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ABSTRACT Unintentional lane departure accidents are one of the biggest reasons for the causalities that
occur due to human errors. By incorporating lane-keeping features in vehicles, many accidents can be
avoided. The lane-keeping system operates by auto-steering the vehicle in order to keep it within the desired
lane, despite of changes in road conditions and other interferences. Accurate steering angle prediction is
crucial to keep the vehicle within the road boundaries, which is a challenging task. The main difficulty in this
regard is to identify the drivable road area on heterogeneous road types varying in color, texture, illumination
conditions, and lane marking types. This strenuous problem can be addressed by two approaches, namely,
‘computer-vision-based approach’ and ‘imitation-learning-based approach’. To the best of our knowledge,
at present, there is no such detailed review study covering both the approaches and their related optimization
techniques. This comprehensive review attempts to provide a clear picture of both approaches of steering
angle prediction in the form of step by step procedures. The taxonomy of steering angle prediction has been
presented in the paper for a better comprehension of the problem. We have also discussed open research
problems at the end of the paper to help the researchers of this area to discover new research horizons.

INDEX TERMS Computer vision, machine learning, neural network, lane detection, steering angle.

I. INTRODUCTION
Road accidents cause numerous causalities every day.
Khatib et al. [1] concluded that the distraction of drivers is one
of the key reasons for accidents. Unintentional lane departure
accidents point to a major class of accidents caused due to
driver distraction. According to Mammeri et al. [2], lane
departure crashes counted 51% of total accidents reported
in the United States in the year 2011. There is a continuous
quest to improve vehicles and driving conditions in order
to eliminate the chances of lane departure accidents. In this
regard, driver assistance technologies such as lane-keeping
systems are being incorporated in vehicles.

Lane-keeping is a lateral control system aiming to automat-
ically perform the steering of an autonomous vehicle (AV)
in order to keep it within the road boundaries despite of
changes in road conditions and other interferences [3]. This is
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effectuated by deriving the desired steering wheel angle using
the lateral dynamics. This predicted steering wheel angle is
the main impetus to the lateral controller to perform lane
keeping maneuver in AVs.

For the successful steering angle prediction, robust road
region understanding is first and the foremost step. Road
region understanding is a challenging task, as there are a
variety of road conditions and their geometries. For example,
roads can be structured or unstructured, paved or unpaved,
occluded or unoccupied, and marked or unmarked. Even lane
markings have various variations e.g., continuous/disjoint,
white/yellow, curved/straight, and single/double markings.
Moreover, varying illumination conditions, weather condi-
tions, and artifacts on the road make the road region under-
standing a complex and difficult task. The very first step
of road region understanding is to perceive the vehicle’s
surrounding environment by using one or a combination of
sensors like camera, LIDAR, SONAR, andGPS, etc. Then the
obtained information is processed through various techniques
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FIGURE 1. Taxonomy of steering angle prediction.

in order to make it usable for the subsequent process of
steering angle prediction. This paper covers literature only
on vision-based steering angle prediction techniques.

The steering angle prediction systems can broadly be cat-
egorized into two approaches. The first approach involves
extracting road boundary coordinates and then applying
mathematical or statistical models to predict the steering
angle. The second approach is based on imitation learning
strategy. The latter technique involves utilizing artificial neu-
ral network (ANN) models, and the lane boundary extraction
process is not done explicitly by the practitioner. Rather,
the machine learns through demonstration of expert and
utilize this knowledge for predicting steering angle without
human intervention. Imitation-learning-based steering angle
prediction involves using only images or sequence of images
as input to ANN models to generate steering angle as out-
put. The predicted steering angle in both approaches is uti-
lized along with other lateral parameters for keeping AV
within the road boundaries. Figure 1 shows the taxonomy of
vision-based steering angle prediction.

A. EXISTING SIMILAR RECENT STUDIES
Recently, Gidado et al. [4] presented a survey paper which
covers the following topics: deep learning architectures
(deep reinforcement learning and convolutional neural net-
work); application of deep learning architectures for steer-
ing angle prediction, longitudinal & lateral control; history
and other details of frameworks being used for designing

and training ANN architectures; analysis of year-wise and
frequency wise publication trend of deep learning applica-
tions in steering control. Oussama and Mohamed [5] pre-
sented a short literature review on computer vision and
deep learning approach for steering angle prediction. Yet,
to the best of our knowledge, there is no available literature
review of the techniques of steering angle estimation part
used in computer-vision-based approach. Our review study
is unique in its detailed coverage of step-by-step processes
involved in computer-vision-based as well as the imitation-
learning-based approaches for the steering angle prediction.
It presents the solutions various researchers adopted to handle
different challenges in the steering angle prediction (e.g., dif-
ferent illumination and weather conditions etc). This in-depth
review will help novice researchers get insight into the prob-
lem of steering angle prediction and various methods to
implement it.

Organization of the paper: Rest of the paper is structured as
follows: Section 2 discusses computer-vision-based approach
accompanied by image processing techniques for steering
angle prediction, which is accomplished in steps, including
image frames preprocessing, road region identification, road
boundary tracking and steering angle estimation based on
processed visual information. Section 3 covers imitation-
learning-based approach for steering angle prediction. This
Section is further divided into subsections based on the
steps involved to solve the problem, including ANN model
architecture formulation, dataset collection, training the ANN
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model and optimizing the model. Section 4 highlights open
research questions. Lastly, section 5 presents concluding
remarks.

