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A recent study on the immunotherapy treatment of renal cell carcinoma reveals better

outcomes in obese patients compared to lean subjects. This enigmatic contradiction

has been explained, in the context of the debated obesity paradox, as the effect

produced by the cell-cell interaction network on the tumor microenvironment during the

immune response. To better understand this hypothesis, we provide a computational

framework for the in silico study of the tumor behavior. The starting model of the tumor,

based on the cell-cell interaction network, has been described as a multiagent system,

whose simulation generates the hypothesized effects on the tumor microenvironment.

The medical needs in the immunotherapy design meet the capabilities of a multiagent

simulator to reproduce the dynamics of the cell-cell interaction network, meaning a

reaction to environmental changes introduced through the experimental data.

Keywords: renal cell carcinoma, immunotherapy, multiagent system, interaction-as-perception paradigm,

bioagent, computational biology, dynamical networks, cell-cell interaction network

1. INTRODUCTION

The obesity paradox refers to the fact that although obesity is a risk factor for developing clear cell
renal cell carcinoma (ccRCC or simply RCC), it is found to be associated with a more favorable
prognosis. In other words, obese patients who undergo treatment with RCC immunotherapy
survive longer than those with normal weight and the same advanced cancer.

This long-known paradox has recently gained attention thanks to the work of Sanchez et al.
(2019) describing the effects of the immunotherapy treatments on the RCCmicroenvironment. The
authors studied the immune response both in lean and obese patients with RCC, by investigating
the angiogenic and immunological transcriptomic profiles of the tumor and the perinephric adipose
tissue, that is the adipose tissue immersed in the renal microenvironment.

The most relevant finding was that the inflammation of peritumoral adipose tissue increased in
obese patients with body mass index (BMI)>30 kg/m21 especially close to the tumor. The interplay
between the tumor and peritumoral adipose tissue might have clinical relevance and give account
for the paradox (see Figure 1) as discussed and depicted in Santoni et al. (2019).

1According to theWHO, a patient is obese if the BMI is at least 30 kg/m2 ; a BMI is the bodymass index defined as the person’s

weight in kilogram divided by the square of person’s height in meter. The BMI of a normal patient is between 18.5 and 24.9

kg/m2.
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FIGURE 1 | Microenvironment surrounding the tumor in non-obese vs. obese patients with renal cell carcinoma (picture courtesy of Santoni et al., 2019).

To support this conjecture, it is natural to think of modeling
the RCC system with a formal approach that allows to describe
the knowledge of the oncologists and acquiring new knowledge
coming from experimental data. Given the characteristics of
the RCC system, the model must be able to represent the
microenvironment as the main component in which immune
and tumor cells are spatially distributed and move influenced by
blood vessels, and whose effect on the tumor is function of BMI.

The proposed approach aims to overcome the limitation
of several related studies proposed in the literature, most
of them exploiting mathematical models based on ordinary
differential equations and partial differential equations enriched
with stochastic elements, as well as other physical models based
on complex networks and phase transitions analysis (Davies et al.,
2011); however, none of them allow the explicit description of the
environment as a main component of the model.

In this work, we introduce a theoretical framework suitable
to support the learning process through which the RCC model
is dynamically defined during the immunotherapy treatment
delivered to different patients (Figure 2). The method is inspired
by our previous works (Bartocci et al., 2007; Merelli et al., 2015).

The model is based on the agent paradigm, consisting
of a collection of interacting autonomous components and
the environment where they live (Merelli et al., 2007). It
describes a self-organized system able to react to changes in the
environmental parameters. The resulting behavior, the immune
response, can be explained in terms of emerging properties. The
RCC model updates when the immune response changes the
interaction matrix; this can be viewed as a learning process.

The immune response is a property of the peritumoral tissue
whose structure results from the group of cell agents, immune
and tumor cells, interacting in the tumor microenvironment. We
aim to define a model of a system whose behavior is function
of the fat concentration in the environment; for this reason, we

do not take into account the behavior of the adipocytes, but only
their quantity.

Several studies already exploited the agent-based approach
to model the tumor microenvironment, in some cases as part
of a multiscale setting for providing in silico support to drug
and therapy design (Yankeelov et al., 2016; Norton et al., 2019).
An agent represents an active component of the system, such
as an immune or a tumor cell, whereas the environment is the
representation of the peritumoral and intratumoral environment.
In our work, the emerging properties are observable from the
RCC model simulation, whose dynamics is expressed following
the interaction-as-perception paradigm (Piangerelli et al., 2020)
declined in this context: whenever a cell agent perceives, another
compatible cell agent moves toward to interact with it, activating
or inhibiting the production of compatible cell agents. All the
agents’ interactions that characterize the immune response are
a dynamic representation of the cell-cell interaction network
bounded by the tumor environment and regulated by the obesity
index BMI modeled as a parametrized 3D space.

2. BIOLOGICAL AND THEORETICAL
BACKGROUND

A tumor is an abnormal agglomerate of cells having lost their
ability to regulate the expression of their genetic information
correctly, and thus generally increase their number in an
uncontrolled manner, as opposed to normal cells. As the tumor
cells duplicate and its mass get larger, it will eventually require
more oxygen and nutrients than it can receive; to meet this
need, the tumor creates new blood vessels in a process called
angiogenesis. After that, the tumor can grow faster and it can
spread through the blood to other tissues and organs in the body.
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FIGURE 2 | The agent-based learning model.

