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Simple Summary: Emerging environmental contaminants, such as sunscreen agents, have been
broadly identified in marine ecosystems. Thus, the present work aims to investigate whether organic
UV filters cause immunotoxic effects in juvenile loggerhead sea turtles (Caretta caretta). We found
that loggerhead sea turtles showing high circulating levels of organic UV filters manifested increased
expression of genes involved in inflammatory responses, probably due to contaminant-induced
oxidative damage.

Abstract: Recent evidence suggests that exposure to organic ultraviolet filters (UV filters) is associated
with dysregulated neuroendocrine-immune homeostasis. Marine species are likely to be among
the most vulnerable to UV filters due to widespread diffusion of these chemicals in the aquatic
environment. In the present study, the effects of UV filter bioaccumulation on toll-like-receptors
(TLRs) and related signaling pathways were investigated in peripheral blood mononuclear cells
(PBMCs) of juvenile loggerhead sea turtles (Caretta caretta). We found that the expression of both
TLR1 and TLR2 was significantly increased in UV-filter exposed turtles compared to control animals.
Similarly, the signaling pathway downstream of activated TLRs (i.e., Ras-related C3 botulinum toxin
substrate 1 (RAC1), Phosphoinositide 3-kinase (PI3K), serine/threonine-protein kinase (AKT3), and
nuclear factor κB (NF-κB)) was significantly up-regulated, leading to an enhanced transcription of
pro-inflammatory cytokines. In addition, we demonstrated that high levels of plasma UV filters
increased lipid peroxidation in sea turtles’ PBMCs. Our results indicated that UV filters affected
the inflammatory responses of PBMCs via modulation of the TLR/NF-κB signaling pathway and
provided a new insight into the link between exposure to sunscreen agents and sea turtle health.

Keywords: UV filters; loggerhead sea turtles; endocrine disruptors; toll-like receptors; pro-inflammatory
cytokines; immunotoxicity

1. Introduction

Organic ultraviolet filters (UV filters) are compounds containing single or multiple
aromatic structures attached to hydrophobic groups which are widely used in sunscreens
and cosmetic products [1]. Previous studies, mainly conducted in Europe, demonstrated
that 98% of sunscreen products contain from three to eight organic UV filters and 71% of
personal care products contain at least one [2,3]. Recently, UV filters have been detected in
86% of sunscreens and in 53% of other cosmetic products in the Asian market [4]. Because of
their increasing industrial production, the aquatic environment has been overloaded with
these chemicals that can be widely detected in water, sediments, and biota [5]. The presence
and potential negative effects of organic UV filters in the marine ecosystem have previously
been reported in several studies [6–9]. Recent data also indicate that UV filters have light
lipophilicity and can be considered pseudopersistent environmental contaminants, which,
however, have the ability to bioaccumulate in various aquatic organisms [10]. The risk
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posed by these compounds to marine organisms stems from, among other things, their
potential genotoxicity, mutagenicity, and endocrine disruption at environmentally relevant
concentrations. In this regard, current attention has mainly been given to the reproduc-
tive and developmental toxicity of benzophenone (BP)-type UV filters in fish [11–13]. In
contrast, studies on the potential of these chemicals to alter immune responses in aquatic
organisms are still scarce. Studying the immune responses of wild animals in their envi-
ronment has acquired an increased importance since many infectious diseases may have
been worsened by pollutant-mediated alteration of the endocrine-immune interactions [14].
In fact, there is evidence that environmental contamination is associated with increased
incidence of immunosuppression in several vertebrate models [15], including reptiles [16].
It is possible that environmental pollutant-induced functional modulation of the endocrine-
immune interactions may worsen the effects of infectious diseases, thereby leading to the
development of serious illnesses. Accumulating lines of evidence suggest a correlation
between oxidative stress from exposure to environmental pollutants and immune functions
which support the role of reactive oxygen species (ROS) in the induction of immunotox-
icity [17–19]. In this regard, we have previously investigated the relationship between
gene biomarker expression and organic UV filter accumulation in juvenile loggerheads
and found that total sunscreen agent concentration was strongly positively associated with
gene biomarkers of inflammation and oxidative stress [8]. There is evidence that under
conditions of oxidative stress, endogenous molecules that are key mediators of the innate
immune system (i.e., damage-associated molecular patterns, DAMPs) are released from
stressed cells. The release of DAMP molecules is likely to activate signaling pathways that
are involved in mediating the resulting inflammatory response. These signaling pathways
involve, among other things, the activation of toll-like receptors (TLRs) [20]. The TLR family
of receptors constitute one of the first lines of the immune defense system leading to the
activation of the acquired immune response [21]. Although the characteristics of TLRs have
been widely investigated in mammals, there is limited information regarding the functional
role of these receptors in reptiles, especially in sea turtles. Evolutionary studies have shown
that TLRs are generally conserved, and a series of TLR family genes has been found in
many species [22]. Zhou et al. [23] and Hu et al. [24] have provided a functional and expres-
sion analysis of different TLRs in the Chinese soft-shelled turtle Pelodiscus sinensis. In this
regard, the phylogenetic analyses have demonstrated high similarities in TLR homologs
among P. sinensis and other turtle species such as C. mydas, C. picta, and T. mexicana [25].
Therefore, to better understand the relationship between organic UV filter exposure and
immunotoxicity, we examined the expression patterns of genes related to the TLR signaling
pathway (KEGG pathway: cmy 04620), because these receptors play a key role in mediating
the inflammatory response to conditions of oxidative stress. Specifically, we evaluated
toll-like receptor–mediated nuclear factor kappa B (NF-κB) activation through the signaling
cascade composed of Ras-related C3 botulinum toxin substrate 1 (RAC1), Phosphoinositide
3-kinase (PI3K), and RAC serine/threonine-protein kinase (AKT3) in peripheral blood
mononuclear cells (PBMCs) of juvenile loggerhead sea turtles (Caretta caretta) showing
high circulating levels of organic UV-filters. PBMCs were selected as these cells can be
easily and safely collected from sea turtles and can serve as models for monitoring the
transcriptomic profile indicative of immunotoxic effects. NF-κB transcriptional activity was
further investigated by evaluating the expression of various pro-inflammatory genes such
as tumor necrosis factor alpha (TNF-α), IL-6, and IL-12.