II. STEERING ANGLE PREDICTION USING COMPUTER
VISION APPROACH
This method of steering angle prediction involves explic-
itly extracting road boundary coordinates or lane markings
based on which the steering angle is computed. Firstly,
image frames are captured through a live feed from the
camera mounted on the car. Then these image frames are
preprocessed in order to increase the likelihood of accu-
rately extracting relevant road features. The next stage is lane
boundary extraction using the preprocessed images. Some
researchers performed lane tracking after this step, by con-
sidering consecutive frames for successful road detection
despite the missing or erroneous road information. Tracking
is achieved using particle filter, Kalman filter, and Bayes
filter. Description for each of these steps and the related
literature is elucidated in the next subsections.

A. PRE-PROCESSING
Calibration of camera, illumination changes, poor visibility
due to bad weather conditions, shadows, and light reflections
on the road may cause faulty lane detection and tracking [6].
Therefore, image pre-processing is done for the sake of
enhancing and modifying input frames as a means to increase
the likelihood of delivering useful information to subsequent
stages. Conventionally, the preprocessing stage includes one
or a combination of the following methods: downsampling
the image, image segmentation, image smoothing, extraction
of Region of Interest, and the application of Inverse Perspec-
tive Mapping (IPM).

As the computation time is the most important criterion
in real-time applications. Therefore, the only relevant portion
of the image frame is taken for further processing, hence
rejecting portions of images that do not contribute to lane
detection and tracking (e.g., pixels of the image containing
sky). The portion containing the important information taken
for further processing is referred to as ‘Region of Interest’
(ROI). Any coordinate that lies beyond the ROI is disre-
garded. ROI should be taken such that it covers left and right
lanes and the point where both lanes appear to intersect at
each other in the image; this intersection point is mostly used
to find the steering angle. ROI can either be determined with
prior road area detections or it can roughly be chosen as
the lower portion of the image [7]. Carefully choosing ROI
is significant in improving computation efficiency and lane
detection accuracy.

Another measure to reduce the computational load is to
downsample the images using grayscale conversion [8]–[12],
inter-area interpolation [13], or using the image binarization
approach [14]. Among these, grayscale is mostly used for
downsampling. Figure 2 (b) shows a grayscale image of a
road. Apart from grayscale conversion, a lot of researchers
found that conversion of RGB to other color formats may

present better lane detection results instead of processing raw
RGB camera captured images. Sun et al. [15] argued that
applying a loose threshold method on the HIS color model
of the image yields better detection compared to RGB. Yet,
reducing the size and changing the format of the images may
result in the loss of useful information, especially in complex
situations.

1) IMAGE SMOOTHING, SHARPENING, AND SHADOW
REMOVAL
Image smoothing is done to blur the noisy details diminishing
the impact of pixels which are not part of the lane markings.
The most widely used smoothing filters for road lane extrac-
tion are Gaussian filter [16], [17] and Median filter [18] or
both [19], [20]. It can be seen in Figure 2 (c, d), that both
median and Gaussian filters blur out noise and unnecessary
details, yet they can sometimes eradicate information crucial
for lane detection, such as in Figure 2(c) lane markings
information is lost. Therefore, a careful selection of the size
of the filter is necessary which again are road conditions and
application-specific.

Objects (such as buildings, bridges, and other vehicles)
may cast shadows on the road and alters the impact of road
texture by producing artifacts onto the road surface. Smooth-
ing and eliminating these shadows in the image is important
for error-free road boundary detection. Assidiq et al. [21]
used a method for shadow removal from the frames. The
methodworks by first deriving 1-d illumination invariant, free
of the shadow image. Then this invariant image was used
to locate the edges of shadows. These edges were then set
to zero in an edge representation of the original image, and
lastly, the obtained edge representation was reintegrated to
the original image by a method parallel to lightness recovery.
However, a problem with their approach is that the intensity
values are unlikely to remain consistent over the different
construction materials used to build the road. This can cause
a disparity in results for extracting shadow from the illumi-
nation of a single color.

According to Kucukmanisa et al. [22], B color channel of
RGB can easily detect and separate out white lane markings
using an MSER-based approach [23] despite of any kind of
shadows on the road. However, enhancing the B channel of
the image gives better detection results for yellow lanes as
well irrespective of shadows.

Parajuli et al. [24] applied a vertical gradient on the image
to remove the effect of shadows, as according to the authors,
shadows cast on the road are usually horizontal. The high
pass filter has also been used to eliminate shadows in omnidi-
rectional images [25]. Since gradient operators are high pass
filters, which are sensitive to noise, hence can also be used for
lane detection, but they have difficulty in detecting degraded
lane markings [26].

Processing the image frames without applying contrast
enhancement after smoothing gives rise to fading and
phantom edges [27]. Hence, after applying a single or a
combination of smoothing filters, image enhancement has
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FIGURE 2. Preprocessing a marked road.

FIGURE 3. IPM [42].

been done in some researches in order to retain contour
details [28]–[30].

2) IPM
The perspective mapping process of 3D road scene to the 2D
image plane brings forth many problems in the lane boundary
extraction process. If the lane boundary extraction process is
done directly on the original image, many non-target edges
exterior to the lane boundary will also be extracted, e.g.,
pedestrians, trees and traffic signs, etc. These are basically
sources of interference for lane detection, whose effect can
be minimized using IPM. IPM is top view or the bird’s eye
view of the road scene, having nearly vertical lines on a darker
background whose detection is more convenient removing
outliers on the roadsides. Originally IPM formula was derived
by Bertozz et al. [31] and was applied to the GOLD AV
successfully. After that, this method is being extensively used
in the preprocessing stage of the lane and obstacle detec-
tion [32]–[41]. In Figure 3, IPM of roads can be examined.