A tumor grows in a surrounding environment (tumor
microenvironment) made by other cells, among which we can
identify different types of immune cells. Moreover, in the kidneys
and other organs, we can observe the presence of adipocytes (or
fat cells). The adipocytes near the tumor microenvironment form
the peritumoral fat.

The formation of tumor cells triggers the immune response,
which aims to eliminate the mutated cells before they reach,
by multiplying themselves exponentially, a number too large to
be contained.

The models described in this article are based on the
experimental evidence provided by Sanchez et al. (2019)
and Santoni et al. (2019) on a kidney cancer, the RCC; in
accordance with these studies, we selected a subset of the
immune cell types identified in the RCC microenvironment and
peritumoral fat, and specified an agent-based representation of
their properties and interactions.

In our study, we consider as immune cell types the T cells
(CD4+ and CD8+ naive, CD8+ cytotoxic, Regulatory, CD4+
helper 1 and 2), the dendritic cells (DCs) [conventional DCs
(cDCs) and plasmacytoid DCs (pDCs)], the macrophages (M1
andM2 phenotypes), themast cells, the natural killers (NKs), and
the neutrophils.

An overview of the key functions they carry out in living
systems is provided in Table 1; for a more comprehensive
description of each of them, correlated with the cell
models generated basing on their properties, refer to the
Supplementary Information.

We model the tumor microenvironment as a collection of
agents (or BioAgents), which, by acting and interacting with one

another, give origin to a complex network. However, the concept
of agent cannot be separated from that of the environment, which
is part of the agent-based approach. The environment is a first
class component, which means that it has its own identity.

The model defined this way is the basis of an agent-
driven simulation, in which the biological information is
approximated through set of variables and parameters.
For this reason, experimental data, such as the initial cell
concentrations or the time at which a treatment starts, are
needed to setup the simulation environment. In this context, the
peritumoral fat is an environmental parameter, which affects the
agent interactions.

The simulation is implemented over a software platform; in
our case, we rely on Repast Simphony, a Java-based modeling
system for interacting agents. This simulation tool establishes
some constraints we had to meet in the definition of the software
counterpart of each biological component.

For the purpose of this paper, the agent-based
modeling did not require a mathematical description
of its components, because, for engineering the model
on the Repast framework, it is sufficient to describe
the agent behavior by using a meta-model. For this
reason, the system has been designed following the
PASSI (Process for Agent Societies Specification and
Implementation) methodology (Cossentino, 2005) (see
Figure 3). In the Supplementary Information, we provide
the diagrams that describe the agents’ behavior and some of
their interactions.

Most notably, we needed to represent the tumor
microenvironment as a 3D cube, whose volume should be set
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TABLE 1 | Overview of the cell types taken into account in our models and the key functions they carry out in the reaction against the tumor (in living systems).

Cell type Subpopulation Description

T cells CD4+ naive Immature cells that can respond to novel pathogens, which the immune system has not yet encountered; however,

they need to be activated by an antigen-presenting cell (APC). If activated, they differentiate into CD4+ helper 1 T cell

or CD4+ helper 2 T cell.

CD4+ helper 1 T cell lineage that carries out an anti-tumor activity, involving the activation of dendritic cells (Mailliard et al., 2002) and

of the M1 macrophages, and the direct kill of the tumor cells through the TNF-related apoptosis-inducing ligand

(TRAIL) pathway (Lin and Karin, 2007).

CD4+ helper 2 Subtype of helper T cells that attract tumor-specific CD8+ cytotoxic T cells and activate the M1

macrophages (Carretero et al., 2015). Additionally, the presence of helper 2 T cells is associated with tumor

proliferation (Kim and Cantor, 2014).

CD8+ naive They represent the naive form of CD8+ cytotoxic T cells. Like their CD4+ counterpart, they can react to novel

pathogens, but need to be activated by an APC.

CD8+ cytotoxic White blood cells able to destroy cancer cells and other types of damaged cells.

Regulatory (Treg) They suppress or downregulate T cells’ proliferation. In RCC, Treg cells are involved in tumor development and

progression by inhibiting anti-tumor immunity.

Dendritic cells Conventional (cDCs) Antigen-presenting cells whose main function is to present antigens to both CD4+ helper T cells and CD8+ cytotoxic T

cells.

Plasmacytoid (pDCs) Major producers of type I interferon (IFN type I), an important immune system activity regulator (Koucký et al., 2019).

Macrophages M1 Phenotype White blood cells that ingest (phagocyte) substances and cells external or harmful to the organism, including microbes

and cancer cells. M1 macrophages also enhances CD8+ cytotoxic T cells anti-tumor activity (Vlahopoulos, 2017) and

promotes CD4+ helper 1 T cell differentiation (Lin and Karin, 2007).

M2 Phenotype Macrophage phenotype able to moderate the inflammatory response and stimulate angiogenesis and tumor

growth (Dandekar et al., 2011).

Mast cells – Immune cells that are able to activate the dendritic cells. In the case of the RCC, it has been observed by Chen et al.

(2017) that they foster tumor angiogenesis.

Natural killers – Cytotoxic lymphocytes that are able to kill tumor cells, even in the absence of surface antigens.

