Intra-specific multi-trait approach reveals scarce ability in the variation of resource exploitation strategies for a dominant tall-grass under intense disturbance

Alessandro Bricca^{1*}, Andrea Catorci¹, Federico M. Tardella²

Correspondence:

* Alessandro Bricca, School of Biosciences and Veterinary Medicine, University of Camerino, via Pontoni

5, 62032 Camerino, Italy.

Table S1. List of plant traits collected, with their respective variable type, sampling time, observation unit on which the measurement was taken, error distribution family, fixed and random effects included in the mixed-effects models, R-package, and R-function used. B – Block; B/T – Tussock nested inside block; B/T/S – Shoot nested inside tussock, nested inside block.

Plant traits	Variable type	Sampling time	Observation unit	Error distribution family	Fixed effects	Random effect	<i>R-</i> package and R- function
Number of shoots	Integer	early summer	Tussock	Poisson (link = log)	Treatment * Phenological status	1 B	<i>lme4</i> glmer
Plant height (mm)	Numeric	early summer	Shoot	Gaussian	Treatment * Phenological status	1 B/T	<i>nlme</i> lme
Specific leaf area (mm ² mg ⁻¹)	Numeric	early summer	Leaf	Gaussian	Treatment * Phenological status	1 B/T/S	<i>nlme</i> lme
Leaf area (mm ²)	Numeric	early summer	Leaf	Gaussian	Treatment * Phenological status	1 B/T/S	<i>nlme</i> lme
Leaf dry mass (mg)	Numeric	early summer	Leaf	Gaussian	Treatment * Phenological status	1 B/T/S	<i>nlme</i> lme
Occurrence of leaf senescence symptoms	Binary	early summer	Leaf	Binomial (link = logit)	Treatment * Phenological status	1 B / T / S	MASS glmmPQL
Total number of spikelets	Integer	early summer	Shoot (one spike)	Poisson (link = log)	Treatment	1 B /T	<i>MASS</i> glmmPQL
Number of flowering spikelets	Integer	early summer	Shoot (one spike)	Poisson (link = log)	Treatment	1 B / T	MASS glmmPQL
Spike length (mm)	Numeric	late summer/early autumn	One shoot per tussock (spike)	Gaussian	Treatment	1 B	<i>nlme</i> lme
Mean spikelet length (mm)	Numeric	late summer/early autumn	One shoot per tussock (spike)	Gaussian	Treatment	1 B	<i>nlme</i> lme
Mean number of (fertilized / unfertilized) flowers per spikelet	Numeric	late summer/early autumn	One shoot per tussock (spike)	Gaussian	Treatment	1 B	<i>nlme</i> lme

Number of (fertilized / unfertilized) flowers	Integer	late summer/early autumn	One shoot per tussock (spike)	Poisson (link = log)	Treatment	1 B	<i>lme4</i> glmer
Seed output	Integer	late summer/early autumn	One shoot per tussock (spike)	Poisson (link = log)	Treatment	1 B	<i>lme4</i> glmer
Total seed mass (mg)	Numeric	late summer/early autumn	One shoot per tussock (spike)	Gaussian	Treatment	1 B	<i>nlme</i> lme
Mean seed mass (mg)	Numeric	late summer/early autumn	One shoot per tussock (spike)	Gaussian	Treatment	1 B	<i>nlme</i> lme
Reproductive plant height (m)	Numeric	late summer/early autumn	One shoot per tussock (spike)	Gaussian	Treatment	1 B	<i>nlme</i> lme
Rhizome dry matter content (mg ⁻¹ g)	Numeric	late summer/early autumn	Rhizome	Gaussian	Treatment	1 B	<i>nlme</i> lme

