combinations (NRC) in natural communities is usually 
smaller than the theoretical maxima (Bartha 1992).

These measures reflect compositional variability within-
communities, i.e. by definition, they belong to the families 
of beta-diversity measures (Anderson et al. 2011). Other beta 
diversity measures express compositional variability using 
compositional dissimilarity or species diversity differences 
between scales (Podani 2000). NRC and CD represent a 
unique approach by distinguishing and counting local spe-
cies combinations.

Notes on randomization

Null models are fundamental tools in spatial pattern analyses 
used to disentangle the influences of different factors (spe-
cies richness, species abundance distribution, spatial aggre-
gations and associations and effects of sampling design) on 
the detected characteristics of patterns (Podani 1984a, Dale 
and Fortin 2014). The package offers complete spatial ran-
domness (CSR) and random shifts (RS) null models. CSR 
randomly re-allocates the individuals of each species from 
the original data into a new spatial sample; this maintains 
all textural (i.e. related to species abundance distribution) 
and removes the structural (i.e. associated with the spatial 
distribution of species) components of association. CSR 
null models help to show the combined effects of individ-
ual species level spatial aggregations and interspecific asso-
ciations on observed (realized) coexistence relationships. RS 
maintains the spatial patterns of individual species but uses 
reflections, rotations and shifts of each species to randomize 
interspecific patterns. RS null models help to show the effects 
of interspecific associations after removing the influence of 
intraspecific aggregations on observed (realized) coexistence 
relationships. The separation of textural, intraspecific and 
interspecific effects assists in detecting and interpreting the 
spatial associations and inferring assembly mechanisms. We 
urge caution with such generality because to unambiguously 
assume the action of specific assembly mechanisms from 
examining a single spatial pattern alone is risky (Rejmánek 
and Lepš 1996, Blanchet  et  al. 2020). To better interpret 
community assembly mechanism – spatial pattern relation-
ships replicates in a ‘space as a surrogate’ approach combined 
with experimental manipulation (where practicable) should 
be considered (McIntire and Fajardo 2009). The random-
ization_type argument can call both randomizations 
by supplying ‘CSR’ or ‘RS’. By default, the package gen-
erates 999 independent randomizations to assess the distribu-
tions of each randomized model.

Example

Step 1. Import the grid data set provided by the package

comspat requires field data collected by standardized sam-
pling design involving fine-scale grid or transect sampling 
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(Juhász-Nagy and Podani 1983, Bartha et al. 2020). The raw 
data (x) accepted by all functions in the package is a matrix 
(x) coding the presence of m species in n sampling units as 
rows. In addition, sampling units collected as a grid must 
contain columns (named ‘X’ and ‘Y’) codifying the sampling 
unit location using cartesian coordinates. A contiguous num-
ber reported in the ‘X’ column must identify sampling units 
collected from a transect.

The grid data sets (64 × 64 sampling units) feature 
one simulation (grid_patchy_associated) and 
two simulation derivatives (grid_random and grid_
patchy_no_isc) produced by randomization (Fig. 1). 

We used a spatially explicit individual-based simulation 
model (PATPRO) to create the grid_patchy_asso-
ciated data set; this simulation represents a realistic 
grid community pattern featuring interspecific species 
associations and environmental responses (Czaran 1993, 
Bartha  et  al. 1998). RS and CSR randomizations of the 
original simulation (grid_patchy_associated) 
produced the grid_n_isc and grid_random data 
sets. The grid_n_isc data set maintains species-level 
patterns; however, the interspecific relationships are ran-
domized. The grid_random data set shows random 
species distribution, no intraspecific autocorrelations and 

Figure 1. Mapped patterns (simulation, A and two simulation derivates, B and C) and the corresponding obtained results in terms of the 
number of realized combinations of species (NRC; D, E, F) and compositional diversity (CD; G, H, I) in grid data sets. The black lines 
with dots represent the observed NRC and CD values, while 95% confidence intervals (999 randomizations) generated by the complete 
spatial randomization and random shift null models are represented by blue and red lines, respectively.
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no interspecific spatial associations. For additional details, 
please see the package vignette.
# Installing the package
library(remotes)
install_github("jamestsakalos/ 
comspat", build_vignettes = TRUE)
library(comspat)
# Viewing the vignette
vignette(package = "comspat")
# Import the grid data set
data(grid_patchy_associated)