Neutrophils – First type of inflammatory cells that move toward the site of an inflammation. According to Santoni et al. (2019), the

prevalence of neutrophils was observed to be unchanged in both lean and obese patients.

FIGURE 3 | An overview of the PASSI methodology. It is composed of five phases, each one producing a specific model. Image adapted from Cossentino (2005).
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before launching the simulation. However, this representation
of the simulation environment should not be confused
with the concept of collection-of-agents described above.
A simulated structure is an approximation of a biological
component that uses the agent-oriented approach to express
its information.

In the rest of this section, we will go further into the details
of the modeling and simulation choices we made to carry out
our studies.

3. MATERIALS AND METHODS

3.1. Agent-Based Model of RCC
We study the obesity paradox as a behavior emerging from the
local interactions characterizing the RCCmicroenvironment. For
this reason, we defined an agent-based model of the dynamics
involved in the immune response to RCC, as a reaction triggered
by the beginning of an immunotherapy treatment.

As deepened in the rest of this section, the cell types listed
above are abstracted as the categories of bioagents of our
system. The model constructed this way has been implemented
as a multiagent simulator (OncoAgent) based on the Repast
Simphony execution environment.

Emerging Properties of the Immune System
In the RCC microenvironment, there are a number of pathways
in action, new proteins being produced, and the proteins
themselves are also involved in signaling to other proteins or
cells, in a cascade of causes and effects. In this regard, it has been
considered more appropriate and suitable to directly model the
effects of these pathways on the environment, by selecting those
considered to be of importance in our study. In our preliminary
studies, all these interactions have been reduced to a list of
13 effects that can, in any combination, influence the behavior
of an agent.

Any agent can be the source of one or more effects, and each
agent collects effects from other agents inside a fixed radius. To
maintain the locality of the effects, the value of this radius must
be kept fairly small, and by default has been set to 30 µm.

Each effect is represented by an integer, which can be positive
or negative, whether it increases or decreases the occurrence
rate of an event; when it has no impact on the event, it
is equal to 0. If an agent does not produce any of the 13
possible effects, equivalently means that it produces an effect with
value 0.

At each step of the simulation based on this model, after the
time step at which the RCC immunotherapy starts, every agent
collects, inside the specified radius, the effects from which its
behavior can be influenced.

Once all the effects are collected, they are summed up
componentwise and the resulting values, a sort of probabilities,
when relevant to the agent, are used to influence its actions. Thus,
these actions are subjected to a probability, as better described in
section 2 of the Supplementary Information.

Additionally, in the model representing obese individuals,
the environment can expose effects. These effects are as follows:

M1 Macrophage Mutation Effect, M2 Macrophage
Mutation Effect, Natural Killer Cell Kill
Rate Effect, and Regulatory T Differentiation
Effect.

All the 13 effects are summarized in Table 2. New effects can
be added easily into the system, so this list is by no means final
and may be expanded in future works.

The Categories of BioAgents
In our agent-based model, each cell, whether it belongs to the
tumor or the immune system, is represented by an agent.

As introduced previously in this section, we identified six
immune cell types as the main BioAgent categories of our
model. Some of these cell types are represented in the form of
specific subpopulation, which are the biological counterpart of
the category instances.

They can perform defined actions and present specific effects
to other agents. In Table 3, we introduce the functions modeled
for each cell type (a complete explanation is provided in the
Supplementary Information).

The RCC tumor cell agents represent the category against
which the action of the immune cell agents is directed. They
have a certain chance to duplicate, defined by a parameter.
This possibility is influenced by the Tumor Growth Effect
and by whether or not the tumor mass, as a whole, has
undergone angiogenesis. The chance of duplicating is doubled in
case of non-negative Tumor Growth Effect, while mildly
improved by a negative effect. Additionally, the agent might also
experience apoptosis: this happens when it receives a Tumor
Apoptosis Effect greater than zero.

Angiogenesis can happen if there is a RCC tumor cell
agent close enough to the environment’s blood vessel; it is
determined by the Tumor Angiogenesis Effect. In case
of success, a new blood vessel, connecting the selected agent
to the environment’s blood vessel, is added by means of
an uninterrupted sequence of blood agents. Angiogenesis can
happen multiple times, and different new blood vessels can be
added, although the effect on tumor growth is not affected by
that. However, the presence of multiple blood vessels makes it
less likely that the immune system can disrupt the flow of oxygen
and nutrients.

At each step of the simulation based on our models, it is
determined which RCC tumor Cell agents have access to the
blood supply. This is done by taking a list of all the agents that
triggered angiogenesis (which are considered to have access to
the blood) and then verifying, for any other RCC tumor cell, if
there exists a path that connects them to any member of the list.
This means that the access to the bloodstream is granted for any
contiguous set of RCC tumor cell agents that contains one of
the agents triggering angiogenesis. The algorithm used for this
process is a Breadth-First Search.

The Tumor Microenvironment
The tumor microenvironment has been modeled by taking into
account two key features: the presence of blood vessels and the
BMI of the patient.
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TABLE 2 | The effects modeled in the system.

Effect Description

Angiogenesis Effect Affects the likelihood for the tumor as a whole to start angiogenesis.

Cytotoxic T Cell Activation Effect Affects the likelihood to successfully activate a CD8+ naive T cell into a CD8+ cytotoxic T cell.

