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Abstract: Cavity optomechanics represents a flexible platform for the implementation of quantum
technologies, useful in particular for the realization of quantum interfaces, quantum sensors and
quantum information processing. However, the dispersive, radiation–pressure interaction between
the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the
demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It
has already been shown both theoretically and experimentally that if the interaction is mediated by a
Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the
single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general
case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a
Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid
system behaves as an effective cavity optomechanical system in the strong coupling regime.

Keywords: cavity optomechanics; strong coupling regime; hybrid quantum systems

1. Introduction

Cavity optomechanics [1] has become an established platform for the implementation
of quantum information processing in which one can manipulate electromagnetic (e.m.)
fields and mechanical/phononic degrees of freedom for the realization of quantum inter-
faces [2–4], memories [5], and quantum gates [6–9]. The optomechanical interaction is
typically of parametric form; that is, the cavity frequency is modulated by the motion of
the mechanical element, and therefore, it acts dispersively on the e.m. field. However, this
interaction is very weak at the level of single quanta because the frequency shift due to
a single phonon is typically much smaller than the cavity linewidth and the mechanical
frequency. Therefore, one usually operates in the linearized regime where the cavity is
intensely driven, and the effective coupling is enhanced by a large intracavity field ampli-
tude [1]. In this latter regime, however, only a limited set of linear operations is possible,
harnessing the design of efficient quantum gates within optomechanical platforms. For this
reason, there is a growing interest in finding new schemes able to reach the regime where
the optomechanical coupling rate gcm is comparable or larger than the cavity decay rate κ
and the mechanical frequency ωm. Recently, very promising results have been achieved
with new platforms [10,11], but it is typically very difficult to achieve simultaneously strong
coupling gcm ≥ ωm and the resolved sideband condition κ < ωm, which is important for
enabling coherent control at the quantum level. These latter conditions are instead achiev-
able by adopting a “hybrid” approach in which the interaction between the mechanical
and the electromagnetic mode is mediated by a qubit simultaneously interacting with
both modes [12–18]. A first experimental proof-of-principle demonstration of coupling
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enhancement has been achieved using an electromechanical system in a superconducting
circuit, where a Cooper pair box [13] acted as the effective qubit. An alternative hybrid
tripartite platform is represented by trapped atoms/ions in an optical cavity [17,18], in
which an internal Raman transition may act as an effective mediator between the cavity
field and the atomic motional degree of freedom (see also References [19] for pioneering
studies showing the ability to entangle light modes by means of these strongly coupled
hybrid tripartite systems).

The physical mechanism at the basis of the enhancement of the optomechanical
coupling, even by many orders of magnitude, is the following. In the dispersive regime
in which the qubit is strongly detuned from the cavity (and any driving), the qubit is
never excited and remains in its effective ground state. In this case, the AC Stark shift
caused by the qubit on the cavity frequency is modulated by the mechanical motion
through the qubit-mechanics coupling, resulting in a very strong, effective dispersive
optomechanical coupling ge f f

cm , which can reach the strong coupling regime ge f f
cm ∼ ωm (ωm

is the mechanical frequency), provided that the qubit-mechanics coupling rate gam and the
qubit-cavity coupling rate gac are large enough compared to ωm.

In this paper, we provide a general treatment of the hybrid tripartite system formed
by the cavity mode, the mechanical resonator, and a generic qubit, in the dispersive regime
of large detunings, determining the conditions under which the qubit can be adiabatically
eliminated, and one can map the tripartite dynamics into that of an effective cavity optome-
chanical system in the strong coupling regime. The physics of this regime is very different
from the one occurring when the qubit-cavity system is quasi-resonant (see for example,
Reference [20] and references therein), and we will exploit the Schrieffer–Wolff method [21]
in order to arrive at an effective optomechanical model Hamiltonian. We will provide
the validity limits of this treatment and the expression of the effective optomechanical
coupling rate. We will verify the results by investigating the stationary regime, and in
particular, the cavity stationary photon number and the stationary mean phonon number
in the low excitation regime, which are suitable for witnessing photon blockade [22] and
other nonlinear optomechanical phenomena in the strong coupling regime [23,24].

In Section II, we introduce the tripartite hybrid system and its relevant parameters.
In Section III, we describe the Schrieffer–Wolff method through which we derive the
effective optomechanical Hamiltonian, while in Section IV, we describe the numerical
results showing when the dynamics can be satisfactorily described in terms of a strongly
coupled optomechanical system. Section V is for concluding remarks.