B. ROAD BOUNDARY DETECTION & TRACKING
Road boundary detection aims to identify a drivable region on
the road by preparing the system for the accurate identifica-
tion of the lane marking (for marked roads) or road boundary
(for unmarked roads). The key for vision-based road area
detection is the ability to classify image pixels as belonging or
not belonging to the road surface. Almost every lane detection
algorithm follows three essential steps: lane feature extrac-
tion, outlier removal, lane boundary representation. In some
methods, lane tracking has been performed as well, which is
aimed to track lane positions after performing road boundary

detection. For this purpose, Kalman filter and Particle filter
are widely used methods that refine the detection results and
predict lane coordinate positions more efficiently. While a
few researchers used Bayes filter and custom-built tracker.
It can be observed in Table 1, that how different researchers
achieved the task of lane detection and tracking by combining
different approaches.

Road boundary detection is a lot easier for struc-
tured and properly marked roads as compared to unstruc-
tured and unmarked roads. Vision-based road detection
techniques can broadly be divided into three categories,
namely: feature-based techniques, model-based techniques,
and machine-learning-based techniques.

1) FEATURE-BASED TECHNIQUES FOR DRIVABLE ROAD
AREA DETECTION
Many features such as the geometric shapes, edges, color,
gradient, and road texture can be used to identify the driveable
road region. A brief overview of the techniques utilizing these
features is given below:

a: TECHNIQUES USING LANE EDGE OR GRADIENT
INFORMATION
As the road lanes have brighter intensity values as compared
to the rest of the road, hence a gradient of dark-bright-dark
exists at lane lines. This gradient feature has been utilized
by gradient-based edge detectors to extract left, right, and
center lanes. In this regard, the Canny edge detector is the
most widely used gradient-based edge detector in the litera-
ture [43]–[51]. It works by first smoothing the image using
a Gaussian filter, followed by calculating the gradient direc-
tion and its amplitude on which non-maximal suppression is
performed, lastly using a double threshold algorithm edges
are detected and connected. Hence the resultant image after
processing from the canny edge detector is a binarized image
with highlighted edges.

Another rather less commonly used gradient-based edge
detector for lane detection is Sobel operator [52]–[54], Pre-
witt operator [55] and other custom edge detectors [11].
Yet, the Canny edge detector is found to outperform other
gradient-based lane detection methods [56]. As the Canny
edge detector also performs image smoothing hence it is
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TABLE 1. Review of lane detection and tracking techniques.

FIGURE 4. Canny edge detection.

robust to slight noise. As can be seen in Figure 4, the image
processed with the canny edge detector still have edges
around the road which are not part of the lane marking. So,
to remove these outliers and locate actual lane markings,
Hough transform [57]–[63] and other methods are applied
afterward.

The most popular methods for lane detection using the
gradient information extraction technique involve firstly to
convert the image into grayscale, followed by applying the
canny edge detector and lastly applying Hough transform.
Conversion into grayscale substantially reduces computation
time, but it may lose the gradient of lane lines leaving them

undetected. Yoo et al. [64] proposed a solution to this problem
by enhancing the gradient through contrast enhancement of
white and yellow lanes of the road with respect to the road.
As the RGB intensity values of the same objects can vary
under different illumination, therefore enhancing intensity
values of a color with the same ratio is impractical. Therefore,
they used two random adaptable vectors for yellow and white
lanes, which produce a grayscale image having maximum
road lanes gradient.

Other methods to preserve lane gradient invariant of
shadow and other attenuation effects include processing
images in a specific channel of RGB or conversion of images
to other formats such as HSI [65], YCbCr [66] YUV [7], [67]
and HSV [68] etc.

Another approach to preserving the lane markings gradient
minimizing attenuation effect is proposed by Liu et al. [69].
They first performed IPMon images. Thenwavelet decompo-
sition was performed, followed by wavelet reconstruction in
order to enhance vertical edges and to weaken the horizontal
edge information (because in IPM lanes are transformed into
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vertical lines). Then the Sobel operator and the Canny edge
detector are applied to these processed images. These oper-
ators are aimed to produce a binarized image highlighting
the road lanes and converting all the pixels other than the
road lanes to black. Finally, this binarized image is processed
using Hough transform to convert lane points into coordi-
nate points. Another variation of edge detection approach is
‘‘middle to side strategy’’. This approach begins with the
search for non-zero pixel or negative/positive gradient on
both sides of the road and moving upwards connecting points
in successive upward locations. This method is more prone
to misdetection because the first pair of points might be the
artifacts [70].

b: TECHNIQUES USING ROAD TEXTURE FEATURE
A popular technique of road detection using texture infor-
mation is intensity thresholding. As the whole road region
mostly has darker intensity values as compared to the sur-
rounding. Hence, using connected component and thresh-
old intensity values, the road region is segmented out from
pixels outside the road. Seo and Rajkumar [71] performed
intensity thresholding to identify the boundary of drivable
regions. Firstly, they applied IPM on acquired image frames,
followed by intensity thresholding for road region detection.
Lastly, the Bayes filter and unscented Kalman filter were
used to track detected boundaries. A limitation to intensity
thresholding technique is that the threshold has to be adjusted
according to the illumination condition and the detection
result varies by the threshold value [72].

c: TECHNIQUES USING COLOR FEATURE
All the methods for drivable road region estimation involve
using color feature. Typical image frames are in RGB format,
which might be converted to other color formats in order
to reduce computation complexity or to aid better detection.
Illumination conditions keep varying constantly in different
times of the day, hence affecting other features used for road
region detection. For example, the gradient of lane markings
may not be preserved in very low illumination conditions,
hence leading to faulty lane detection. In short, the color
feature is essential in all methods of drivable road area esti-
mation. Hence the color feature is taken into consideration
for devising road detection methods employing other road
features.