Cytotoxic T Cell Apoptosis Effect When positive, enables a chance of a CD8+ cytotoxic T cell to undergo apoptosis (cell death); the greater the

value, the greater the likelihood.

Cytotoxic T Cell Kill Rate Effect Affects the likelihood for a CD8+ cytotoxic T cell to eliminate a tumor cell.

Cytotoxic T Cell Proliferation Effect Affects the rate of duplication of CD8+ cytotoxic T cells.

Dendritic Cell Phagocytosis Effect Affects the likelihood for a dendritic cell or plasmacytoid dendritic cell to phagocyte a tumor cell.

M1 Macrophage Mutation Effect Affects the rate of the M1 macrophages switching into the M2 phenotype.

M2 Macrophage Mutation Effect Affects the rate of the M2 macrophages switching into the M1 phenotype.

Natural Killer Cell Kill Rate Effect Affects the likelihood for a natural killer cell to eliminate a tumor cell.

Regulatory T Differentiation Effect Affects the rate of CD4+ naive T cells differentiation into regulatory T cells.

Helper 1 T Proliferation Effect Affects the rate of duplication of CD4+ helper 1 T cells.

Tumor Apoptosis Effect When positive, enables a chance of a tumor cell to undergo apoptosis (cell death); the greater the value, the

greater the likelihood.

Tumor Growth Effect Affects the rate of duplication of RCC tumor cells.

TABLE 3 | Overview of the BioAgent categories, and the related behaviors, that we derived from the immune cell types taken into account in our models.

BioAgent Behavior Description

T cells CD4+ naive They have an associated bit string of length 1 byte that represents their antigen receptors. It is activated with the same

mechanism at the core of the Celada–Seiden model for antigen recognition (Celada and Seiden, 1992). In case of

activation, the agent differentiate into either CD4+ helper 1 T cell or CD4+ helper 2 T cell, with equal probability.

CD4+ helper 1 They perceive and move toward the tumor mass and have a chance to activate new dendritic cell and M1 macrophage

agents that appear at the edge of the environment. They additionally have a chance to proliferate.

CD4+ helper 2 They activate new M1 macrophage agents and attract CD8+ cytotoxic T cell agents. Can also proliferate.

CD8+ naive Like their CD4+ counterpart, they have a bit string, 1 byte long. In case of successful activation, the agent turn into a

CD8+ cytotoxic T cell, otherwise it is removed and then recreated anew in a different location with a new bit string.

CD8+ cytotoxic They perceive and move toward RCC tumor cell agents and attempt to destroy them. They can proliferate.

Regulatory (Treg) They perceive and move toward the tumor mass where they exposes a different suppressor effects.

Dendritic cells Conventional (cDC) They perceive and move toward RCC tumor cell agents and attempt to phagocyte them. They also attempt to activate

the closest naive T cell.

Plasmacytoid (pDC) This agents have a chance to activate new natural killer cell agents, which are added into the environment at one of its

edges. They may generate a combination of the different effects, the most important of which is the angiogenesis

effect.

Macrophages M1 Phenotype They perceive and move toward RCC tumor cell agents and phagocyte them. Also try to activate CD4+ naive T cell

agents. They might undergo a phenotype switch and become a M2 macrophage, influenced by the M1 macrophage

mutation effect.

M2 Phenotype Like their M1 counterpart, they might switch to the other phenotype influenced by the M2 macrophage mutation

effect. They generate positive angiogenesis effect and tumor growth effect.

Mast cells Mast cell They perceive and move toward the tumor mass and have the chance of activating new dendritic cell agents that

appear at the edge of the environment. They may produce a combination of the various effects, including the

angiogenesis effect.

Natural killers Natural killer They perceive and move toward RCC tumor cell agents and attempt to destroy them, influenced by the Natural

Killer Cell Kill Rate Effect.

Neutrophils Neutrophil Dummy agents, not performing any action nor producing any effect.

A brief description of their behavior is also provided (for a comprehensive explanation, refer to the Supplementary Information).

The blood vessels have many important roles in the RCC
micro-environment, as they are first and foremost the channel
from which white blood cells can reach the neoplastic cells they
seek to eliminate. This particular feature has not been modeled
directly, but it is implicitly represented by the fact that new
immune system cells appear from outside the boundaries of

the modeled environment, behaving just as an open system.
The other important role that instead was directly modeled is
their function as suppliers of the much needed oxygen, which
enhances the tumor cells growth. A blood vessel is built up
from blood agents, which have no other function besides being
a visual representation of where the blood vessel is located. This
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FIGURE 4 | The interface of repast simulator with the list of configuration parameters and the 3D display of the runtime dynamics during the immunotherapy treatment.

particular blood vessel can be the target of tumor angiogenesis,
having important effects on tumor growth and spread (Nishida
et al., 2006): the tumor can create new blood vessels that attach
to this target and increase its rate of growth and spread to
other tissues through blood, although this last part was not
implemented because outside of the scope of the simulation.