2. The Hybrid Tripartite System

The tripartite hybrid system we shall study is shown in Figure 1, where a driven
single-mode e.m. cavity, a mechanical resonator, and a qubit are mutually coupled. The
system Hamiltonian can be quite generally written as (h̄ = 1)

Ĥt = ωc â† â +
1
2

ωaσz + igacσx(â− â†)− gam(σ̂z + 1)(b̂ + b̂†)

− gcm â† â(b̂ + b̂†) + ωm b̂† b̂ + iFL(â†e−iωLt − âeiωLt),
(1)

where â and â† are the annihilation and creation operators of the cavity mode with fre-
quency ωc, and b̂ and b̂† those of the mechanical resonator, with frequency ωm. σ̂x, σ̂y,
and σ̂z are Pauli operators associated with the qubit, whose levels are separated by ωa.
The interaction between the cavity and the qubit with coupling rate gac is in the full Rabi
form, while the qubit–mechanical resonator interaction is of a dispersive nature: the qubit
shifts the equilibrium position of the resonator when it is in its (unperturbed) excited state
with σz = 1. We also include a direct optomechanical radiation–pressure interaction with
coupling rate gcm, which is, however, typically much smaller than all the other coupling
rates. The last term describes the cavity driving tone, with rate FL and frequency ωL; that
is, the excitation of the cavity mode through an external classical source, which could be a
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laser in the optical case or a low noise narrow-band coherent source in the microwave case.
The rate FL is given by FL =

√
PLηinκ/h̄ωL, where PL is the source power, κ is the cavity

decay rate, 0 < ηin ≤ 1 is the mode matching factor between the input driving mode and
the cavity mode.

We remark that Equation (1) provides a simplified description of the physical scenario,
and in particular, of the system mediating between the electromagnetic cavity and the
mechanical resonator, which is here described by a two-level system. In general, one
should start from the full electromagnetic interaction between the various subsystems,
as for example, in References [25,26], and consider the whole space of states. However,
when the qubit transition frequency ωa is clearly separated from all the other transition
frequencies of the mediating system, and the driving tone at frequency ωL is tuned around
ωa and is very far from all the other transitions, the present model and the dipole-like
interaction assumed in Equation (1) provide a satisfactory description of a wide range of
phenomena.

Figure 1. A tripartite hybrid system: A single-mode e.m. cavity, a two-level atom and a mechanical
resonator are coupled to each other via the coupling strengths gac, gcm, and gam.

It is convenient to move to the interaction picture with respect to H0 = ωL(â† â+ σz/2),
that is, to move to a frame rotating at the driving tone frequency ωL, which will represent
from now on our frequency reference. In this rotating frame, the counter-rotating terms
in the cavity–qubit interaction become igac

(
σ− âe−2iωLt − σ+ â†e2iωLt), that is, they oscillate

at 2ωL, where we have used the usual definitions σ± = (σx ± iσy)/2. One can make the
rotating wave approximation (RWA), i.e., neglect them since they average to zero in the
timescales of interest. The resulting total Hamiltonian in this interaction picture therefore
becomes

Ĥhyb = −∆â† â +
1
2

∆aLσz + igac(σ+ â− σ− â†)− gam(σ̂z + 1)(b̂ + b̂†)

− gcm â† â(b̂ + b̂†) + ωm b̂† b̂ + iFL(â† − â),
(2)

where ∆ = ωL −ωc is the cavity detuning and ∆aL = ωa −ωL is the atomic detuning from
the driving frequency.

A realistic description of the tripartite system must also include decay and noisy
processes due to the coupling with the external reservoir. The full description of the
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dynamics is therefore provided by the following master equation for the density matrix $̂t
of the whole tripartite system

d$̂t

dt
= −i

[
Ĥhyb, $̂t

]
+ κD[â]$̂t + γaD[σ̂−]$̂t

+ γm(nth + 1)D[b̂]$̂t + γmnthD[b̂†]$̂t,
(3)

where D[ĉ]$̂t = ĉ$̂t ĉ† − (ĉ† ĉ$̂t + $̂t ĉ† ĉ)/2 is the standard dissipator in Lindblad form, κ is
the cavity decay rate, γa the qubit decay rate from the excited to the ground state, γm is
the mechanical damping rate, and nth = (eh̄ωm/kBT − 1)−1 is the mean thermal excitation
number of the reservoir of the mechanical mode. We consider thermal equilibrium at tem-
perature T, and thermal excitations (and the corresponding Lindblad terms) are negligible
for the qubit and cavity subsystems because h̄ωc/kBT ∼ h̄ωa/kBT � 1.