2) MODEL-BASED APPROACHES FOR ROAD
AREA DETECTION
In this approach, road boundary points are matched with
templates or lane models such as a parabola, hyperbola,
spline, and linear line; the best-fitted shape determines
the road boundaries [73]–[78]. Hough transform and Ran-
dom Sampling Consensus (RANSAC) are the most popular
model-based approaches used for fitting lines and other geo-
metric shapes on the road boundaries for detecting lanes.

Through a detailed analysis of the literature regarding lane
detection, it is found that the majority of techniques utilize

FIGURE 5. Point of intersection of left and right boundary lines.

Hough transform at some stage for lane detection. Hough
transforms works by finding the slope at each edge point
and proposing a single line that has the majority vote at
edge points. Hence a straight line can be drawn at the lane
position on the road using Hough transform, or in other
words lane boundaries can be represented in coordinates
by straight Hough lines. This process also has the advan-
tage of connecting dotted or disconnected lane edges. Yet,
a major drawback is that it is not efficient in the curve
lane detection. Another problem is that artifacts on the road,
such as cracks, navigational text, and arrows, etc. often
have features similar to straight lines. Hence Hough trans-
form may mis-classify these artifacts as the best candidate
for lanes.

Another widely used method in this regard is the RANSAC
method. RANSAC first proposed by [79], performs itera-
tive estimation of parameters of a mathematical model from
observed data points. Robust estimation of model parameters
and separating out the inliers from the outliers with high
accuracy is the main advantage of this method.

RANSAC is found to be more efficient in curved as
well as straight lane detection. Many researchers combined
model-based and feature-based approaches, for attaining
improved results. For example, applying Hough transform
on canny edge detected image. In Table 2, a short review
of feature-based and model-based approaches have been pre-
sented.

C. STEERING ANGLE ESTIMATION
After performing road boundary extraction process, required
steering angle is computed. Different techniques have been
proposed by researchers for this purpose. The extracted
boundary points and the heading direction of the vehi-
cle are used for this purpose. In a technique proposed by
Dev et al. [6], required steering angle is determined as the
angle between Point of Intersection (POI) and the heading
direction of the vehicle. POI is the (x,y) coordinate, where
the extracted left and right boundary lines meet, as shown in
the Figure 5.

If the POI and the center point of road is aligned,
the required angle for AV to steer is zero. In the other case,
a center line is determined connecting the POI and the center
of image, on the basis of which the required steering angle
is computed. Let sr and sl be the slopes of right and left
extracted line. Let br and bl be the slopes of angle bisectors
determined by sr and sl . The slope of the center line (slopec)
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TABLE 2. Feature and model-based lane detection techniques.

can be computed using following equations:

slopec1 = (sl ∗ br )−
sr ∗ bl
br − bl

slopec2 = (sl ∗ br )+
sr ∗ bl
br + bl

If abs(slope(c1)) > abs(slope(c2)), slope(c1) is chosen as
slope of center line; the intercept of middle line is computed
as follows:

interc =
(cl ∗ br )− (cr ∗ bl)

br − bl
Otherwise slopec2 is selected and the slope of centerline is

computed as follows:

interc =
(cl ∗ br )+ (cr ∗ bl)

br + bl
The pair (slopec, interc) characterizes a line in cartesian

plane, which is the navigating path for the vehicle. A ref-
erence point from this line (x2,y2) and the POI (x1,y1) are
utilized to determine the required steering angle, as can be
seen in Figure 6.

FIGURE 6. Steering angle computation method proposed by Dev et al. [6].

The equation used for the computation of required steering
angle ’θ’ is as follows:

θ = arctan
(y2 − y1)
(x2 − x1)
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TABLE 3. Conditions for different road scenarios.

The main limitation to this technique is that it does not
handle the cases when only one boundary line or no boundary
line is detected. Yet in a technique proposed by Umamah-
eswari et al. [80], a virtual boundary line is computed if only
one line is detected, using the following equations:

For left virtual boundary line-

ψ = −(1/3) ∗ (η + 45)+ 10,

For right virtual boundary line-

ψ = −(1/3) ∗ (η − 45)− 10.

whereψ is the virtual edge inclination and η is the inclination
of detected opposite edge. In their proposed technique, steer-
ing angle is computed by drawing a line from the middle of
the road to the starting position of both extracted boundaries.
Afterwards, the following equations are computed:

µ1 = arctan(b1/a1),

µ2 = arctan(b2/a2),

θ = µ1− µ2,

φ = b1− b2,

a1 = a2 = image width/2 = pixel distance b1 = distance of
(image height,0) value from edge.

b2 = distance of (image height, image width) value from
edge.
θ = steering angle required to align the vehicle in the center

of the road. φ is the perpendicular steering distance. The
value of φ varies between 150 to 100 based on the scenario.
A negative value of φ indicates rightward drag of the vehicle
and θ denotes the steering angle to align it along the mid-line
of lane. Similarly, a positive φ value indicates leftward drag.

The scenarios handled by their proposed algorithm and
their implication are listed in Table 3 and depicted in the
Figure 7.
In another approach proposed by Sujatha et al. [81], steer-

ing angle prediction is done based on three cases: (1) neither
of the left or right boundaries are detected (2) both the bound-
aries are detected and (3) one of the boundaries is detected.
Description of the steering angle prediction in all these cases
is as follows:
• Case1
When none of the boundary is extracted, the vehicle is
allowed to move straight along its path till it finds one
or both lane boundaries.