2. Materials and Methods
2.1. Samples Handlings

Thirty-two juvenile loggerhead sea turtles (C. caretta) recovered along the Italian coasts
(North and Central Adriatic Sea) were enrolled for this study [8]. The healthy condi-
tion of sea turtles was determined on the basis of hematological values and individual
clinical examination by veterinary rehabilitation experts of the regional center of Care
and Rehabilitation for Sea Turtles (Fondazione Cetacea onlus) Riccione, Italy. Sea turtles
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with traumatic injuries, eye/skin diseases, and infections were not enrolled in the study.
Curved carapace lengths (CCLs) of the selected sea turtles were measured in order to
confirm the juvenile status (Figure 1) [26–28]. Animals were divided into two subgroups
according to the plasma levels of UV filters found in our previous study [4]. We selected
the following two categories: (1) LODneg if the plasma level of each UV filter was be-
low LODs (<0.15 µg mL−1 (Ensulizole); <0.30 µg mL−1 (Ethyl salicylate); <0.20 µg mL−1

(Benzophenone-3); <0.40 µg mL−1 (Homosalate)) and (2) LOQpos if the concentration of
UV filters was above LOQs (>0.40 µg mL−1 (Ensulizole); >0.80 µg mL−1 (Ethyl salicylate);
>0.60 µg mL−1 (Benzophenone-3); >1.00 µg mL−1 (Homosalate). The LODneg group in-
volved 13 specimens while the LOQpos group contained 19 specimens showing an average
ΣUV filter concentration of 10.23 ± 9.92 µg mL−1; min–max: 1.03–31.75 µg mL−1). Briefly,
blood was taken from the dorsal cervical sinus and processed according to the procedure
described by Cocci et al. [8]. Peripheral blood mononuclear cells were immediately col-
lected and kept at −80 ◦C until processed for molecular studies. Animal manipulation was
carried out using standard operating actions as previously described [29] and according to
the D.G.R. 563/08–D.G.R. 664/08.
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bated at 37 °C for 15 min and then at 60 °C for 30 min. The reaction was inactivated at 85 
°C for 3 min. A SYBR Green Real-Time PCR assay (ABI 7300) was performed for the mo-
lecular analyses with primers for IL-6, IL-12, RAC1, AKT3, TNF-α, PI3K, TLR1, TLR2, NF-
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Figure 1. Size distribution of the two groups of loggerhead turtles analyzed in this study. Values are
given as mean + SD. Dot line shows CCL threshold for identifying immature specimens [26,27,30].