Step 2. Import data set controlling spatial scaling

The package provides example parameter data sets (params_
grid and params_tran) for the grid and transect dem-
onstration data. The parameter data sets control the number 
of scaling steps (‘Steps_of_scaling’) and the size 
(the number of primary sampling units to create the length 
and height of the secondary sampling unit, captured in the 
‘Length_of_plots’ and ‘Height_of_plots’ 
columns) of the secondary sampling units. In our examples, 
the parameter data sets use 16 steps of scaling and perform 
complete resampling of all sample units.
# Import the parameter data
data(param_grid)

Step 3. Analyze and plot the data set

We can now run comspat to calculate NRC and CD and 
produce null models using Monte Carlo randomizations. The 
comspat function outputs the raw and statistical report 
data sets. For example, with nine iterations, the list length 
equals 10 (representing nine randomization iterations and 
the original observed pattern). Each list contains two compo-
nents; one presents NRC results and one for CD. The statisti-
cal report shows the results of the observed data on the first 
row, and the remaining rows show the null model (random-
izations); each column represents a spatial scale.
# Calculate NRC and CD
assoc_csr <- comspat(data = grid_
patchy_associated, params = 
param_grid, dim_max = 64,type = "Grid", 
randomization_type = 
"CSR", iterations = 10)
assoc_rs <- comspat(data = grid_patchy_
associated, params = 
param_grid, dim_max = 64,type = "Grid", 
r a n d o m i z a t i o n _ t y p e  =  
"RS", iterations = 10)
# Plot the data and null model 95% CI
Data <- list("CSR" = assoc_csr[[2]], 
"Random Shift" = assoc_rs[[2]])
p_col <- list("blue", "red")
comspat_plot(data = Data, params =  
param_grid, type = "Grid", measure =  
"NRC", su_size = 0.01, ymin = 0, ymax = 65, 
p_col = p_col, stats_output = TRUE)# try 
changing NRC to CD.

Proper estimation and interpretation of NRC and CD 
requires large sample sizes and applying null models (default-
ing to 999 randomizations); understandably, increased 
sample size (involving the complete resampling of all mea-
sured sampling units) and the use of null model random-
izations increases the computational time. Therefore, we 
have included parallel computing when randomizations are 
enabled to improve the efficiency of our code. Specifically, 
our package opens sequential processing using the future 
R package (Bengtsson 2021). Using parallel computing and 
the example grid data set, the processing time for 999 ran-
domizations was ca. 1 hr and 10 min versus ca. 3 hrs and 30 
min without multicore computing using a 1.5 GHz Intel i7 
with 8 GB RAM. Users can enhance the timing by consider-
ing only the patterns of dominant or abundant species; the 
concept of spatial pattern has little meaning for rare species 
(Tóthmérész and Erdei 1992).

Testing was a vital part of the development of this package. 
We corroborated our results against unit tests (we have incor-
porated the manual calculations of CD and NRC from the 
vignette with the testthat package; Wickham 2011) and 
outputs generated from existing programs (Podani 1984b, 
Bartha et al. 1994, Horváth 1998). In this manner, we pro-
mote the validity of our calculations within the package and 
the commensurability between historical analyses programs.

Here we present an example with grid data comparing 
three artificial communities. These communities have the 
same species richness and abundance distribution of spe-
cies (see details in the package vignette) and contrasting 
spatial patterns (Fig. 1). In the first community (simulated 
by a spatially explicit individual-based model), species have 
aggregated patterns and are also associated with each other 
(Fig. 1A). NRC and CD calculated from this data (black 
line with dots; Fig. 1D and G) significantly differ from the 
null models. The other two communities have been derived 
from the first community by different randomizations. The 
interspecific associations were removed by applying random 
shifts (null model with RS), and the species level aggregated 
patterns (intraspecific spatial dependence) were maintained 
(Fig. 1B). The third pattern represents complete spatial ran-
domness (null model with CSR) where both interspecific 
and intraspecific spatial dependence was removed (Fig. 1C). 
Across three different spatially organized communities NRC 
and CD are variable in their local optima, characteristic scales 
and how they deviate from null models (Fig. 1). Classical 
Shannon diversity was the same (H′ = 1.58) for all three 
communities. This variability presented by the bioinformatic 
version of Shannon diversity reflects the differences in spatial 
community organization and can be used to disentangle the 
textural, intraspecific and interspecific effects on the observed 
spatial patterns.