• Case2
In this case when both boundaries are extracted,
the slope and position of both extracted lines is deter-
mined. The line in the right half of image and having

FIGURE 7. Cases of angular aberration from center of the road [80].

a positive slope is the right boundary; whereas the line
in the left half of the image and having a negative slope
is determined as left boundary. From the slope of both
boundaries, the common POI is calculated. The required
steering angle will be the deviation of POI of the bound-
aries from the orientation of the vehicle (centerline of the
image). The whole procedure from finding the slope to
the steering angle computation, is performed using the
following equations.

Sloperight = (Y4 − Y3)/(X4 − X3),

Slopeleft = (Y2 − Y1)/(X2 − X1),

C2 = Yright − (Sloperight ∗ Xright ),

C1 = Yleft − (Slopeleft ∗ Xleft ),

InterX = (C2 − C1)/(Slopeleft − Sloperight ),

InterY = ((Slopeleft ∗ InterY )+ C1),

S = ((InterX − (w/2))− (InterY − h)),

Steering angle = 90− (tan−1(1/S) ∗ (180/π),

where X1; X2; X3; X4 and Y1; Y2; Y3; Y4 are the
coordinate points, whereas C1; C2 are the constants of
the extracted lines. Inter X and Inter Y are the coor-
dinates of POI of both extracted lines. S is the slope
between POI of the boundaries and the vehicle heading
direction, whereas h and w are the height and width
of the image in pixels. In Figure 8, marked points 1-
4 represent the coordinate points; marking 5 represents
the POI of both the boundaries; andmarking 6 represents
the required steering angle. White dotted lines represent
the centerline of the image.

• Case3
When only one of the boundaries is visible within the
field of view of the camera, two approaches that can be
adapted are: (a) maintaining the vehicle in the center of
the road; (b) maintaining the vehicle towards the visible
boundary.
– Case3a

In this case the vehicle is maintained at the center of
the road. If only one boundary is extracted, the other
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FIGURE 8. Depiction of points used for steering angle computation [81].

boundary is usually considered the last column of
pixels on the other side of the image. For example,
if right boundary is not visible and only left boundary
is visible, then. The last pixel column on the right
side of the image is considered the right boundary.
After calculating the slope of both, the steering angle
computation is done using the same procedure as
mentioned for case 2.

– Case3b
In this case the vehicle is maintained at a certain
distance from the visible boundary. If the width of
road is too large, it is difficult to maintain the vehi-
cle in the middle of the road since this way it will
move in a zigzag manner, especially on turns. Hence,
the vehicle can be maintained at a certain distance
from the road boundary instead of maintaining at
middle of the road. To keep the vehicle at a certain
distance from the boundary a base offset needs to be
computed, which is done as follows. Let a distance
to be maintained from the required boundary be 2m.
An imaginary straight-line boundary is assumed of
which the two sides are [x1, y1, z1] = [x1, 2, height
to which the camera is mounted] and [x2, y2, z2] =
[x1 + displacement, 2, height to which the camera
is mounted]. The points are converted into camera
coordinates and base offset angle is computed using
following equations:

θ1 = (180/π ) ∗ (tan−1(y1/x1)),

φ = 90−
180
π
∗ tan−1(

√
x21 + y

2
1

z1
),

Ix = rows/horizontal fov,
Iy = cols/vertical fov,

xim1 = rows− (cx + (θ1 ∗ Ix)),
yim1 = cols− (cy + (φ1 ∗ Iy)),
θ2 = (180/π ) ∗ (tan−1(y2/x2))

φ2 = 90−
180
π
∗ tan−1(

√
x22 + y

2
2

z2
),

xim2 = [rows− cx + (θ2 ∗ Ix)],
yim2 = cols− (cy + φ2 ∗ Iy),

φd = tan−1(
(yim2 − yim1)
(xim2 − xim1)

) ∗ (
180
3.14

),

FIGURE 9. Steering angle computation proposed by Tu et al. [82].

where x1; y1; z1; x2; y2; z2 are the assumed edges
of the boundary, xim1; yim1; xim2; yim2 are the cor-
responding image coordinates, cy is the cen-
ter y-coordinate of the image, cx is the center
x-coordinate of the image, cols are the pixels along
height of the image, rows are the pixels along width
of the image, ly is the vertical pixel per degree
information, lx is the horizontal pixel per degree
information, and θd is the base offset angle in degrees.
This base offset angle is maintained until vehicle has
to maneuver with one boundary. The angle between
the extracted boundary and the frame of reference is
computed. For every successive frame, the required
steering angle is the difference between the base offset
and the angle of frame of reference with the extracted
boundary line.

Another recent technique of steering angle prediction pro-
posed by Tu et al. [82] also handles the cases when only
one boundary or none of boundary lines are detected. In their
proposed approach, a vertical line in the center of the image
is drawn and then following cases are considered:
• If a single left or right line is detected, the required
steering angle is the angle between the vertical line and
the detected lane.

• If both lines at the left and the right are detected: Linear
average of the two lanes is computed and the required
steering angle is the angle between the vertical centerline
and the linear average.

• If no lines are detected, preceding angle is used.
In Figure 9, vertical centerline is drawn in black and the

required steering angle is the angle between extracted lane
and linear average for single and both extracted lanes respec-
tively.

Another approach to steering angle estimation proposed
by Abdelrahman et al. [83] is by using decision tree. The
current situation of vehicle on the road is interpreted using
decision tree and respective heading line behavior is selected.
In this technique, after performing lane marking extraction
process, road is divided into segments. Two decision trees
are then used, one for upper and other for lower segments,
see Figure 10 and 11.