2.2. Real-Time Reverse Transcription PCR (qRT-PCR)

Total RNA was extracted from nucleated blood cells using the Trifast™ kit (EuroClone)
according to the manufacturer’s specifications. The complementary DNA (cDNA) was
synthesized from 3 µg of total RNA using the All-In-One 5× RT MasterMix kit including
genomic DNA (gDNA) removal (abm®). The reverse transcription reaction was set-up by
adding 4 µL 5X All-In-One RT MasterMix and Nuclease-free H2O. Samples were incubated
at 37 ◦C for 15 min and then at 60 ◦C for 30 min. The reaction was inactivated at 85 ◦C for
3 min. A SYBR Green Real-Time PCR assay (ABI 7300) was performed for the molecular
analyses with primers for IL-6, IL-12, RAC1, AKT3, TNF-α, PI3K, TLR1, TLR2, NF-kB, and
NF-kappa-B inhibitor alpha (IkBα) target genes designed using the Primer-BLAST tool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/) according to the Chelonia mydas gene
specific sequences (Table 1). Ribosomal 18 s RNA was selected as a reference gene [31]. The
reaction mixture contained 10 µL BlasTaq™ 2X qPCR MasterMix (abm®), 0.5 µL of primers
(both 10 µM), 2 µL cDNA template and Nuclease-free H2O. Thermal cycling for IL-6, IL-12,
RAC1, AKT3, TNF-α, PI3K, TLR1, TLR2, and 18s reactions consisted of 3 min at 95 ◦C,
followed by 40 cycles of 15 s at 95 ◦C and 60 s at 60 ◦C. Thermo-cycling for NF-kB and IkBα
reactions consisted of 3 min at 95 ◦C, followed by 40 cycles of 20 s at 95 ◦C and 60 s at 58 ◦C.
The specificity of the primer pairs was confirmed by applying the melting curve analysis
produced by the ABI 7300 software and verified with agarose gel electrophoresis (Table 1).

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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All used primers showed high specificity and sensitivity, indicating that the cross-species
primers can correctly amplify the target genes in C. caretta [8,31].

Table 1. Details of primers used in this study.

Gene Primer Sequence (5′-3′) GenBank PCR
Product (bp)

Melting
Curve (◦C) Efficiencies (%)

IL-6 CAGTGATCATGCCAGACCCA
TCGAACAGCCCTCACAGTTT XM_043541083.1 143 83.0 98.3

IL-12 GGAACACCAGCCCATTGAGA
CCACATGCTCACACTCAGGT XM_007057267.4 122 85.5 93.4

RAC1 TTACACAGCGAGGCCTCAAG
CCTTGTTCCGAGCAAAGCAC XM_027823047.3 156 85.4 95.3

AKT3 AGTGACGTCGGGAGTTTTCC
GCTACATGGAGCGAGCGTC XM_037895339.2 174 87.7 94.8

TNF-α TGAGCACCGAAAGTCTGGTC
TCTGAAATGCAGCAGAGCGA XM_027821468.3 155 90.3 96.7

PI3K AGCGAGAGCTGAGGATCTTCTTT
CATGCCAAACCTTCATTGCTTCC XM_037909268.2 159 84.1 98.5

TLR1 TTAACTGAGCTGCCTGGGTG
GGAATGGATTGTGCCCTCCT XM_007059713.3 142 82.6 96.5

TLR2 TGGTGAAGAATGTGCCTGCT
AGACCGTGCTTTACGTCTGG XM_027821652.3 128 84.1 95.7

NF-kB CGCGTGAGGCTCTTAAAATGG
TGGTCCATCTGTTCGTAGTGG XM_007054382.4 155 88.0 92.1

IkBα CCAGGGGCCTTTAGGTAAGC
GTTCCAACCTGCTGGCATTC XM_037900614.2 112 80.8 96.1

18s rRNA CGTTCTTAGTTGGTGGAGCG
AACGCCACTTGTCCCTCTAA HQ914786.1 124 85.3 100.9

2.3. Lipid Peroxidation (LPO)

Lipid peroxidation was assessed following the procedure described by Cocci et al. [31].
Nucleated blood cells were homogenized in 0.9% NaCl and incubated for 15 min at 37 ◦C.
A mixture of HCl/trichloroacetic acid and thiobarbituric acid were added to the sample
and incubated at 100 ◦C for 10 min. Following centrifugation at 4000 rpm, the supernatant
was collected and the absorbance (535 nm) was detected.

