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Abstract: The association between obesity and loss of cognitive performance has been recognized.
Although there are data regarding the metabolic alterations in obese conditions and the development
of neuroinflammation, no clear evidence concerning obesity-related cholinergic and synaptic impair-
ments in the frontal cortex and hippocampus has been reported yet. Here, we investigate different
cholinergic and synaptic markers in 12-, 16-, and 20-week-old obese Zucker rats (OZRs) compared
with lean littermate rats (LZRs), using immunochemical and immunohistochemical analysis. Conse-
quently, OZRs showed body weight gain, hypertension, and dysmetabolism. In 20-week-old OZRs,
the reduction of vesicular acetylcholine transporter (VAChT) and alpha7 nicotinic acetylcholine
receptors (α7nAChR) occurred both in the frontal cortex and in the hippocampus, suggesting a
cognitive dysfunction due to obesity and aging. Among the muscarinic receptors analyzed, the level
of expression of type 1 (mAChR1) was lower in the hippocampus of the older OZRs. Finally, we
showed synaptic dysfunctions in OZRs, with a reduction of synaptophysin (SYP) and synaptic vesicle
glycoprotein 2B (SV2B) in 20-week-old OZRs, both in the frontal cortex and in the hippocampus.
Taken together, our data suggest specific alterations of cholinergic and synaptic markers that can be
targeted to prevent cognitive deficits related to obesity and aging.

Keywords: brain; cholinergic system; synaptic transmission; metabolic syndrome; obesity

1. Introduction

Nowadays, obesity and obesity-related disorders have become widespread conditions.
Obesity and the closely related metabolic syndrome (MetS) cause a considerable risk of
developing type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and other
complications [1–3]. The major driver of the increasing obesity and diabetes epidemic is
the current obesogenic environment, proffering high-calorie foods and physical inactivity.
However, not everyone exposed to this environment gains weight or develops T2DM.
Indeed, a genetic predisposition or heritability is reported to contribute to obesity and
T2DM [4].

Studies have explored biological mechanisms to explain the negative effects of a high-
fat diet (HFD) on cognitive performance. Among them, insulin resistance, inflammation,
oxidative stress, altered membrane functioning, and vascularization represent the most
documented [5–7]. An HFD is commonly used to study obesity in mice, and neural
inflammation can be assessed even before substantial weight gain [8,9]. In these murine
models of diet-induced obesity (DIO), the increased fatty acid (FA) intake increases the
activation of immune cells and the inflammatory response in different organs [10]. Briefly,
the binding of FAs to Toll-like receptor 4 (TLR4) activates two different transcription
factors, nuclear factor κB, (NF-κB) and activator protein 1 (AP-1), that in turn upregulate
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the expression of proinflammatory mediators, such as cytokines and chemokines [11].
In DIO animals, we have confirmed the presence of hyperglycemia, insulin resistance,
and hypertension, accompanied by astrogliosis, microglial activation, and endothelial
inflammation in the frontal cortex and in the hippocampus [12]. Among various animal
models that have been developed and routinely used to study the pathogenesis and
mechanisms of obesity/T2DM, the non-leptin-deficient DIO mice or rats and genetically
obese mice or rats, i.e., leptin-receptor-deficient obese (fa/fa) Zucker rats (OZRs), remain
the most widely used experimental models.

Preclinical genetic models such as ob/ob and db/db mice or the OZRs were pivotal in
unraveling many signaling pathways involved in obesity. As well as in the DIO model,
we have previously reported in OZRs blood–brain barrier (BBB) alterations, neuronal loss,
and gliosis both in the frontal cortex and in the hippocampus [13]. The behavioral tests
revealed cognitive alterations in older OZRs as well as in DIO rats [12,14].