In the decision tree. The first decision factor is whether the
boundary lines are detected or not and in which parts lines
are detected. If both left and right lines are detected, then the
distance between the two lines is measured in order to check

VOLUME 9, 2021 78575



H. Saleem et al.: Steering Angle Prediction Techniques

FIGURE 10. Decision tree for the lower parts of the image.

FIGURE 11. Decision tree for the upper parts of the image.

lane width. This is done to solve a problem of false detection
which comes from objects around the track or uneven light-
ing. If the condition is false, the current heading direction of
the vehicle is checked. If heading direction determines that
the vehicle is turned to the right, the left detected line is not
considered in the steering angle estimation and vice versa.
If only one line is detected in the image, it is checked that
whether the vehicle is still within the lane boundary or not.
This verification is vital because the vehicle might be about
to leave the lane boundary, or the vehicle is approaching a
curvature. If the detected lane line appears in the right part at
the present step and in the previous step there was a single line
appearing in the left part, then the decision will be tomove the
vehicle parallel to the detected line but in the right side. But
if the condition is false, the vehicle heading will be parallel
to the line but in the left side. If there is no line, this means
that the vehicle is still within the lane and the decision is to
proceed straight.

The decision tree for the upper and lower parts are the
same, other a condition to check if the detected line appears
in the upper right part and not the left lower part or vice versa.
This condition is checked since this line may be an extension

FIGURE 12. Examples of the algorithm behavior after passing through the
decision trees(As a reference the green is the left detected line, the blue
line is the right detected line and red line is the calculated vehicle
heading).

of the line detected in the opposite lower part (curved lane
line). If this condition is true, the line in upper part is not
considered in steering angle calculation step. But if the condi-
tion is false, the decision tree will follow the same conditions
that are already checked of the lower parts. Realtime testing
results of their approach are depicted in Figure 12.

When both the left and the right lines exist, the desired
steering angle is based on the average of the two lines’
slopes. But if only one line exists, the desired steering angle
is based on the slope of line detected. In case when no
line exists, the vehicle should proceed with zero steering
angle.
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III. STEERING ANGLE PREDICTION USING
IMITATION-LEARNING-BASED APPROACH
Recent years have witnessed emergence and prevalence
of ANNs which has evoked a storm in intelligent trans-
portation systems. Among these, leveraging ANN mod-
els for vision and control mechanisms required for lane
keeping are notable breakthroughs. An amazing develop-
ment in this regard is steering angle prediction through
imitation-learning-based approach. Research in imitation-
learning-based steering angle prediction started with sec-
ond competition involving the Udacity self-driving car. The
winner of the competition developed nine-layered CNN
model [84], which was determined to be successful in
autonomously driving the vehicle in the Udacity simulator.
Since then, continuous research has been conducted on the
design of optimal neural network architectures for steering
angle prediction and the discovery of hyperparameters that
deliver optimal training results.

Employing the imitation learning technique, the machine
learns the steering angles to be actuated on different scenarios
through human driving demonstration. For this purpose,
images/sequence of images and steering angles induced dur-
ing driving the vehicle are collected simultaneously, which
are used as training data the ANNmodel. That is, the steering
angle is predicted by the ANN model using raw image pixels
as input.

Solving any problem using ANN involves following steps:
ANN model architecture formulation, dataset collection,
training ANN model & ANN model testing, and lastly opti-
mizing ANN and retraining it to improve the results.

1) NN ARCHITECTURE FORMULATION
For the purpose of steering angle prediction using imi-
tation learning approach, various architectures of ANNs
and their efficiency have been explored. Most widely used
ANNs for this purpose are Convolutional Neural Network
(CNN), Long-short-term-memory network (LSTM) and their
variants. Table 4 presents some recent studies conducted
for steering angle prediction using imitation-learning-based
approach.

a: CNN
It has been convincingly shown over the last few years, that
CNNs can produce a rich representation of the input image
by embedding it to a fixed-length vector, such that this repre-
sentation can be used for a variety of vision tasks [85]. CNNs
are basically proficient in analyzing visual imagery.

The basic structure of a CNN has an input and an output
layer, as well as multiple hidden layers. Hidden layers of a
CNN consist of series of convolution layer, pooling layer, nor-
malization layer and fully connected layers. Convolutional
layers basically convolve over the data (usually images) with
a multiplication or other dot product. This layer is regarded
as convolution only by convention. Mathematically, a sliding
window or filter performs dot product with the given image.
This operation has great importance for the indices in the

matrix, in that it affects how weights are determined at a
specific index point. The output of this layer is then directed
to the next layer called pooling layer, which is intended to
reduce the size of data in order to reduce computational
complexity [86], [87].

Due to remarkable performance in visual imagery under-
standing, CNN and its variants are being used for the
task of steering angle prediction. Various CNN architec-
tures, differing in number of layers and neurons in each
layer, have been explored for the purpose of steering angle
prediction [4], [84], [88]–[93].

b: LONG SHORT-TERM MEMORY NETWORK
Unlike standard feedforward neural networks, LSTMs have
feedback connections. LSTM not only can process single
data points (e.g., images), rather they can proficiently process
entire sequences of data (such as speech or video) [94]. Due to
the outstanding performance of LSTM in sequence learning
and understanding, it has been used to AVs for efficient lane
keeping by analyzing the dependencies between consecutive
image frames. LSTMs are used to interpret temporal depen-
dencies and is mostly placed after CNN which detects fea-
tures. This CNN-LSTM assorted model has been employed
by several studies [95]–[97].