2.4. Statistical Analyses

Data analysis was performed using GraphPad Prism version 8 software (GraphPad
Software, Inc., La Jolla, CA, USA). q-PCR results were expressed as normalized fold change
corrected for 18s rRNA and with respect to the LODneg group. Data were first examined for
their fit to a normal distribution and homogeneity of variance using Kolmogorov–Smirnov
and Levene median tests. Data were then analyzed using the Student t test. The significance
cut-off for the Student’s t-test was taken as p < 0.05.

3. Results

To assess the potential role of TLRs in response to organic UV filter accumulation,
the expression levels of selected genes in the TLR-mediated signaling pathways were
investigated. We found an increase of transcription for most of the genes tested, except
IκBα and IL-12 (Figure 2).
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Figure 2. Illustration of the TLR/NF-κB signaling pathway, along with the log2 fold changes of
11 pathway genes in UV filter exposed loggerheads (LOQpos). Interleukin 1 beta (IL-1β) gene
expression dataset was collected from our previous work, Cocci et al. [8]. ROS: reactive oxygen
species; DAMPs: damage-associated molecular patterns; LPO: lipid peroxidation.

The expression of both TLR1 and TLR2 was significantly increased in UV- filter exposed
turtles with respect to control animals (Figure 3).
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Figure 3. Mean mRNA fold change (+SD) of toll-like-receptors (TLRs) 1 and 2, Ras-related C3
botulinum toxin substrate 1 (RAC1), Phosphoinositide 3-kinase (PI3K), serine/threonine-protein
kinase (AKT3), nuclear factor κB (NF-κB), inhibitory protein kappa B alpha (IkBα), tumor necrosis
factor alpha (TNF-α), interleukin 6 (IL-6), and IL-12 relative to LODneg group (adjusted average
LODneg value is 1) is shown. **, p ≤ 0.01; **** p ≤ 0.0001 (unpaired t-tests).

Similarly, the signaling pathway downstream of activated TLRs (i.e., RAC1, PI3K,
Akt, and NF-κB) was significantly up-regulated (Figure 3). Of these four genes, RAC1
was the most highly expressed, showing a 24-fold increase. On the contrary, the mRNA
expression of IκBα did not exhibit any significant variation compared with the LODneg
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group (Figure 3). The gene transcription of NF-κB targets was also significantly induced in
samples showing high content of UV filters. Indeed, the mRNA levels of TNF-α and IL-6
were found to be increased from 5-fold up to 8-fold, whereas the expression of IL-12 was
not modulated compared with the LODneg group (Figure 3). In addition, PBMCs were also
examined for oxidative damage measured as LPO. Data indicated that LPO levels were
significantly increased in turtles showing high content of UV filters compared to LODneg
animals (Figure 4).
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4. Discussion