The cholinergic system has been revealed to be involved in the regulation of food
intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat
pads and body mass by increasing energy expenditure but also influences the cholinergic
system and synaptic markers [15,16]. Indeed, the beneficial effects of physical exercise
on cognitive functions have been well documented in the studies of both rodents and
humans [17]. The brain’s cholinergic signaling and the vagus nerve have a crucial role in
the regulation of metabolic homeostasis and the immune function. Studies supported the
therapeutic efficacy of cholinergic stimulation in alleviating obesity-associated metabolic
derangements and neuroinflammation [18–22]. The mechanisms of the inflammatory reflex
include alpha7 nicotinic acetylcholine receptor (α7nAChR)-mediated signaling in its effer-
ent arm. Cholinergic drugs, including α7nAChR agonists and acetylcholinesterase (AChE)
inhibitors, have also been shown to be cognitive enhancers and to reduce inflammation
and metabolic imbalances in obesity and in MetS [22,23]. For instance, donepezil reversed
obesity-related central inflammation and oxidative damage and improved memory im-
pairments in HFD-fed mice [24]. In addition, galantamine showed anti-inflammatory
and beneficial metabolic effects in patients with MetS [25]. The muscarinic acetylcholine
receptors (mAChRs) were also found to be strongly influenced by obesity in DIO rats [26].

Not only the cholinergic parameters seem to be altered because of the obese condition
but synaptic marker expression in prefrontal and perirhinal cortex also decreased in DIO
rats, accompanied by decreased dendritic spine density and finally cognitive deficits [27].
Microglial morphology was also changed in the prefrontal cortex. Synaptic proteins, in-
cluding vesicle-associated with the pre- and postsynaptic membrane proteins, are closely
related to cognitive function. Previous studies have shown that the loss of synapses in
the brain tissues of patients with Alzheimer’s disease (AD) was associated with cognitive
impairment [28,29]. Synaptophysin (SYP), a specific presynaptic marker of vesicles that
reflects the density and distribution of synapses, serves a crucial role in neural plasticity,
influencing the synaptic structure and mediating neurotransmitter release via phosphory-
lation [30].

Although there are numerous data regarding the metabolic alterations in obese condi-
tions and the development of neuroinflammation [8,9,12,14,31], no mechanism has been
presented concerning obesity-related cholinergic and synaptic impairments in the brain.
Therefore, this study was designed to investigate whether the memory and learning impair-
ments in older OZRs [14] were also related to cerebral cholinergic and synaptic alterations,
specifically identifying the markers that were implicated. The investigation was carried
out in brain areas, in which cholinergic neurotransmission is widely represented: the
frontal cortex, especially the motor region, and the hippocampus, which is involved in
learning and memory tasks [14]. The OZR is a model of MetS for the concomitant man-
ifestation of obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia, and moderate
hypertension [13,14,32], compared to littermate lean Zucker rats (LZRs).
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2. Materials and Methods
2.1. Ethical Animal Handling

Experimental procedures were carried out according to the Institutional Guidelines
and complied with the Italian Ministry of Health (D. Lgs. 116/92–Art. 7) (Prot. N.
6198/2011) and associated guidelines from European Communities Council Directive (n.
86/609/CEE) governing animal welfare and protection.

2.2. Animals

Male OZRs (n = 18) and their littermate lean Zucker rats (LZRs) (n = 18) were pur-
chased from Harlan (Italy). They were grouped into six animals for each strain based on the
age at sacrifice, performed at 12, 16, and 20 weeks of age, as previously described [14,32].
Based on previous studies [13,33–35], the age at sacrifice and the number of animals for
each experimental group was identified. Starting from the 10th week of age, the rats were
housed in one for cage and maintained on a 12 h light/dark cycle (lights on at 7 a.m.).
They were fed with standard diet (Mucedola 4RF18 mice and rats long-term maintenance,
containing 16% protein, 2.5% fat, and 7.5% max fiber and other nutritional additives)
with ad libitum access to food and water. Body weights were measured daily. Values of
systolic blood pressure were recorded once a week by tail-cuff methods using an electronic
sphygmomanometer (B3Plus, GIMA, Italy) on conscious rats [14,32].

2.3. Biochemical Analysis

Before sacrifice, blood withdrawals were performed from the tail vein in fasted rats.
Blood samples were collected into tubes with L-heparin. Serum was separated by cen-
trifugation of samples at 3000 rpm for 10 min to measure the blood glucose, insulin,
triglycerides, and total cholesterol, as previously described [14,32].

2.4. Tissue Handling

The brains were carefully removed and divided into two hemispheres. In the right
hemisphere, the frontal cortex and hippocampus were collected and frozen at −80 ◦C for
Western blot analysis, while the left one was fixed in 4% paraformaldehyde in 0.1 M pH 7.4
phosphate-buffered saline (PBS) and embedded in paraffin wax for immunohistochemical
analysis [14].