In the next section, we will show that when the qubit is far off resonance from the
cavity and its driving, it is able to mediate an effective dispersive interaction between the
cavity and the mechanical resonator, reproducing therefore an effective optomechanical
system in the strong coupling regime.

3. The Schrieffer–Wolff Approximation and Effective Optomechanical System

We first rewrite Equation (2) by grouping together the terms involving the qubit
operators,

Ĥhyb = Ĥqubit − ∆â† â + iFL(â† − â) + ωm b̂† b̂− (gam + gcm â† â)(b̂ + b̂†). (4)

Ĥqubit can be written as that of a magnetic dipole in an effective magnetic field,

Ĥqubit =
1
2
(

B̂xσ̂y + B̂yσ̂y + B̂zσ̂z
)
, (5)

where B̂x = −gac p̂c, B̂y = −gac x̂c, B̂z = ∆aL − 2gam x̂m, with pc = −i(a− a†), xc = a + a†,
and xm = b + b†.

We now make the important assumption that ∆aL is larger than the coupling rates
of the qubit, gac and gam, that is, the qubit is far off-resonance from the cavity and the
mechanical resonator, and it is not excited by the cavity driving. In this dispersive limit, the
qubit does not exchange energy with the other subsystems, and it remains in its effective
ground state. We are in the condition to apply the Schrieffer–Wolff method because we
have a lower energy subspace, corresponding to the effective qubit ground state, which is
well separated from the high energy subspace. In this lower energy subspace, the effective
qubit Hamiltonian is

Ĥe f f
qubit = −

1
2

√
B̂2

x + B̂2
y + B̂2

z = −1
2

√
4g2

ac

(
â† â +

1
2

)
+ (∆aL − 2gam x̂m)

2, (6)

which is an effective operator acting on the Hilbert space of the optomechanical system.
It is now consistent to expand this effective square-root operator as a power series in the
small parameters gj/∆aL (gj = gac, gam), and we stop at the third order, using

√
1 + η '

1 + η/2− η2/8 + η3/16. One gets

Ĥe f f
qubit = −

∆aL
2

+ gam(b̂ + b̂†)− g2
ac

∆aL

(
â† â +

1
2

)
− 2g2

acgam

∆2
aL

(
â† â +

1
2

)
(b̂ + b̂†), (7)
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which, inserted into Equation (4) and neglecting constant energy terms, yields the following
effective, low-energy, optomechanical Hamiltonian valid in the considered dispersive
regime for the qubit,

Ĥe f f
om = −(∆ + g2

ac
∆aL

)â† â− ( ge f f
cm −gcm

2 )(b̂ + b̂†)− ge f f
cm â† â(b̂ + b̂†) + ωm b̂† b̂ + iFL(â† − â), (8)

where

ge f f
cm = gcm +

2g2
acgam

∆2
aL

(9)

is the effective optomechanical radiation–pressure-like interaction rate, with the additional
term at third order in gj/∆aL representing the effective indirect interaction mediated by the
qubit through the AC Stark shift. This latter term can be significantly larger than the direct
optomechanical coupling gcm, and under the condition ∆aL � gac, gam � ωm, one expects
to achieve the strong coupling regime ge f f

cm ∼ ωm. In order to verify this fact, we have to
therefore compare the dynamics of the full tripartite system associated with Equation (3)
to that of the effective optomechanical Hamiltonian described by the following master
equation for the cavity-mechanics density operator $

d$̂

dt
= −i

[
Ĥe f f

om , $̂
]
+ κD[â]$̂ + γm(nth + 1)D[b̂]$̂ + γmnthD[b̂†]$̂. (10)

4. Results for the Stationary State of the Optomechanical System

Here we focus on the stationary state of the system achieved at long times. We first
consider the stationary cavity photon number 〈â† â〉, and the results for the two dynamics
are compared in Figures 2 and 3, where we study the behavior of 〈â† â〉 as a function of the
cavity detuning.
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Figure 2. Stationary cavity photon number 〈â† â〉 versus the cavity detuning for the effective op-
tomechanical model of Equation (10) (a), and for the hybrid tripartite system with master equation
Equation (3) (b). We have chosen the following set of parameters: ωa/ωm = 1.5× 104, ωL/ωm = 104,
gam/ωm = 50, gac/ωm = 500, gcm/ωm = 10−3, so that the system is in the strong optomechanical
coupling regime ge f f

cm = ωm. In (a), we use the effective detuning ∆′ = ∆ + ge f f
cm (ge f f

cm − gcm)/ωm,
which takes into account the cavity frequency shift associated with the mechanical displacement in
Equation (8). The other parameters are ωm/κ = 2 and nth = 0 for the blue solid line, ωm/κ = 2 and
nth = 1 for the red dashed line, ωm/κ = 0.5 and nth = 0 for the black dashed line. The black solid line
refers to the uncoupled cavity, i.e., gj = 0 (where j = am, ac and cm). All curves are normalized with
respect to the value of the peak of this latter curve, n0 = 4F2

L/κ2. In this parameter regime, the two
models provide almost indistinguishable predictions. We have also taken γm/ωm = γa/ωm = 1/20,
and FL = 10−2√κ.