The BMI is a very simple measure of body fat based on height
and weight. The effects of the BMI in the case of RCC become
evident when its value is ≥ 30 kg/m2 (Santoni et al., 2019), and
in that case it was decided to model the environmental effect
of obesity by reproducing the leptin hormone effects on the
immune system. Leptin signaling has various functions (Naylor
and Petri, 2016), and of these two were modeled: the suppression
of regulatory T cells (Treg) differentiation and the impairment of
NK cells cytotoxicity. Moreover, it was observed by Castoldi et al.
(2016) that adipose tissue in obese individuals present higher
numbers of M1 macrophages, while in lean humans and mice
it is the M2 macrophages that predominate. This last effect was
modeled by increasing the rate of M2 macrophages switching to
the M1 phenotype while also decreasing the rate of switching in
the opposite direction in simulations regarding obese individuals.
Finally, the BMI also determines the number and proportion of
each type of immune system cells at the start of the simulation,
following the guidelines in Santoni et al. (2019). In particular,
the total number of agents in case of obese and non-obese
simulations is the same (initially), as well as the number of T
cells, while the proportion of the other agents is changed as it
was observed in the study. The change of proportion concerns
NK cell, mast cell, and pDC agents. Lean individuals have a

higher proportion of NK cells and lower proportion of mast cells
and pDCs.

The Peritumoral Adipose Tissue
Sanchez and colleagues reported that obese individuals have
a higher number of DCs, M1 macrophages, and T cells in
the adipose tissue around the tumor (Sanchez et al., 2019), as
shown in Figure 5; we modeled these findings by adding an
extra quantity of the related immune cell agents for simulating
the tumor microenvironment of obese individuals. This value is
defined for each cellular species at the beginning of the simulation
and can be set according to the experimental data.

For our preliminary studies, we placed an arbitrary, although
reasonable, additional amount of the aforementioned cell types,
picked at random, in the simulated obese microenvironment.
This choice is justified by the fact that not all agents in the
system play a measurable role in the fight against cancer, as they
are randomly placed and might be too far away, but some of
these additional agents, placed close enough to the fat near the
tumor, might have a relevant impact. In this way, we model the
possibility that some of the immune cells located in the fat might
perceive and move onto the tumor mass and contribute to a
positive outcome.

3.2. The Simulation Environment
The simulation environment is a cube, whose size is set by the
user. Its edges are not connected and it is not possible for the
agents to exit its volume. It is organized in a grid, whose blocks
are multi-occupancy, meaning that multiple agents can coexist
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TABLE 4 | Initial cell density values in lean patients used for the simulations of the

first phase carried out in our studies.

Cell type Cellular density

(×mL)

Cellular density (×10−4mL)

Cytotoxic T Cells 80,000 8

Neutrophils 40,000 4

Mast Cells 40,000 4

Regulatory T Cells 40,000 4

Plasmacytoid Dendritic Cells 40,000 4

Dendritic Cells 80,000 4

M1 Macrophages 40,000 4

M2 Macrophages 40,000 4

Natural Killer Cells 160,000 16

CD4+ Navie T Cells 80,000 8

CD8+ Navie T Cells 80,000 8

Helper Type 1 Cells 40,000 4

Helper Type 2 Cells 40,000 4

The second column shows the values scaled proportionally to the size of the simulation

volume (10−4 mL in this phase). In obese individuals, 50 extra agents of the T family,

dendritic cell or M1 macrophage type are added picked at random, for a 50% increase of

the total number of agents; alongside the number of NK cells is reduced of 16,000 units,

with a corresponding increase in pDCs and mast cells.

in a single block. In the environment, the various agents that
represent the cells of the innate and adaptive immune systems
are placed randomly at the start of the simulation. Differently, a
single RCC cell agent is placed at a distance from the blood vessel
that is decided by the user before the beginning of the simulation.
All agents, except for the RCC cell agents, do not act at all until a
later step, which represents the starting of the immunotherapy
treatment that enables an immune response. This step is also
established by the user and inserted as a parameter.

All the parameters required to run the simulation are set
through the Parameters tab of the repast runtime interface,
as shown in Figure 4. All the parameters accessible from this
interface are listed in Tables 5, 6.

Termination of the Simulation
The conclusion of a simulation entails three possible outcomes,
each determined by a specific termination condition. Any of these
conditions, if verified, triggers the end of the simulation.

1. If the simulation elapses past a certain time step (set by
the user), we have an inconclusive outcome: neither the
tumor nor the immune system prevailed on the other. It
can be interpreted as a condition where the tumor growth
is somewhat contained by slowing down its exponential
expansion to prevent an excessive proliferation.

2. If the number of tumor cells proliferate past a certain, large,
amount (also established by the user), the simulation ends
with a tumor proliferation outcome. In this case, the tumor is
considered unstoppable and prognosis for the patient is poor.

3. If the simulation reaches a point in which all the RCC cell
agents have been eliminated, we obtain a tumor remission
outcome. In this case, the tumor has been healed; however, this

result refers to a specific tumor mass and does not mean that
the patient has completely recovered from cancer.

Simulation Interface and Output
The progression of a simulation can be visualized using a 3D
projection as shown in the interface screenshot in Figure 4.
Moreover, the simulator can visualize different layers of the
BioAgents populating the tumor environment, such as the layer
of the microenvironment as a whole, or the layer representing
only the adipose tissue immerse in the renal microenvironment
(see Figure 5). Because the current model considers adipocytes
only from a quantitative perspective, they are represented in the
3D environment just graphically, meaning that they do not have
any active role.We adopted a similar approach to provide a visual
representation of the bloodstream and show the formation of new
blood vessels during angiogenesis.