Number of shoots Plant heightglmer(Shoot_n-(Treatment) + (1 B), family="poisson", data=matrix, na.action="na.fail")Specific leaf arealme(log(SLA) ~Phenological_status, method = "ML", random=~1 B/T/S, correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix)Leaf arealme(log(SLA) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corCAR1(0.5, form=~1 B/T/S), data=matrix)Leaf dry masslme(LDM)^(1/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corCAR1(0.5, form=~1 B/T/S), data=matrix)Occurrence of leaf senescence symptomsglmmPQL(Senescence-Treatment?henological_status, ~ 1 B/T/S, data=matrix)Total number of spikeletsglmmPQL(Total_number_of_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix)Number of flowering spikeletsglmmPQL(Number_of_flowering_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix)Mean spikelet length unfertilized / unfertilized flowers per spikeletlme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), family="poisson", data=matrix)Mean seed mass Reproductive plant height Epigeogenous rhizome dry matter contentlme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed mass Reproductive plant height Epigeogenous rhizome dry matter contentlme((MDC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix) <th>Plant traits</th> <th>R script</th>	Plant traits	R script
Plant height Ime(H -Treatment*Phenological_status, method = "ML", random=~1 B/T/S, correlation=corCompSymm(0.5, form=~1 B/T/S), data=matrix) Leaf area Ime((LA)^(1/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corCompSymm(0.5, form=~1 B/T/S), data=matrix) Leaf dry mass Ime((LD)^(1/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corCompSymm(0.5, form=~1 B/T/S), data=matrix) Occurrence of leaf senescence symptoms Ime((LDM)^(1/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, data=matrix) Total number of spikelets glmmPQL(Senescence~Treatment*Phenological_status, ~1 B/T, shamily="poisson", correlation=corCans(0.5, form=~1 B/T), data=matrix) Spike length glmmPQL(Total_number_of_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corCans(0.5, form=~1 B/T), data=matrix) Mean spikelet length Ime(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix) Mean spikelet length Ime(log(Mean_n_of_flowers)-Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix) Mean seed mass glmer(Seed_output-Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail") Mean seed mass glmer(Seed_output-Treatment, method = "ML", random=~1 B, correlation=corCaus(0.5, form=~1 B), data=matrix) Mean seed mass Ime(log(Total_seed_mass)-Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)	Number of shoots	glmer(Shoot_n~(Treatment) + (1 B), family="poisson", data=matrix, na.action="na.fail")
Specific leaf areaIme(log(SLA) ~ Phenological_status, method = "ML", random=~1 B/T/S, correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix)Leaf areaIme(LA)^(L/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corAR1(0.5, form=~1 B/T/S), data=matrix)Leaf dry massIme(LDM)^(1/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corAR1(0.5, form=~1 B/T/S), data=matrix)Occurrence of leaf senescence symptomsglmmPQL(Senescence~Treatment*Phenological_status, ~ 1 B/T/S, data=matrix)Total number of spikeletsglmmPQL(Total_number_of_spikelets~Treatment, ranily="poisson", correlation=corCompSymm(0.5, form=~1 B/T/S), data=matrix)Number of flowering spikeletsglmmPQL(Number_of_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5, form=~1 B/T), data=matrix)Mean spikelet lengthIme(Spike length~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B/T), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)Ime(sqt	Plant height	lme(H ~Treatment*Phenological_status,method = "ML", random=~1 B/T, data=matrix)
Leaf area correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix) Leaf area lme((LA)^(1/3) ~Phenological_status+Treatment,method = "ML", random=~1 B/T/S), data=matrix) Leaf dry mass loc(LDM)^(1/3) ~Phenological_status+Treatment,method = "ML", random=~1 B/T/S, data=matrix) Occurrence of leaf glmmPQL(Senescence~Treatment*Phenological_status, a.a.action="na.fail") senescence symptoms glmmPQL(Cotal_number_of_spikelets~Treatment,~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix) Number of fowering glmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix) spikelets glmmPQL(Number_of_flowering_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix) Mean spikelet length lme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, data=matrix) Mean number of (fertilized / unfertilized) flowers spikelet lme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix) Seed output glmer(Number_of_flowers)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail") Mean seed mass mee(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix) Mean seed mass lme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix) Mean seed mass	Specific leaf area	$lme(log(SLA) \sim Phenological_status, method = "ML", random=~1 B/T/S,$
Leaf areaIme((LDM)^(1/3) ~Phenological_status+1reatment,method = "ML", random = ~1 B/T/S, correlation=corAR1(0.5, form=~1 B/T/S), data=matrix)Leaf dry massIme((LDM)^(1/3) ~Phenological_status+1reatment, method = "ML", random=~1 B/T/S, correlation=corCAR1(0.5, form=~1 B/T/S), data=matrix)Occurrence of leaf senescence symptomsIme((LDM)^(1/3) ~Phenological_status+1reatment, method = "ML", random=~1 B/T/S, correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix)Total number of spikeletsImmPQL(Senescence-Treatment+Phenological_status, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Number of flowering spikeletsglmmPQL(Number_of_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Mean spikelet lengthIme(Spike length~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed massIme(RDMC_pin_thiz)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed massIme(RDMC_pin_thiz)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime(RDMC_pin_thiz)Ime(RDMC_pin_thiz)~Treatment, method = "ML", random=~1 B, correlation=cor	Speeme lear area	correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix)