In Figure 2, we consider a set of parameters satisfying the dispersive regime described
in the previous section, ∆aL � gac, gam � ωm, where the tripartite hybrid system re-
produces a strongly coupled optomechanical system well, that is, ωa/ωm = 1.5× 104,
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ωL/ωm = 104, gam/ωm = 50, gac/ωm = 500, gcm/ωm = 10−3. In this case, in fact,
ge f f

cm = ωm, and, as predicted, the two master equations, Equations (3) and (10), yield
almost indistinguishable predictions. Moreover, the typical signatures of strong optome-
chanical coupling manifest themselves because we see that, in the weak excitation limit of
small driving rate FL, and in the resolved sideband regime κ < ωm (the blue and red curves
of Figure 2), the resonance peaks corresponding to the absorption of single mechanical
quanta are clearly visible [23]. At a finite thermal phonon number nth (see the red curves
and the caption of Figure 2), additional peaks appear even though for increasing nth they
tend to blur into a broad thermal background [23]. The various resonances overlap and
vanish as soon as we move to the unresolved sideband regime κ > ωm (dashed black lines
in Figure 2), and we get a broad peak, even larger than the standard Lorenztian response
of the cavity, which tends to be reproduced at strong driving and not too strong coupling.
We notice that thanks to the mediating action of the off-resonant qubit, the optomechanical
coupling has been increased by three orders of magnitude. We also notice that in Figure 2a,
we use the effective detuning ∆′ = ∆ + ge f f

cm (ge f f
cm − gcm)/ωm rather than ∆, in order to

take into account the cavity frequency shift associated with the mechanical displacement

term, −( ge f f
cm −gcm

2 )(b̂ + b̂†) in Equation (8). All the other parameters are given in the figure
caption.
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Figure 3. Stationary cavity photon number 〈â† â〉 versus the cavity detuning for the effective optomechanical model of
Equation (10) (a), and for the hybrid tripartite system with the master equation, Equation (3) (b), for the following set of
parameters, different from that of Figure 2; ωa/ωm = 1.5× 103, ωL/ωm = 103, gam/ωm = gac/ωm = 50, gcm/ωm = 10−3.
Furthermore, with these different values, the strong optomechanical coupling regime condition, ge f f

cm = ωm, holds. The
other parameters and styles of the curve are the same as in Figure 2. In this parameter regime, the assumptions of the
Schrieffer–Wolff method are only approximately valid, and the two models provide different predictions.

In Figure 3, we consider a slightly different set of parameters, ωa/ωm = 1.5× 103,
ωL/ωm = 103, gam/ωm = gac/ωm = 50, gcm/ωm = 10−3, which again satisfies the strong
optomechanical coupling regime condition, ge f f

cm = ωm, while all the other parameters
are kept unchanged. This figure shows that the equivalence between the two models of
Equations (3) and (10) is not easy to achieve, and it is valid in a quite limited parameter re-
gion. In fact, even though we apparently still satisfy the conditions for the Schrieffer–Wolff
method because gj/∆aL = 0.1, we see that we have very different predictions for the cavity
photon number versus detuning. The prediction of the effective optomechanical model
of Equation (10) is almost unchanged, while that of the full tripartite system is now very
different, it shows no additional resonance peaks, and it does not differ significantly from
the standard Lorenztian form. A closer inspection of the chosen parameters explains why
in this latter case the two models significantly differ. In fact, the effective optomechanical
Hamiltonian of Equation (8) is valid up to first order in gam/∆aL, and up to second order
in gac/∆aL. Therefore, one needs to consider smaller values of gam compared to gac due
to the lower accuracy in the expansion parameter gam/∆aL. This is verified for the set of
parameters of Figure 2, where gam/∆aL = 0.01 and gac/∆aL = 0.1, and it is not satisfied
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for the choice of parameters of Figure 3, for which gam/∆aL = gac/∆aL = 0.1. This higher
value of the qubit–mechanics coupling alone is responsible for a very different behavior of
the stationary state of the system.