2.5. Western Blot (WB) and Quantification

Protein lysate was obtained by homogenizing brain areas (100 ± 2 mg) in a Mixer Mill
MM300 (Qiagen, Hilden, Germany) for 10 min, using lysis buffer. Next, 40 µg of proteins
were separated on SDS polyacrylamide gels, transferred onto nitrocellulose membranes,
and blotted with the specific antibodies as previously described [14,32]. After incubation
with blocking solution (5% BSA in PBS 0.1% Tween-20), membranes were incubated at
4 ◦C overnight with the primary antibodies as detailed in Table 1. The specificity of
immune reaction was assessed using antibodies pre-adsorbed with peptides employed for
generating them [36,37]. The blots were then incubated for 1 h at room temperature with the
corresponding horseradish peroxidase (HRP)-conjugated secondary antibodies (BETHYL
Laboratories, Inc., Montgomery, TX, USA, dilution 1:5000). LiteAblot PLUS or Turbo kits
(EuroClone, Milan, Italy) were used as the detection system followed by densitometric
analysis carried out by Quantity One software of the ChemiDoc apparatus (Bio-Rad,
Hercules, CA, USA), using GAPDH as the loading control. Blots are representative of one
of three experimental sessions.

2.6. Immunohistochemistry (IHC) and Image Analysis

The paraffin-embedded tissue from each rat was sectioned at 10 µm with a microtome.
Five groups of ten consecutive sagittal sections were attached to poly-l-lysine-coated slides.
As previously described [14] the first of each group of ten consecutive sections was stained
with a 0.5% cresyl violet to highlight the possible morphological alterations. The others
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were processed independently for immunohistochemistry using different antibodies at var-
ious dilutions in PBS + TritonX-100 0.3% (PBS-T), as detailed in Table 1. Optimal antibody
concentration and specificity of the antibodies were established in a series of preliminary
experiments in which parallel control slides were exposed to the same antibody absorbed
with the blocking peptide for 3 h at 4 ◦C [36,37]. The immune reaction was revealed by
exposing slides for 30 min at 25 ◦C (dilution 1:200 in PBS-T) to the specific biotinylated
secondary antibodies (BETHYL Laboratories, Inc., Montgomery, TX, USA). The sections
were incubated with an avidin–biotin kit (Vector Laboratories, Inc., Burlingame, CA, USA,
dilution 1:100) using as substrate a 3,3′-diamonobenzidine tetrahydrochloride (DAB) solu-
tion (Vector Laboratories, Inc., Burlingame, CA, USA). The sections were observed with
a microscope Leica DMR connected by a DS-Ri2 NIKON camera to NIS Elements Nikon
image analyzer software (Nikon, Florence, Italy) to record the mean intensities of immune
reaction as previously described [14].

Table 1. Primary antibodies used in Western blot (WB) and immunohistochemistry (IHC).

Antibodies Company and Cat. No Dilution
WB

Dilution
IHC

Vesicular acetylcholine transporter (VAChT) Santa Cruz Biotechnology
Cat. sc7717 1:500 1:100

Alpha7 nicotinic acetylcholine receptor (α7nAChR) Santa Cruz Biotechnology
Cat. sc5544 1:500 1:50

Muscarinic acetylcholine receptor subtype 1 (mAChR1) Santa Cruz Biotechnology
Cat. sc9106 1:500 1:50

Muscarinic acetylcholine receptor subtype 3 (mAChR3) Santa Cruz Biotechnology Cat. sc7474 1:500 1:50
Muscarinic acetylcholine receptor subtype 5 (mAChR5) Santa Cruz Biotechnology Cat. sc7479 1:500 1:50

Synaptophysin (SYP) EMD Millipore Cat. MAB368 1:500 1:200
Synaptic vesicle glycoprotein 2A (SV2A) Santa Cruz Biotechnology Cat. sc11939 1:200 1:50
Synaptic vesicle glycoprotein 2B (SV2B) Santa Cruz Biotechnology Cat. sc11943 1:200 1:50
Synaptic vesicle glycoprotein 2C (SV2C) Santa Cruz Biotechnology Cat. sc11946 1:200 1:50

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) Sigma Aldrich Cat. G9295 1:5000 /

2.7. Immunofluorescence

For confocal laser microscopy, slides were incubated with vesicular acetylcholine
transporter (VAChT) primary antibody (Table 1), followed by incubation with donkey
anti-goat Alexa Fluor 488 secondary antibody (1 h at 37 ◦C) and then counterstained with
DAPI (1:100 in PBS-T). Sections were viewed using a Nikon mod. C2 plus Confocal Laser
Microscope (Nikon, Corporation, Japan). Representative pictures were captured at 60×
magnification, zoom 2×.