Leaf dry massIme((LDM)^(1/3) ~Phenological_status+Treatment, method = "ML", random=~1 B/T/S, correlation=corAR1(0,5,form=~1 B/T/S), data=matrix)Occurrence of leaf senescence symptomsglmmPQL(Senescence~Treatment*Phenological_status, n.a.action="na.fail")Total number of spikeletsglmmPQL(Total_number_of_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Number of flowering spikeletsglmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Mean spikelet length Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_spikelet]ength)~Treatment, method = "ML", random=~1 B, data=matrix)Ime(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Ime(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Seed outputIme(log(Total_seed_mass)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(RDMC_pi_prinz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(RDMC_pi_prinz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime(Ren	Leaf area	$Ime((LA)^{(1/3)} \sim Phenological_status+Treatment,method = "ML", random = ~1 B/T/S, correlation=corAR1(0.5, form=~1 B/T/S), data=matrix)$
Lear uny masscorrelation=corAR1(0.5,form=~1 B/T/S), data=matrix)Occurrence of leafglmmPQL(Senescence~Treatment*Phenological_status, ~ 1 B/T/S), data=matrix, action="na.fail")Senescence symptomsglmmPQL(Contal_number_of_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Number of floweringglmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Spike lengthglmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean spikelet lengthlme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletlme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Mean seed massglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix)Mean seed masslme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed masslme(Mean_seed_mass-Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed masslme(RDMC_epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime(RDMC_epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime(RDMC_epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime(RDMC_epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=m	Loof dry mass	$lme((LDM)^{(1/3)} \sim Phenological_status+Treatment, method = "ML", random=~1 B/T/S,$
Occurrence of leaf senescence symptomsglmmPQL(Senescence~Treatment*Phenological_status, ~ 1 B/T/S, family="binomial", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix, na.action="na.fail")Total number of spikeletsglmmPQL(Senescence~Treatment*Phenological_status, ~ 1 B/T/S, family="binomial", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix, unfertilized flowering spikelet~ 1 B/T/S, family="binomial", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix, lmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Mean spikelet length Mean number of (fertilized / unfertilized) flowers spikeletIme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massglmer(Number_of_flowers)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed massglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed masslme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed masslme(Negrt(Reproductive_plant height Epigeogenous rhizome dry matter contentReproductive plant heightlme((RDMC_pi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_pi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_pour_youg_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_pug_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompS	Lear dry mass	correlation=corAR1(0.5,form=~1 B/T/S), data=matrix)
senescence symptomscorrelation=corCompSymm(0.5,form=~1 B/T/S), data=matrix, na.action="na.fail")Total number of spikeletsglmmPQL(Total_number_of_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Number of flowering spikeletsglmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Spike lengthlme(Spike length~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean spikelet lengthlme(log(Mean_spikelt_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletlme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix, na.action="na.fail")Seed outputglmer(Number_of_flowers-Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed masslme(log(Total_seed_mass-Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed masslme(sqrt(Reproductive_plant height) correlation=corCatatio(0.5,form=~1 B), data=matrix)Reproductive plant heightlme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_poug_hypo_rhiz)/3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_poug_hypo_rhiz)/3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm	Occurrence of leaf	glmmPQL(Senescence~Treatment*Phenological_status, ~ 1 B/T/S, family="binomial",