In the course of a simulation run, it is also possible to inspect
two time series charts: the cell counts (Figure 6A) and the kill
counts (Figure 6B). The cell counts chart shows the number of
agents by type for each step of the simulation. The kill counts
chart represents the number of RCC cell agents eliminated by
immune cell agents (displayed basing on agent types) and by the
tumor apoptosis effects.

For each simulation, three comma separated values (CSV)
files are produced. In all of them, every line reports determined
values, corresponding to the state of the simulated environment
at a specific tick of the simulation clock. The first two are the
CSV representations of the charts described in the previous
paragraph. The last one is the outcome file. It shows the results
of an individual simulation that can be one of the three outcomes
described in the previous section.

Each CSV file also reports the random seed of the simulation,
so it can be repeated, and the run number, which is useful in the
case of batch runs, as explained in the next section.

3.3. Study Phases
We carried out our study in two phases:

1. a verification phase, in which we tested the effectiveness of
our simulation approach basing on rough data derived from
the information provided by Sanchez et al. (2019) and Santoni
et al. (2019);

2. a validation phase, intended to perform a set of simulations on
data obtained from the literature or identified directly on RCC
sections of obese patients.

The approach adopted in the first phase is detailed in the Results
section. The tests performed in the second phase, although served
mainly as validation for the previous one, also represents the
starting point for further studies based on experimental data.

Obtaining the Cellular Densities for the Second Phase
The cellular densities chosen for conducting the second phase of
our study are summarized in Table 5; the majority of the values
has been derived from the literature.

Specifically, according to the data published by Gedye et al.
(2016), the total number of RCC tumor cells per mm3 has a
minimum value of 2.5 × 104. The median number of CD8+
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TABLE 5 | Initial cellular densities, in lean and obese patients, used during the validation phase of our studies.

Cell type Lean (×mL) Obese (mL) Lean (×10−5mL) Obese (×10−5mL)

Cytotoxic T Cells 6,000,000 7,500,000 60 75

Neutrophils 21,716,150 21,716,150 217 217

Mast Cells 266,667 600,000 2 6

Regulatory T Cells 142,800 178,500 1 1

Plasmacytoid Dendritic Cells 1,173,850 1,190,003 11 11

Dendritic Cells 1,173,850 1,467,312 11 14

M1 Macrophages 4,360,000 5,450,000 43 54

M2 Macrophages 6,540,000 6,540,000 65 65

Natural Killer Cells 3,271,430 1,090,480 32 10

CD4+ Navie T Cells 4,905,000 4,905,000 49 49

CD8+ Navie T Cells 6,000,000 6,000,000 60 60

Helper Type 1 Cells 2,452,500 2,452,500 24 24

Helper Type 2 Cells 2,452,500 3,065,625 24 30

The values in the first and second columns are needed to determine the actual number of a specific immune cell type at the beginning of the simulation (shown in the third and fourth

columns), according to the chosen simulation volume (10−5 mL in this phase). See the Methods section for further details on the approaches used to obtain the provided values.

TABLE 6 | Parameters for the simulations performed in the validation phase of our studies.

Parameter Value range Description

Body Mass Index from 18.5 to 40.0 Value used to determine a lean or obese individual,

with cutoff point at 30

First RCC Cell Distance From

Blood Vessel

50 µm (Baish et al., 2011) Distance (in µm) between the blood vessel and the

first tumor cell.

RCC growth rate 0.80 cm× year, from min 0.16 to

max 3.80 (Li et al., 2012)

Number of new cells generated in the time unit.

Perinephric Fat Immune Cells + 25% Percentage increase of the number of immune cells

in obese patients, excluding pDCs, mast cells, and

NK cells (for which the number is calculated directly).

Volume (mL) 10−5 Value used to compute the dimension of the

simulation grid.

They are used along with the experimental values for cellular densities reported in Table 2.

T cells varies among studies; we used as reference the value
obtained by Li et al. (2020) of 84 cells per mm2. To obtain
the density of the other immune cells, we used the immune
cell type absolute fraction data for ccRCC from the Cancer
Immunome Atlas (TCIA) database (data available at https://tcia.
at/cellTypeFractions).

We inferred the number of immune cells permm3 by applying
the formula proposed by Erdag et al. (2012), that is:

cells/mm3
= number cells/mm2

× (1/cell diameter (in mm)).

Then, we calculated the corresponding values in mL (or cm3).
In this way, we obtained all the cell densities for lean subjects
reported in Table 5, except for the mast cells value.

We derived the density of this cell type in lean and obese
patients directly by analyzing a RCC section. We also adopted
this approach to calculate the cell density ratio between lean and
obese patients for the pDCs and NK cells, since they are reported
to be significantly different in the two cases, according to Santoni
et al. (2019).

In details, the RCC section of an obese patient were stained
with CD56 antibody for NK cells, CD1a for DCs, and CD117
for mast cells. Positive cells were counted in 5 consecutive non-
overlapping high-power fields (HPF) 400x magnification (0.237
mm2/field), using a Leitz microscope. The results were expressed
as the mean of positive cells/mm2 out of 5 regions of interest.

The ratio calculated from this observations gave a density of
21% higher in pDCs and 33% lower in NK cells for obese subjects,
compared to the lean ones. For the remaining cells, we inferred
from the data provided in Sanchez et al. (2019), a mean increase
of the total number of immune cells of 25%.