2.8. Statistical Analysis

Means of different parameters investigated were calculated from single-animal data,
and expressed as the means ± S.E.M. The significance of differences between means was
estimated by analysis of variance (ANOVA) followed by the Bonferroni multiple range
tests, setting p < 0.05 value as a significant difference.

3. Results
3.1. General and Blood Analysis

The value of body weight, as well as the food intake, were significantly higher in
OZRs than in LZRs, starting from 10 weeks of age until 20 weeks of age. Serum analyses
showed that glucose and insulin were higher in OZRs than in LZRs in all weeks. Fur-
thermore, triglycerides levels were higher, and total, LDL, and HDL cholesterol increased
proportionally to age in the obese animals, indicating a condition of dysmetabolism [14,32].
Moreover, the values of systolic blood pressure were significantly higher starting from
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16 weeks of age in OZRs (140.8 ± 5.6 mmHg at 16 weeks, p = 0.002 and 137.3 ± 4.2 mmHg
at 20 weeks of age, p = 0.007 vs. age-matched LZRs).

3.2. Cholinergic Marker: Vesicular Acetylcholine Transporter

Western blot analyses, performed in the frontal cortex (Figure 1a) and the hippocam-
pus (Figure 1c), showed a decrease in the expression of VAChT with a band around 80 kDa,
corresponding to its mature glycosylated form [36], in OZRs compared to control LZRs at
20 weeks of age. In the 16-week-old obese phenotype, the expression of VAChT was signifi-
cantly reduced in the hippocampus (Figure 1c) but not in the frontal cortex (Figure 1a). In
line with the Western blot was the immunohistochemistry analysis in which the average
intensity values of VAChT were remarkably reduced in 20-week-old OZRs, both in the
frontal cortex (Figure 1b) and in the hippocampus (Figure 1d). Immunofluorescent proce-
dures revealed that VAChT labeled the neuronal soma of the pyramidal neurons and along
the cholinergic fibers in the frontal cortex and in the CA1 subfield of the hippocampus, as
showed by representative pictures (Figure 1e).

3.3. Synaptic Markers
3.3.1. Cholinergic Receptors

Among the nicotinic receptors, the alpha7 subunit (α7nAChR) constitutes one of the
predominant nAChR subtypes in the mammalian brain [38] and is widely expressed pre-
and postsynaptically also in the hippocampus [39]. Immunochemical analyses for the
α7nAChR showed a band around 55 kDa both in the frontal cortex (Figure 2a) and in
the hippocampus (Figure 2c). In both these areas, protein quantification demonstrated
a reduction of α7nAChR expression in OZRs, in particular at 20 weeks, compared with
age-matched lean rats (Figure 2a,c). Immunoreactivity for the nicotinic receptor α7nAChR
was localized in the pyramidal neurons in the fifth (V) layer of the frontal cortex (Figure 2b).
At the level of the hippocampus, pyramidal neurons were reactive both in the CA1 subfield
(Figure 2d) and in subfield CA3. The immunoreaction of α7nAChR was reported to be
significantly reduced in older obese rats, both in the frontal cortex (Figure 2b) and in the
hippocampus (Figure 2d).

We decided to explore the expressions of the following muscarinic receptors: mAChR1,
mAChR3, and mAChR5, based on the most abundant localization both in the cerebral
cortex and hippocampus [40,41], and the fact that all they are expressed predominantly
postsynaptically, Gq coupled, and stimulated by the phospholipase C (PLC) and inositol
trisphosphate (IP3) signal transduction pathways to increase cytosolic calcium levels [42].
The results showed that, among the muscarinic receptors analyzed (Figures 3 and 4), only
mAChR1 was reduced in obese conditions (Figure 3a–d).