Total number of spikeletsglmmPQL(Total_number_of_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corRatio(0.5,form=~1 B/T, data=matrix)Number of flowering spikeletsglmmPQL(Number_of_flowering_spikelets-Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B/T), data=matrix)Mean spikelet lengthIme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Seed outputIme(log(Mean_n_of_flowers)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Number_of_flowers-Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCantio(0.5,form=~1 B), data=matrix)Mean seed massIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed massIme((RDMC_pi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	senescence symptoms	correlation=corCompSymm(0.5,form=~1 B/T/S), data=matrix, na.action="na.fail")
Number of flowering spikeletscorrelation=corRatio(0.5,form=~1 B/T), data=matrix)Spike lengthglmmPQL(Number_of_flowering_spikelets~Treatment, ~1 B/T, family="poisson", correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean spikelet lengthlme(log(Mean_spikelet_length~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletlme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Seed outputlme(log(Mean_n_of_flowers)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed masslme(log(Total_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed masslme(RDMC_epi_ntiz)^*3 ~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime(RDMC_pup_thiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_pup_thiz)^*3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_pup_thiz)^*3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	Total number of spikelets	glmmPQL(Total_number_of_spikelets~Treatment, ~1 B/T, family="poisson",
Number of nowering spikeletsgimmPQL(Number_of_nowering_spikelets > reatment, ~1 B/1, ramity= poisson , correlation=corCompSymm(0.5,form=~1 B/), data=matrix)Spike lengthlme(Spike length~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean spikelet lengthlme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletlme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Seed outputglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed masslme(log(Total_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed masslme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightlme(RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime(RDMC_young_hypo_thiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime(RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)		correlation=corRatio(0.5,form=~1 B/T), data=matrix)
spikeletsCorrelation=corCompSymm(0.5,form=~1 B, 1), data=matrix)Spike lengthIme(Spike length~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean spikelet lengthIme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Number of (fertilized / unfertilized) flowersglmer(Number_of_flowers-Treatment, method = "ML", random=~1 B, data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed massIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_Syoung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method =	Number of flowering	gimmPQL(Number_of_flowering_spikelets~ireatment, $\sim 1/B/T$, family= poisson,
Spike lengthInter(Spike length correlation=corGaus(0.5,form=~1 B), data=matrix)Mean spikelet lengthIme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Mumber of (fertilized / unfertilized) flowersIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix, na.action="na.fail")Seed outputglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCangtio(0.5,form=~1 B), data=matrix)Mean seed massIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Reproductive plant heightIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSym(0.5,form=~1 B), data=matrix)Ime((RDMC_puong_hypo_prhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSym(0.5,form=~1 B), data=matrix)Ime((RDMC_puong_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSym(0.5,form=~1 B), data=matrix)Ime((RDMC_puong_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSym(0.5,form=~1 B), data=matrix)Ime((RDMC_puong_hypo_rhiz)~Treatment, method = "ML",	spikelets	contention=concomp symm(0.5,10nm= \sim 1 B/1), data=matrix)
Mean spikelet lengthIme(log(Mean_spikelet_length)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Number of (fertilized / unfertilized) flowersIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix, na.action="na.fail")Seed outputglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(sqrt(Reproductive_plant_heigh)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Mean seed massIme(sqrt(Reproductive_plant_heigh)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime(sqrt(ReDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	Spike length	$\operatorname{Hild}(\operatorname{Spike}\operatorname{reigun} \sim \operatorname{Heatment}, \operatorname{Henod} = \operatorname{Hild}, \operatorname{Henod} = \sim \operatorname{Hild},$
Mean spikelet lengthInter(lg(Wean_spikete_berght) + Treatment, method = -1ML , nandom=+1 B, correlation=corCompSymm(0.5, form=+1 B), data=matrix)Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix, na.action="na.fail")Number of (fertilized / unfertilized) flowersglmer(Number_of_flowers)~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Mean seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)Mean seed massIme(sqrt(Reproductive_plant height)Reproductive plant heightIme((RDMC_Epi_rhiz)^3 ~ Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Ime((RDMC_young_hypo_criz)^3 ~ Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Young hypogeogenousIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Young hypogeogenousIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)		$lme(log(Mean spikelet length) \sim Treatment method = "MI" random = ~1 B$