4. RESULTS

The repast runtime provides an interface to perform batch runs
and parameter sweeps. Batch runs make possible to run the
model multiple times automatically, while parameter sweeps
let the system be run using all the possible combinations of
parameters. The simulation outputs are combined in a single
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FIGURE 5 | Screenshots of the simulator interface, showing the progression of the simulation in the virtual 3D environment. The two images above represent a

simulation of a lean patient with BMI = 22. (A) All the cells present in the tumor environment during the immunotherapy treatment; (B) only the graphical

representation of the adipocytes immerse in the renal microenvironment, with no evidence of immune cells. The two images below depict a simulation of an obese

patient with BMI = 35. In (C), the layer of BioAgents shows all the cells present in the tumor environment during the immunotherapy treatment; in (D), the layer

represents only the adipocytes cells and the immune cells due to the inflammation that contribute to the immune response.

CSV file that can be used in a worksheet software or in any
programming language.

The first phase of our studies (verification phase) has been
based on 101 simulation runs using the test cellular densities
provided in Table 4. The default random seed was set to be
different for each run and between obese and non-obese case
simulations. At first, this choice might seem unfair, but we
should consider that the patients participating in the real life
studies have different genetics, age, lifestyle, etc., and the usage
of different seeds to initialize the RNG abstracts the innate
differences that exist between those people. If the obesity paradox
can be detected by the simulation, then the difference would
be seen on average, whatever the random seed is, just like this
paradox was observed in vivo from different patients (Sanchez
et al., 2019).

In our studies, the duplication rate for tumor cells was
a reasonable value considering that it takes 15 steps for the
immune system to react since the appearance of the first
tumor cell. The difference in proportions of natural killer cell
agents compared to mast cell agents and pDC agent was set
to 20, so an obese individual had 0 NK cells and 15 of each
of the other two, while a lean individual had 20 NK cells and
5 of each of the other two. The Obese M2 Macrophage
Mutation Effect, Obese NK Cells Kill Rate
Effect, and Obese Treg Differentiation Effect

parameters correspond to the effects that are globally enabled
in the environment of simulations regarding obese individuals,
and have been arbitrarily set to 5 to have a rather strong effect
(relative to the probabilities they are going to affect). The Obese
M2 Macrophage Mutation Effect parameter also sets
the same value but with negative sign for the M1 Macrophage
Mutation Effect, which is too globally enabled in the
environment. Lastly, the Perinephric Fat Immune
Cells parameter is set to 50, so 50 extra agents of the T family,
DC or M1 macrophage type are added picked at random, for a
50% increase of the total number of agents in obese individuals.

By observing the outcomes of the batch simulations (see
Figure 7A), we notice that obese patients had more RCC
remission (positive) outcomes and less inconclusive or wholly
negative outcomes. As described in section 3.2, a tumor remission
outcome means that the RCC cell agents have been completely
eliminated, and consequently that the immune system was
better equipped to fight it and the patient would have better
prognosis; conversely, an inconclusive outcome is obtained when
the immune system has somewhat been able to slow down
the tumor exponential expansion and prevent its excessive
proliferation (i.e., the negative outcome).

It is possible to interpret these results by conjecturing that the
RCC microenvironment of obese patients has a strong tendency
to converge to one of the more definitive outcomes, while normal
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FIGURE 6 | Cell counts and Kill counts for a sample run. (A) The number of bioagents by cell type at each step (tick) of a sample simulation for a lean individual. At

tick 10, the first tumor cell appears and starts duplicating, while the immune system response begins at tick 15: most notably NK cells and T killer cells soar in reaction

to the therapy and tumor growth is hampered. In (B), the number of tumor cells eliminated by each type of bioagent, calculated cumulatively at each step (tick) of a

sample simulation for a lean individual. The tumor apoptosis data shown is the number of tumor cells that successfully underwent apoptosis as a result of the effects

of T helper 1 cells. It can be noted that most of the elimination work is done by NK cells and T killer cells.

patients have a faint tendency for more nuanced outcomes.
Despite this, on average, it still means that obese patients have
an edge in expected lifetime.

As shown in Figure 7B, the number of RCC cell agents
eliminated by agent type or by apoptosis cell death, which can, for
example, be triggered by CD4+ Helper 1 T-cell agents
effects, averaged across all runs. As expected, non-obese
patients rely more on NK cell agents and only secondarily on

CD8+ cytotoxic T cells. Obese patients, instead, have a very
strong tendency to depend on the action of CD8+ cytotoxic T-cell
agents. The very high number of average kills by these agents is
due to the fact that while lean patients either eliminate the tumor
before it grows too strong or completely lose control quickly,
obese patients’ immune systems tend to fight longer and destroy
a very high number of cells before either a positive or negative
outcome arises.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 April 2021 | Volume 9 | Article 642760

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Belenchia et al. Agent-Based Learning Model for RCC

FIGURE 7 | Column charts representing the output of batch simulation from two different perspective. In (A), the outcomes of the simulation are shown, tallied by

type. Obese patients had more RCC remission (positive) outcomes and less inconclusive or wholly negative outcomes. See section 3.2 for more details on the

outcomes of the simulation. The chart (B) represents the RCC cells eliminated by agent type, averaged across runs. Lean patients rely more on natural killer cell

agents and secondarily on CD8+ cytotoxic T cells; conversely, the latter have a higher impact on the immune reaction in obese patients.