Western blot results for the mAChR1 showed a band around 50 kDa in the frontal
cortex (Figure 3a) and the hippocampus (Figure 3c). In 20-week-old OZRs, the expres-
sion of mAChR1 was significantly reduced compared to that in age-matched LZRs in
the hippocampus (Figure 3c) but not in the frontal cortex (Figure 3a). In addition, the
immunohistochemistry analysis confirmed a lower mAChR1 immunoreaction at 20 weeks
of age in obese conditions compare to that in control lean rats in both the areas investigated
(Figure 3b,d).

mAChR3 and mAChR5 receptors were expressed at around 80 and 55 kDa, respec-
tively (Figure 4a,c). Neither the levels of mAChR3 and mAChR5 (Figure 4a,c) nor their
immunoreaction (Figure 4b,d) were significantly different among the animals. Indeed,
similar values were reported between the age-matched opposite groups (Figure 4a–d). Both
these receptor subtypes were present in the fifth layer of the frontal cortex, and in the CA1
and CA2 subfields of the hippocampus.
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Figure 1. Immunoblotting and immunofluorescence of vesicular acetylcholine transporter (VAChT). 
Lysates of the frontal cortex (a) and hippocampus (c) from lean Zucker rats (LZRs) and obese Zucker 
rats (OZRs) at the age of 12, 16, and 20 weeks were immunoblotted using specific anti-VAChT. Bar 
graphs indicate the densitometric analysis using LZRs as control, and GAPDH levels were used as 
a loading control. Blots are representative of one of three separate experiments; intensity values of 
VAChT immunostaining in the frontal cortex (b) and hippocampus (d) from LZRs and OZRs at the 
age of 12, 16, and 20 weeks measured in optical density units (ODUs). Data are mean ± S.E.M. * p < 
0.05 vs. age-matched LZRs. (e) Representative immunofluorescence pictures of 20-week-old LZRs 
and OZRs in the frontal cortex (FC) and hippocampus (HIP). Arrows indicate VAChT, labeling. V: 
the fifth layer of the frontal cortex. NC: negative control. P: pyramidal neurons of the hippocampus. 
60× magnification zoom 2×. Calibration bar: 10 µm. 
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Among the nicotinic receptors, the alpha7 subunit (α7nAChR) constitutes one of the 
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Figure 1. Immunoblotting and immunofluorescence of vesicular acetylcholine transporter (VAChT).
Lysates of the frontal cortex (a) and hippocampus (c) from lean Zucker rats (LZRs) and obese Zucker
rats (OZRs) at the age of 12, 16, and 20 weeks were immunoblotted using specific anti-VAChT. Bar
graphs indicate the densitometric analysis using LZRs as control, and GAPDH levels were used as
a loading control. Blots are representative of one of three separate experiments; intensity values
of VAChT immunostaining in the frontal cortex (b) and hippocampus (d) from LZRs and OZRs at
the age of 12, 16, and 20 weeks measured in optical density units (ODUs). Data are mean ± S.E.M.
* p < 0.05 vs. age-matched LZRs. (e) Representative immunofluorescence pictures of 20-week-old
LZRs and OZRs in the frontal cortex (FC) and hippocampus (HIP). Arrows indicate VAChT, labeling.
V: the fifth layer of the frontal cortex. NC: negative control. P: pyramidal neurons of the hippocampus.
60×magnification zoom 2×. Calibration bar: 10 µm.
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of the hippocampus. 40× magnification. Calibration bar: 25 µm. 