2) DATASET COLLECTION
To utilize ANN for any purpose, training it with suitable
data is the first step. To train ANNs for the purpose of
steering an AV, different parameters (like steering angles
and speed etc.) are obtained through human demonstra-
tion during driving. The required dataset in this regard can
be produced using a simulation software (like CARSIM,
CARLA and TORCS) [98]–[100], or by a human driven
vehicle whose actions and decisions are recorded using
onboard cameras and angle sensor [101]. Moreover, many
state-of-the-art datasets (such as, DIPLECS, Udacity and
Comma.ai) are available publicly which can also be utilized
to train ANN models for steering angle prediction. Purpose
of training ANNs is to make the system familiar with var-
ious scenarios and appropriate decisions to be taken under
different circumstances. Hence a dataset for steering angle
prediction should provide comprehensive coverage of various
types of roads and illumination conditions. Collecting the
dataset covering all kinds of illumination conditions and road
structures in real world is an expensive process in terms
of resources and time. A solution to this problem is ‘data
augmentation’, which is basically a technique to increase
the amount of training data by applying transformations on
available data.

Tian et al. [102] proved through experiments that applying
realistic transformations on images and using the original
as well as transformed images for training, elevated the
performance of ANN. These image transformations include
intensity, color, dimension, spatial and other realistic trans-
formations. The majority of other studies also performed the
image transformations for more exposure of scenarios to the
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TABLE 4. Imitation learning approach for steering angle prediction.

ANN e.g., adding shadow to random parts of images and
flipping images horizontally etc.

3) ANN TRAINING AND TESTING
Training of an ANN model is of critical importance. The
training process of any ANN model is basically aimed to
find a set of optimal network parameters. These optimal
parameters are saved in some form (depending on software
being used) as a trained model. Efficiency and accuracy of
this trained model are tested on test dataset and validation
dataset through evaluation metrics. Mostly used evaluation
metrics for measuring the performance of any ANNmodel on
test dataset is the mean error (ME), mean square error (MSE),
root mean square error (RMSE) and standard deviation error.
Whereas, some researchers used percentage accuracy for
reporting the results. Supervised training is the dominant
trend followed to train ANNmodels for steering angle predic-
tion purpose. Yet a few researchers used unsupervised tech-
nique for this purpose. Yang et al. [103] used an unsupervised
learning algorithm to train an improved auto-encoder at the
first stage of training. Then in fine tuning stage, which is
the second stage of training, the model was trained using
supervised learning.

ANN training frameworks which are mostly used for train-
ing steering angle predictive models include: Keras with
tensorflow as backend, Caffe [104], and Pytorch. Research

TABLE 5. Frameworks for training ANN models for purpose of steering
angle prediction.

studies in which these frameworks have been used are listed
in the Table 5.

For testing the performance of the ANN models, three
approaches have been used in the literature: (i) Using offline
images and videos as test set (ii) Using an autonomously
driving toy car (iii) Testing on driving simulator (iv) On-road
testing

In the first method of testing, researchers reported
average prediction results on test dataset of images or
videos which have already been recorded. For example,
Chen and Huang [90] used CNN model having 3 convolu-
tional layers, 4 relu layers, and 3 fully connected layers. Five
video clips having 152K frames were taken from comma.ai
dataset for training and 2 video clips were taken for testing
from comma.ai dataset. The mean absolute error found was
2.42 and the standard deviation of the error was 3.26.
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In the second method of testing, a toy car is used. For
example, Jain [93] used steering angle predictive CNN to
autonomously steer an Arduino driven car. Implementation
was done using Raspberry Pi and a camera module mounted
on the top of the prototype car. CNN architecture used con-
sisted of 128 input nodes, two hidden layers, each having
32 neurons and lastly an output layer having four neurons
for each of four outputs (i.e., left, right, stop and forward).
10868 images frames extracted from video were used for
training process. Though their proposed model was able to
efficiently drive a prototype. Yet they did not perform Real-
time road testing.

In the third type of testing method, driving simula-
tors are used for testing performance of the ANN model.
Rausch et al. [91] developed CNN-based autonomous vehicle
steering model and simulated it using car simulator (CAR-
SIM). It contained 3 convolutional layers, 1 fully connected
layer, 1 input & 1 output layer and a batch size of 128.
They used a single camera as a sensor for analysis of envi-
ronment. For training of their model, they gathered frames
labeled by steering angles data obtained through human
driver demonstration using joystick wheel in CARSIM sim-
ulation. They used neural network framework CAFFE. For
updating weights and bias they used three solvers Nes-
terov’s accelerated gradient (NAG) solver getting mean error
of 0.0338, SGD solver getting error of 0.0395 and Adam
solver whose error was 0.0465. Among these Nesterov’s
accelerated gradient (NAG) solver was found to perform
best on their model. Haavaldsen et al. [92] simulated AV
driving on Carla software [100] to train and test CNN as
well as CNN-LSTM models. CNN used was inspired by
DAVE-2 [84] developed by NVIDIA. They used 10 million
simulation steps for training to auto steer the vehicle in Carla
environment. Chaudhari et al. [88] used Inception V3 to
enable learning steering angles, throttle, acceleration and
deceleration decisions based on a given image frame. The
dataset was collected by 25 hours driving car in GTAV game
(used as simulator). Testing was also done using different
tracks of GTAV game and 35% accuracy was obtained.

The fourth type of testing involves utilizing the steering
angle predicted by the ANN model to autonomously steer a
real car in realtime. Bojarski et al. [84] trained their model
using 9 layers of convolutional neural network (CNN) using
10 frames per second (FPS) of video. They tested their model
by 3 hours of 100 miles driving in a simulated environment,
and 10 miles of real road driving. The model was able to drive
accurately in real time for 98% of the time. The problem
with their approach is that it did not tackle scenarios with
obstacles, vehicle or any object in front. Moreover, no lane
changing scenarios was taken into consideration for training.