These findings are confirmed by the behavior of another steady-state quantity, the
mean phonon number of the mechanical resonator 〈b̂† b̂〉, which we study again as a
function of detuning, and it is shown in Figures 4 and 5.
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Figure 4. Stationary cavity phonon number 〈b̂† b̂〉 versus the cavity detuning for the effective optome-
chanical model of Equation (10) (a), and for the hybrid tripartite system with the master equation,
Equation (3) (b). For this curve, we used the same parameters as in the red dashed line in Figure
2: ωm/κ = 2 and nth = 1. We also choose the set of parameters as in Figure 2: ωa/ωm = 1.5× 104,
ωL/ωm = 104, gam/ωm = 50, gac/ωm = 500, gcm/ωm = 10−3, which is the parameter regime where
the Schrieffer–Wolf approximation is valid. The other parameters are as in Figure 2.
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Figure 5. Stationary cavity phonon number 〈b̂† b̂〉 versus the cavity detuning for the effective op-
tomechanical model of Equation (10) (a), and for the hybrid tripartite system with master equation
Equation (3) (b). The parameters are the same as in Figure 3: ωa/ωm = 1.5× 103, ωL/ωm = 103,
gam/ωm = gac/ωm = 50, gcm/ωm = 10−3 where the predictions of the two models are different. The
other parameters are as in Figure 4.

In Figure 4, we consider the same parameters of Figure 2 and focus on the case
corresponding to the red dashed curve (ωm/κ = 2 and nth = 1). At this low temperature,
the stationary phonon number 〈b̂† b̂〉 is only weakly modified by the weak cavity driving,
but the resonances corresponding to the various phonon transitions are clearly visible, and
the two models provide very similar predictions. On the contrary, in Figure 5, we consider
the same parameters of Figure 3, and also for the stationary mechanical excitation, in this
different parameter regime in which gam/ωm is not small enough, the full hybrid tripartite
system of Equation (3) and the effective optomechanical model of Equation (10) provide
clearly distinct behavior.
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5. Discussion

In this paper, we have shown under which conditions a qubit can effectively mediate
the interaction between a mechanical resonator and an electromagnetic cavity mode, en-
abling to reach the optomechanical strong-coupling limit, which is otherwise very difficult
to achieve in conventional optomechanical systems [1,10]. We have reconsidered in general
this idea that was put forward within the context of superconducting electromechanical
systems [12–16] and trapped atoms [17,18]. We have seen that in the dispersive regime
when the qubit is far off resonance so that the condition ∆aL � gac, gam � ωm is satisfied,
there is a parameter regime where the qubit-cavity-mechanical resonator system behaves
very similarly to an optomechanical system in the strong coupling regime, where the effec-
tive optomechanical coupling rate is comparable to the frequency. We have verified this
fact by looking at the stationary properties of the cavity and of the mechanical resonator.
The parameter regime in which the dynamics driven by Equations (3) and (10) is equivalent
is, however, quite limited because this is valid at first order in gam/∆aL and at second order
in gac/∆aL.

Despite the limited validity range of our treatment, the present optomechanical cou-
pling enhancement could be designed and tested in the case of superconducting circuits
coupled to driven microwave cavities. A proof-of-principle demonstration in these setups
has already been given in Reference [13]. A more effective and clear demonstration could be
given using circuits with a very large charging energy so that the qubit transition frequency
ωa is clearly separated from all the other transition frequencies of the circuit. Then, for
example, the conditions of Figure 2 could be realistically implemented taking achievable
values such as ωm = 1 MHz, ωa = 15 GHz, ωL = 10 GHz, gam = 50 MHz, gac = 500 MHz.
Values of κ equal to 0.5 or 2 MHz are easy to achieve for a microwave cavity, and one
should operate in a dilution fridge environment. Furthermore, weak driving with small
intracavity photon number n0 is achieved by using attenuators.

The present study can be extended in various directions. One can compare the two
models in more detail by also looking at dynamical quantities such as spectra and optome-
chanical correlations, and also focus on the regime where other higher-order nonlinear
phenomena, such as the cross–Kerr interaction, play a role due to the presence of the
mediating qubit [13,16]. Another interesting option for quantum information applications
is to consider the case when the qubit mediates the interaction between two (or more)
mechanical and electromagnetic modes in order to exploit the strong coupling (and also
the resolved sideband) regime for the realization of quantum gates between photonic and
phononic qubits [7].
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