Figure 2. Immunoblotting and immunoreaction of alpha7 nicotinic acetylcholine receptor (α7nAChR).
Lysates of frontal cortex (a) and hippocampus (c) from lean Zucker rats (LZRs) and obese Zucker
rats (OZRs) at the age of 12, 16, and 20 weeks were immunoblotted using specific anti-α7nAChR.
Bar graphs indicate the densitometric analysis using LZRs as control, and GAPDH levels were used
as loading control. Blots are representative of one of three separate experiments; intensity values of
α7nAChR immunostaining in the frontal cortex (b) and the hippocampus (d) from LZRs and OZRs
at the age of 12, 16, and 20 weeks measured in optical density units (ODUs). Data are mean ± S.E.M.
* p < 0.05 vs. age-matched LZR. Representative pictures of 20 weeks old LZR and OZR in frontal
cortex (b) and hippocampus (d). V: the fifth layer of the frontal cortex. P: pyramidal neurons of the
hippocampus. 40×magnification. Calibration bar: 25 µm.
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Figure 3. Immunoblotting and immunoreaction of muscarinic acetylcholine receptor subtype 1
(mAChR1). Lysates of the frontal cortex (a) and hippocampus (c) from lean Zucker rats (LZRs) and
obese Zucker rats (OZRs) at the age of 12, 16, and 20 weeks were immunoblotted using specific
anti-mAChR1. Bar graphs indicate the densitometric analysis using LZRs as control, and GAPDH
levels were used as a loading control. Blots are representative of one of three separate experiments;
intensity values of mAChR1 immunostaining in the frontal cortex (b) and hippocampus (d) from
LZRs and OZRs at the age of 12, 16, and 20 weeks measured in optical density units (ODUs). Data
are mean ± S.E.M. * p < 0.05 vs. age-matched LZR. Representative pictures of 20-week-old LZRs
and OZRs in the frontal cortex (b) and hippocampus (d). V: the fifth layer of the frontal cortex.
P: pyramidal neurons of the hippocampus. 40×magnification. Calibration bar: 25 µm.
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Figure 4. Immunoblotting and immunoreaction of muscarinic acetylcholine receptor subtype 3
(mAChR3) and muscarinic acetylcholine receptor subtype 5 (mAChR5). Lysates of the frontal cortex
(a) and hippocampus (c) from lean Zucker rats (LZRs) and obese Zucker rats (OZRs) at the age
of 12, 16, and 20 weeks were immunoblotted using specific anti-mAChR3 and anti-mAChR5. Bar
graphs indicate the densitometric analysis using LZRs as control, and GAPDH levels were used as
a loading control. Blots are representative of one of three separate experiments; intensity values of
mAChR3 immunostaining in the frontal cortex (b) and mAChR5 in the hippocampus (d) from LZRs
and OZRs at the age of 12, 16, and 20 weeks measured in optical density units (ODUs). Data are
mean ± S.E.M. Representative pictures of 20-week-old LZRs and OZRs in frontal cortex for mAChR3
(b) and hippocampus for mAChR5 (d). V: the fifth layer of the frontal cortex. P: pyramidal neurons
of the hippocampus. 40×magnification. Calibration bar: 25 µm.

3.3.2. Synaptic Vesicle Glycoproteins

As an abundant synaptic marker, SYP was explored (Figure 5). The Western blot
results did not show statistical differences in SYP levels in the obese condition compared
to the lean one in the frontal cortex (Figure 5a). Instead, the quantification of SYP im-
munoreaction was significantly reduced only in 20-week-old OZRs in comparison with the
age-matched controls as demonstrated by representative pictures (Figure 5b). Moreover, in
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the hippocampus, the SYP expression (Figure 5c), as well as the immunoreaction localized
in CA1 and CA3 (Figure 5d), was remarkably reduced in the older OZRs compared to that
in controls.
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Figure 5. Immunoblotting and immunoreaction of synaptophysin (SYP). Lysates of the frontal cortex
(a) and hippocampus (c) from lean Zucker rats (LZRs) and obese Zucker rats (OZRs) at the age of 12,
16, and 20 weeks were immunoblotted using specific anti-SYP. Bar graphs indicate the densitometric
analysis using LZRs as control, and GAPDH levels were used as the loading control. Blots are
representative of one of three separate experiments; intensity values of SYP immunostaining in the
frontal cortex (b) and hippocampus (d) from LZRs and OZRs at the age of 12, 16, and 20 weeks
measured in optical density units (ODUs). Data are mean ± S.E.M. * p < 0.05 vs. age-matched LZRs.
Representative pictures of 20-week-old LZRs and OZRs in frontal cortex (b) and hippocampus (d).
V: the fifth layer of the frontal cortex. P: pyramidal neurons in the CA1 and CA3 subfields of the
hippocampus. SO: stratum oriens. SR: stratum radiatum. 40×magnification. Calibration bar: 25 µm.