Discussion

In this manuscript, we present the new R package com-
spat. This R package offers a set of Information Theory 
models developed by Juhász-Nagy (Juhász-Nagy 1967a, 
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1976, 1984b, 1993, Juhász-Nagy and Podani 1983). These 
models provide a suite of diversity measures designed for rep-
resenting the fine-scale spatial organization in communities 
and have been thoroughly verified in the past (Podani et al. 
1993, Bartha et al. 1998). Not only in assemblages of plant 
communities (Bartha 1992, Bartha et  al. 2011, 2020), but 
the method is also amenable to the spatial pattern analysis of 
other sessile organisms (coral reefs, Price et al. 2021, e.g. sub-
tidal algae and invertebrates, Terlizzi et al. 2007), where lim-
ited dispersal, local interactions and fine-scale environmental 
heterogeneity shape the assemblage.

On the topic of spatial pattern analysis, it would be remiss 
if discourse connecting JNP’s family of models with the 
well-established point pattern analyses were not considered 
(Baddeley et al. 2015). Point pattern analysis involves sam-
pling a cloud of points mapping the location of every indi-
vidual in a given sampling universe (Wiegand and Moloney 
2013, Dale and Fortin 2014). In contrast, our quadrat-
based sampling records the presence of a species in a series 
of adjacent sampling units of a given size (configured as a 
grid or transect = sampling universe). We use quadrat-based 
JNP models in grasslands or forest understory instead of the 
point pattern analyses because widespread clonality makes it 
difficult (often impossible) to identify the location of indi-
viduals using points. Most studies involving point pattern 
analysis are from systems where individuals can be mapped, 
for example, Panamá’s famous Barro Colorado Island tree 
data (Wiegand et al. 2013). Podani and Czárán (1997) have 
further investigated the links between JNP models and clas-
sic point pattern analyses; herein, they emphasized that the 
advantage of the JNP model was in its ability to represent 
multi-species patterns in a relatively simple way. Nonetheless, 
we could add a feature for resampling spatial point patterns 
with newly generated interest in the package.

Not only does this package contribute to the detection 
and understanding of assembly rules in the context of the 
observed plant species combinations (i.e. taxonomic units 
per se.), but the method is compatible with other entities. 
For example, suppose plant traits (Kattge  et  al. 2020) or 
groups of species sharing similar traits replace species enti-
ties (i.e. ‘plant functional types’, see: Lavorel  et  al. 1997, 
Tsakalos et al. 2019). In this manner, comspat can explore 
the patterns and drivers of taxonomic or functional diversity 
(Podani et al. 2013). comspat serves as a platform for fus-
ing traditional floristic-sociological and plant functional trait 
approaches in searching for vegetation patterns and under-
standing the processes underpinning those patterns.

While our package focuses on the observed species com-
binations, absent species combinations with the potential 
to occur within the species pool might provide additional 
information in detecting and understanding assembly rules 
(i.e. dark diversity, Pärtel et al. 2011). Recent methodologi-
cal developments have used missing species combinations to 
calculate probabilistic dark diversity estimates from nested 

sampling designs (Carmona and Pärtel 2021). Future devel-
opments of Information Theory models may provide a cru-
cial link allowing the exact calculation of scale-dependent 
dark diversity.

To cite comspat or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 1.0’:

Tsakalos, J. L. et al. 2022. comspat: an R package to ana-
lyze within-community spatial organization using species 
combinations. – Ecography 2022: XX–XX (ver. 1.0).
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