TLRs are involved in mediating the inflammatory response activated by infectious
agents, thus playing a pivotal role in innate immunity [32]. However, similarities between
the signaling pathways triggered by microbial products and oxidative stress have been
recently suggested [33,34]. There is evidence that bacterial cell wall components, acti-
vated DAMPs, and proinflammatory cytokines share a common TLR-mediated signaling
pathway leading to NF-κB nuclear translocation [35]. Although certain consequences of
TLR-dependent activation of transcription factors are known, the molecular mechanisms
of intracellular signaling are largely undefined, especially in reptiles. Our results indicate
that TLR signaling to NF-κB is activated in loggerheads with high plasma levels of UV
filters. In addition, these animals show increased LPO levels compared to values found
in the LODneg group. LPO is directly involved in tissue injuries and especially in the
tissue damage caused by exposure to toxic substances. In this regard, previous studies
in our lab proved that chronic high-level exposure to PAH mixtures triggered reactive
oxygen species (ROS) production leading to LPO in the whole blood of juvenile logger-
heads [31]. Recent studies have shown that the lipid peroxidation modification of proteins
can induce the innate immune system working as DAMPs [36,37]. West et al. [38] observed
that lipid peroxidation-derived adducts were recognized by TLR2/TLR1 and TLR2/TLR6
heterodimers, which are thus responsible for bridging inflammation, oxidative stress, and
innate immunity. Our results suggested that UV filter accumulation caused ROS-induced
lipid peroxidation in PBMCs of juvenile loggerheads. This phenomenon is most likely to
be involved in potential release of DAMPS, which in turn activate TLR signaling path-
ways, thereby driving upregulation of downstream effective cytokines. The mRNA levels
of TNF-α, IL-1β, and IL-6 were all upregulated in UV-filter exposed turtles, indicating
activation of the NF-κB signaling module. In this last regard, our finding in the present
work was consistent with the previous studies [39,40] and suggested that the PI3K/Akt
pathway was involved in downstream NF-κB activation. Chen et al. [41] have demon-
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strated that maternal Disononyl Phthalate (DINP) exposure contributes to inducing airway
inflammation in rat pups by upregulating the PI3K/Akt pathway. The same pathway
was found to be involved in triggering the increase in TNF-α levels following treatment
with Mono 2-ethylhexylphthalate MEHP [42]. Overall, these findings support the role of
PI3K/Akt signaling in mediating environmental chemical (particularly phthalate)-induced
toxicity. In this study, we also reported that the PI3K/Akt/ NF-κB pathway was potentially
associated with the activation of RAC1. Our data clearly point to the UV filter-associated
up-regulation of RAC1 as a crucial control point in the TLR signaling pathway. Several
pieces of evidence suggest a role of RAC1 in regulating IL1-mediated NF-κB activation and
expression of proinflammatory genes [43,44]. Jefferies and O’Neill [45] have shown the
specific involvement of RAC1 in increasing the NF-kB transactivating potential of its p65
subunit without affecting the inhibitory subunit IkBα. Interestingly, we found that IκBα
gene expression was not modified by exposure to UV-filters. IκBα acts as an inhibitor of
NF-κB activity, blocking its nuclear localization and transcriptional activation [46]. It has
been demonstrated that NF-κB activation requires initiating phosphorylation of IκBα [47].
Furthermore, this mechanism seems to be largely influenced by the parallel inhibition of
phosphatase activity that can, among other things, also be attributed to ROS generation [48].
The difference in the transcription rate for IκBα compared to NF-κB allowed us to speculate
about the potential role of UV filters in deregulating the transcriptional activation and
degradation pathways of these molecules, thus repressing the NF-κB negative feedback.
The induction of NF-κB plays a pivotal role in the inflammatory response, leading to
transcription of gene coding for proinflammatory mediators. Consistently, the present
study demonstrated that loggerheads exposed to UV filters showed increased expression
of TNF-α, IL-1β, and IL-6. These results are in line with previous reports indicating that
diverse environmental pollutants, particularly phthalates, possess the ability to exacerbate
the inflammatory responses of macrophages by enhancing the levels of TNF-α, IL-1β, IL-6,
and IL-8 [42,49,50]. Furthermore, the involvement of IκB/NF-κB signaling in inducing the
transcript levels of inflammatory cytokines was demonstrated in PC12 cells exposed to
tetrachlorobenzoquinone [51]. Our data are consistent with those by Ao et al. [52], who
highlighted the ability of four organic UV filters to activate the NF-κB pathway, raising
TNF-α and IL-6 levels. At present, studies of organic UV filter toxicity in aquatic organisms
have focused mainly on the endocrine-disrupting potential [53]. Less is known about their
immunotoxic characteristics. Our results are the first to demonstrate the involvement of
the TLR/NF-κB pathway in mediating activation of the loggerhead sea turtle’s immune
system in response to disturbances induced by UV filters. Disorders of the immune system
may cause chronic susceptibility to infection. Indeed, several studies have demonstrated
a correlation between exposure to endocrine-disrupting chemicals (EDCs) and the devel-
opment of infectious diseases. For example, phthalates were found to induce cytokine
production and immunoglobulin secretion [42], and to be related to the development of
asthmatic inflammation [54].

5. Conclusions

Taken together, our data show that UV filter accumulation can activate the TLR/NF-
κB pathway in loggerhead PBMCs, leading to the over-expression of TNF-α, IL-1β, and
IL-6 genes. Thus, organic UV filters might exert, as other immunotoxic pollutants, a pro-
inflammatory function which is likely to be triggered by ROS generation and oxidative stress.
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