Among the presynaptic vesicle proteins analyzed, i.e., synaptic vesicle glycoproteins
2A and 2C (SVA and SVC, respectively) (Figure S1), only synaptic vesicle glycoprotein
2B (SV2B) showed alterations related to obesity and age (Figure 6). Indeed, results from
Western blot and immunohistochemistry showed significantly reduced SV2B levels in the
frontal cortex in 20-week-old OZRs compared to that in the lean ones (Figure 6a,b). More-
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over, in the hippocampus, the SV2B expression (Figure 6c), as well as the immunoreaction
localized in CA1 (Figure 6d), was remarkably reduced in the older OZRs compared to that
in controls.
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Figure 6. Immunoblotting and immunoreaction of synaptic vesicle glycoprotein 2B (SV2B). Lysates
of the frontal cortex (a) and hippocampus (c) from lean Zucker rats (LZRs) and obese Zucker rats
(OZRs) at the age of 12, 16, and 20 weeks were immunoblotted using specific anti-SV2B. Bar graphs
indicate the densitometric analysis using LZRs as control, and GAPDH levels were used as the
loading control. Blots are representative of one of three separate experiments; intensity values of
SV2B immunostaining in the frontal cortex (b) and hippocampus (d) from LZRs and OZRs at the age
of 12, 16, and 20 weeks measured in optical density units (ODUs). Data are mean ± S.E.M. * p < 0.05
vs. age-matched LZRs. Representative pictures of 20-week-old LZRs and OZRs in the frontal cortex
(b) and hippocampus (d). V: the fifth layer of the frontal cortex. P: pyramidal neurons in the CA1
subfield of the hippocampus. SO: stratum oriens. SR: stratum radiatum. 40×magnification. Calibration
bar: 25 µm.

4. Discussion

Obesity is a complex disorder connected with several physiological abnormalities
that arise from excessive fat tissue accumulation [43]. Different studies showed that
obesity related to an HFD impaired learning and memory in rodents, suggesting a strong
correlation between obesity and cognitive dysfunction [12,27,44–50].



Cells 2021, 10, 2528 12 of 16

Several neurotransmitters including acetylcholine (ACh) have been implicated in
the regulation of food intake and obesity [51,52]. In the brain region of Zucker fatty
rats analyzed by [53], ACh content showed a lower level than that of the lean rats. In
these animals, the activities of AChE were found to be significantly lower than those in
the lean rats in all the brain areas, except in the striatum and medulla oblongata, where
it was significantly reduced [53]. On the contrary, significantly higher AChE activity
was seen in the cerebral cortex, cerebellum, midbrain, thalamus, and hypothalamus of
14-week-old OZRs than in their lean littermates [54]. Meanwhile, choline acetyltransferase
(ChAT) activity was lower in the cerebellum, pons, and cerebral cortex, while a significant
increase in ChAT activity was found in the thalamus and hypothalamus [54]. Thus, the
diencephalon of the OZRs showed a significant increase in both ChAT and AChE activities,
which may reflect an increase in the ACh turnover rate. It was postulated that the increase
in the turnover rate of ACh was probably a cause of obesity rather than a consequence of
obesity [54]. From these controversial and complex data, it was concluded that obesity
could be associated with changes in the enzymes activities of the brain cholinergic system
also depending on the brain regions [54]. To date, no data have been published yet
regarding cholinergic transporter and receptors and synaptic markers in OZRs. The
availability of genetically obese rats with known changes in the brain neurochemistry
provided an excellent model to study obesity and cholinergic as well as synaptic function
in the frontal cortex and hippocampus.

The obese rats (fa/fa) present dysfunctions in the CNS [14,55]. The current study
shows a reduction of VAChT and α7nAChR expressions both in the frontal cortex and in
the hippocampus of 20-week-old OZRs. Indeed, VAChT and α7nAChR are considered pro-
cognitive elements, directly involved in learning and memory, as well as in the pathology
of neurodegenerative and cerebrovascular diseases [56–59]. This may justify previous
behavioral tests that revealed, in 20-week-old OZRs, anxiety-like behavior compared
to age-matched LZRs. In addition, the reduced retention latency time in the emotional
learning task also confirmed cognitive impairment in OZRs [14].