Mean number of (fertilized / unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix)Number of (fertilized / unfertilized) flowersIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix, na.action="na.fail")Seed outputglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Poung hypogeogenous rhizome dry matter contentIme((RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	Mean spikelet length	correlation=corCompSymm(0.5.form=~1 B).data=matrix)
unfertilized) flowers per spikeletIme(log(Mean_n_of_flowers)~Treatment, method = "ML", random=~1 B, data=matrix) glmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Poung hypogeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	Mean number of (fertilized /	
spikeletNumber of (fertilized / unfertilized) flowersSeed outputGlmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputTotal seed massMean seed massMean seed massReproductive plant heightEpigeogenous rhizome dry matter contentYoung hypogeogenous rhizome dry matter contentYoung hypogeogenous rhizome dry matter content	unfertilized) flowers per	lme(log(Mean n of flowers)~Treatment, method = "ML", random=~1 B, data=matrix)
Number of (fertilized / unfertilized) flowersglmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Mean seed masslme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)Mean seed masslme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5, form=~1 B), data=matrix)Reproductive plant heightlme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Muter contentlme((RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Ime((RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)Ime((RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5, form=~1 B), data=matrix)	spikelet	
unfertilized) flowersna.action="na.fail")Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed massglmer(Seed_output~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed masslme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightlme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenouslme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenouslme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime(RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Young hypogeogenouslme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime(RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime(RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)	Number of (fertilized /	glmer(Number_of_flowers~Treatment + (1 B), family="poisson", data=matrix,
Seed outputglmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix, na.action="na.fail")Total seed masslme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed masslme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightlme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentlme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentlme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	unfertilized) flowers	na.action="na.fail")
beed outputna.action="na.fail")Total seed masslme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed masslme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightlme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentlme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentlme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	Seed output	glmer(Seed_output~Treatment + (1 B), family="poisson", data=matrix,
Total seed massIme(log(Total_seed_mass)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Mean seed massIme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	beed output	na.action="na.fail")
Mean seed massIme(Mean_seed_mass~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_poung_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)	Total seed mass	$lme(log(Total_seed_mass)$ ~Treatment, method = "ML", random=~1 B,
Mean seed massIme(Mean_seed_mass~1reatment, metnod = 'ML', random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Reproductive plant heightIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)		correlation=corCompSymm(0.5,form=~1 B), data=matrix)
Reproductive plant heightIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentIme(sqrt(Reproductive_plant_height)~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)	Mean seed mass	Ime(Mean_seed_mass~I reatment, method = $^{\text{ML}}$, random=~1 B,
Reproductive plant heightIme(sql (Reproductive_plant_height)~freatment, method = 'ML', random=~1 B, correlation=corRatio(0.5,form=~1 B), data=matrix)Epigeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)Ime((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B, data=matrix)		lmo(sart(Poproductive, plent, height), Treatment, method = "MI", readom-, 1 B
Epigeogenous rhizome dry matter contentIme((RDMC_Epi_rhiz)^3 ~Treatment, method = "ML", random=~1 B, correlation=corCompSymm(0.5,form=~1 B), data=matrix)Young hypogeogenous rhizome dry matter contentIme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B,data=matrix)	Reproductive plant height	correlation=corRatio(0.5 form=~1 B) data=matrix)
Image: space of the space of	Epigeogenous rhizome dry	$lme((RDMC Epi rhiz)^3 \sim Treatment, method = "ML", random=~1 B.$
Young hypogeogenous lme((RDMC_young_hypo_rhiz)~Treatment, method = "ML", random=~1 B,data=matrix)	matter content	correlation=corCompSymm(0.5.form=~1 B), data=matrix)
rhizome dry matter content random=~1 B,data=matrix)	Young hypogeogenous	lme((RDMC young hypo rhiz)~Treatment, method = "ML",
	rhizome dry matter content	random=~1 B,data=matrix)

This is a post-peer-review, pre-copyedit version of an article published in "Flora". The original publication is available at https://doi.org/10.1016/j.flora.2020.151665