By comparing the number of agents present at the end of
each simulation (Figure 8), the huge number of CD4+ helper
1 T cell agents is evident in obese individuals compared to
non-obese patients; we suppose that this result is due to the

mutual feedback loop with M1 macrophages. In general, higher
numbers of the cells found to be more abundant in the renal fat
tissue are reflected in the big spikes in Figure 8A. Prospectively
(Figure 8B), lean individuals are better represented by NK cells,
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FIGURE 8 | Number of agents averaged across runs (A) and percentage proportion of agents between lean and obese individuals, averaged across runs (B).
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FIGURE 9 | Number of tumor cells eliminated by each type of BioAgent, in a lean patient, during a simulation performed as part of the validation phase of our work.

Compared to Figure 6, we can observe a similar behavior of the immune cells, in particular regarding the higher killing activity of CD8+ T killer cells and NK cells

compared to the other cell types. In the implementation of the validation phase, the tumor is already present at the beginning of the simulation and the immunotherapy

starts immediately, meaning that we do not need to wait for the tick 15 to see the immune cells attacking the tumor.

but they have alsomoreM2macrophages and CD4+ naive T cells,
which neither differentiate into regulatory T cells nor become
activated. The very high numbers reported in obese individuals
are reflected only in a very limited increase of positive outcomes
seen in Figure 8A, but this is due to the fact that most of these
agents do not get to interact much with the tumor, and also
that the most crucial steps are those at the early stages of the
simulation; once the tumor has grown too much, no amount of
immune system cells can stop the exponential growth, even when
destroying so many RCC cells as seen in Figure 8B.

We validate the results described above in the second phase
of our studies by using the experimental data reported in
Tables 5, 6; we obtained this data from the literature and
directly by analyzing RCC sections of obese patients (see
section 3 for further details). Moreover, in this phase, the
tumor is already present at the beginning of the simulation,
which means that the simulations represent immediately the
immunotherapy treatment.

Although this phase is still at its first stages, the result we
obtained so far are already in favor of the outcome of the
previous phase. Indeed, as shown in Figure 9, for lean patients,
we observed similar killing rates compared to those resulted from
the first phase.

5. DISCUSSION

In this article, we provide an agent-based model of the RCC
microenvironment in order to investigate the obesity paradox.
The environment is described as a 3D space with a cubical shape
in which the agents interact influenced by the BMI parameter and
by the presence of a blood vessel.

The system is stochastic, that is, it relies on a random number
generator for the agents’ action, placement, and, in some cases,
behavior. The pathways and proteins involved in real RCC
microenvironments have been modeled as effects that influence
the stochastic decisions and constrain agents.

Various types of immune cells have been modeled on the basis
of their observed behavior in the literature and are described
in detail. The model can be run within the repast runtime and
provides an interface for the most relevant parameters. During
the simulation the evolution of the system can be visualized using
3D projections and, additionally, through time series that show
the number of agents and RCC cells eliminated by type.

By running the model in batch, it was discovered a
limited improvement in the outcomes of obese individuals. The
model was shown to accurately depict the differences in the
environments of lean and obese individuals, the former having
most of the work carried out by NK cells and the latter shifting
the burden on CD8+ cytotoxic T cells. The correct proportions
of cells was also maintained during the simulations.

We started to validating our simulation approach basing
on experimental data, obtaining promising results. However,
this phase will proceed in the near future since it needs more
experimental data and computational time.

Our model can be further expanded. Indeed, we might
improve its faithfulness to the pathways and protein signaling of
living cells by adding new cell agent types and effects.

Moreover, to better support the design of new immunotherapy
treatments, we can introduce more parameters, representing
the properties of the tumor microenvironment we do not take
into account in the present model. As an example, we did not
model cell lifetimes, but we may implement this property by
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removing a cell agent from the environment after a time interval,
defined through a newly defined parameter. As a further work,
we aim to construct a topological classifier suitable to distinguish
different microenvironments and identify the class of reversible
RCC behaviors (Piangerelli et al., 2018).

Our idea is to define a model of a system whose behavior is
function of the fat concentration in the environment; therefore,
it does not take into account the behavior of the adipocytes,
but only their quantity. In the literature, the study of the
spatiotemporal dynamics of the tumor immune response in
the context of the immunotherapy treatment have been already
modeled through quantitative agent-based approaches (Gong
et al., 2017). However, as suggested by Norton et al. (2019),
drug delivery and response processes are mostly qualitative, a
limitation that might be overcome by integrating the agent-
based approach with physiologically based pharmacokinetic and
pharmacodynamic models (Cosgrove et al., 2015). In future
works, we might apply this idea to our models to simulate
the effects of tumor growth and angiogenesis inhibitors for the
treatment of the RCC, such as pazopanib and sunitinib (Santoni
et al., 2014, 2015).

The aim of this research is to build a computational
framework to support oncologists during the immunotherapy
design and monitoring in patients affected by RCC. The
computational model underlying the framework will be built
with a learning process that exploits open access data
and data collections owned by the institution where the

physician operates. The learning process is based on a tumor
model dynamically defined during the monitoring of the
immunotherapy treatment (delivered to different patients),
which, once simulated in the computational framework, will
reveal the characteristics emerging in the personalized model of
the patient that will assist the oncologist to predict the value of
the immunotherapy drug.
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