Nowadays, it is well recognized that nAChRs are expressed not only on neurons but
also in microglia [60] and astrocytes [61]. Moreover, their responses are often mediated
specifically by α7nAChRs. Among the responses, its regulation of the cholinergic anti-
inflammatory pathway [62,63] is gaining great attention. Studies have revealed that the
activation of α7nAChR in astrocytes and microglia can induce anti-inflammatory effects
through the downregulation of pro-inflammatory cytokine production [59,64,65]. Thus,
we can speculate that the astrogliosis, reactive microglia, and vascular inflammation,
characterized by the increase of intercellular adhesion molecule-1 (ICAM-1) and vascular
cell adhesion molecule-1 (VCAM-1) expressions in the brain of older OZRs [14,66], may be
related to the low expression of α7nAChR. Among the mechanisms, neuroinflammation
with the increase of cytokines and changes in membrane fluidity and, above all, the
disruption of the BBB is the most accredited [44,46]. Local and systemic inflammation,
induced by obesity or T2DM, has been linked to central disorders, such as depression, and
neurodegenerative diseases such as AD, because of BBB breakdown, decreased removal of
waste, and increased infiltration of immune cells [8,9,21,31]. This, in turn, leads to cognitive
impairment and disruption of neuronal and glial cells, triggering hormonal dysfunction
and amplified immune sensitivity, depending on the affected brain areas (hippocampus,
cortex, brainstem, or amygdala) [8,9,67].

Moreover, a high-calorie diet could be involved in the alterations of the cholinergic
system with the modulation of mAChRs [26]. Following the results carried out in DIO
rats [26], we found that the mAChR1, but not mAChR5, was significantly reduced in the
hippocampus of 20-week-old OZRs. Even though downregulation of mAChR3 in the
hippocampus of DIO animals has been reported [26], here we did not find any differences
either in the hippocampus or in the frontal cortex. Taken together, these results indicate
a differential modulation of mAChR1, mAChR3, and mAChR5 subtypes in obese rats
compared to that in lean ones. mAChRs mediate a wide range of functions peripherally
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and in the CNS. The five mAChR subtypes play a role in learning, memory, attention, and
sensory-motor processing and are expressed differently in the brain [68–70]. However, we
did not investigate their quantities.

The cholinergic alterations were accompanied by synaptic dysfunctions in the obese
phenotype, with a reduction of SYP and synaptic vesicle protein SV2B in 20-week-old
OZRs, both in the frontal cortex and in the hippocampus. These changes in the rat were
associated with behavioral deficits. Cognitive decline was also reported by Bocarsly
and coworkers in 2015 with decreased synaptic marker expression in the prefrontal and
perirhinal cortex in DIO rats, accompanied by decreased dendritic spine density and
changed microglia morphology [27]. Childhood metabolic disorders can impair cognitive
development with abnormal synaptic function [71,72]. In addition, exposure to an HFD
during the peak period of brain development can also alter neuroplasticity that links
to eating disorders [73]. One study showed that longer periods of HFD feeding impair
cognitive tasks associated with the hippocampus and reduce synaptic markers and increase
microglia activation in the hippocampus [74]. On the contrary, another study reported no
effect of long-term HFD on cognitive behaviors associated with the hippocampus [75]. It
could be that obesity alone was not enough to compromise hippocampal structure and
function. However, in combination with other complications such as chronic stress, it was
sufficiently detrimental to impact hippocampal plasticity [76]. Interestingly, researchers
found that restored cholinergic inputs and presynaptic synaptophysin contribute to the
protective effects of physical running on spatial memory in aged mice [16].

5. Conclusions

The fact that the frontal cortex and hippocampus of OZRs are functionally compromised
in cholinergic and synaptic activities provides new insight into how obesity can influence
the cholinergic system and synaptic markers and, thus, the cognitive functions. Furthermore,
the positive modulation of certain cholinergic and synaptic markers may be a possible
therapeutic strategy for the treatment of obesity- and age-related cognitive dysfunction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10102528/s1, Figure S1: Immunohistochemistry of synaptic vesicle glycoprotein 2A
and synaptic vesicle glycoprotein 2C (SV2A and SV2C, respectively). Representative pictures of
20-week-old LZRs and OZRs in the frontal cortex (a) and hippocampus (b). V, VI: the fifth, sixth
layers of the frontal cortex. P: pyramidal neurons in the CA1 and CA3 subfields of the hippocampus.
SO: stratum oriens. SR: stratum radiatum. 40×magnification. Calibration bar: 25 µm.
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