4) OPTIMIZING ANN FOR OPTIMIZED RESULTS
Any neural network has parameters and hyperparameters,
each configuration ofwhich gives different results. Therefore,
neural network designed for any problem needs tuning, to get
high accuracy and reduced error. Hence parameter as well

as hyperparameter tuning of a neural network is of chief
importance.

a: PARAMETER TUNING OF NEURAL NETWORK
For the parameter tuning of ANNs, gradient methods aremost
widely used, among which, stochastic gradient descent using
the backpropagation algorithm is the most popular one [125].
Backpropagation has some drawbacks. Firstly, it has ‘‘scaling
problem’’ i.e., it works well on simple and less complex
problems, yet its performance degenerates rapidly as the com-
plexity of problem increases. Secondly, it has a high tendency
of getting trapped in local minima especially in multimodal
problems. There is a way to escape these local minima
with a high enough momentum, yet it lacks knowledge of
whether the succeeding one will be better or worse. When
the global minima are hidden among local minima, it can
keep bouncing between local minima without having overall
improvement [126]. The third drawback of backpropagation
is that it has slow convergence. Another chief weakness of the
gradient methods is that the derivative information is essential
such that the error function to beminimized has to be differen-
tiable and continuous. Moreover, backpropagation has a high
dependency on the initial parameters. To solve these prob-
lems, nature-inspired algorithms are being used for parameter
training of neural network used for huge, complex, multi-
modal and nondifferentiable domain [126]–[128]. Various
studies have demonstrated that nature inspired optimization
algorithms outperform significantly than backpropagation in
training the neural networks [129]–[133]. Another popularly
used optimizer used for steering angle prediction is Adam
optimizer and was found to outperform standard SGD opti-
mizing method [97], [122], [134]–[137]. Rausch et al. [91]
also employed Nesterov’s accelerated gradient (NAG) and
found that it outperforms Adam and SGD optimizer.

b: HYPERPARAMETER TUNING OF NEURAL NETWORK
Hyperparameter tuning is another critical aspect of training
a neural network. The efficiency of a neural network highly
depends on its hyperparameter tuning. Hyperparameters of a
neural network include learning rate, number of epochs, batch
size, activation function, dropout for regularization, number
of hidden layers and units. A convolutional neural network
has convolution, Relu, pooling and fully connected layers.
The organization of these layers and the size of filters in
each one of them are chosen during hyperparameter tuning
of hidden layers and units of CNN. Each combination of all
the hyperparameter values has different impact on learning
network parameters of neural network.

Hyperparameter optimization is an attempt to identify set
of optimal hyperparameters which minimizes the generaliza-
tion error for the given problem. This becomes very chal-
lenging when the dimensionality of the hyperparameter space
increases. Especially, deep neural networks have many differ-
ent hyperparameters that can be adjusted to any given input
data set, resulting in a high-dimensional search space.

For this process of optimizing hyperparameters, brute force
technique has been widely used in the past, i.e., manually
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adjusting each hyperparameter by practitioner and finding
at which combination of these values the model gives the
best result. Especially in case of CNN with a potentially
high number of filters on each layer hyperparameter setting
can take a long time. So, using brute force for this purpose
is not an efficient way. Recently, EA (GA and differential
algorithms, etc.) and swarm-based algorithms (e.g., Particle
swarm optimization algorithm) are emerging as optimization
techniques for this purpose. These techniques are inspired by
biological phenomenon of evolution and collaborative social
behavior of animals. Mostly Genetic algorithm [138]–[141],
Particle swarm optimization [142]–[147] and their variants
are used for this purpose.

Nature inspired algorithms proved efficiency for parameter
and hyperparameter search problems separately. Yet several
researchers also used these algorithms to simultaneously train
ANN network and optimize its architecture [148]–[150].
An another area of research in this field is to combine
nature inspired algorithms by traditional gradient search
techniques for speeding up convergence and having higher
accuracy [151], [152].

IV. OPEN RESEARCH QUESTIONS
Despite several advancements in the steering angle prediction
of AVs, there are still many challenges that require further
study. In this section, we outline some of the challenges
and open research questions revealed in the literature survey
which are as follows:

A. CONVOLUTIONAL NEURAL NETWORK OPTIMIZATION
Bat algorithm has been used for optimization of hyperparam-
eters by a simple feedforward neural network; and showed
better results for hyperparameter tuning of feedforward ANN
as compared to GA and PSO [153]. Yet, to the best of our
knowledge Bat algorithm has not been used for the optimiza-
tion of CNN hyperparameters. Hyperparameter optimization
of a neural network is a non-convex, non-linear and com-
plex global optimization problem. To solve these kind of
problems, Bat algorithm and its variants showed efficient
results as compared to various other popular nature inspired
metaheuristic algorithms [153]–[155]. Wang and Guo [154]
proposed a variant of Bat algorithm designed by incorporat-
ing pitch adjustment operation of Harmony Search. To verify
effectiveness of this improved Bat algorithm, they applied
fourteen standard benchmark functions and found that it
has superior performance in global optimization problems as
compared to Ant colony optimization, Differential evolution
algorithm, Genetic algorithm, and particle swarm optimiza-
tion. By considering these groundworks, it is expected that a
variant of Bat algorithmwould outperform in hyperparameter
optimization of CNN for the purpose of predicting steering
angle for an autonomous vehicle. Therefore, exploring the
efficiency of bat algorithm for optimizing CNN structure can
be an interesting area of research. In order to achieve this,
each hyperparameter of CNN can be represented by a dimen-
sion of bat. Hence a set of hyperparameters can be encoded

as a position of a bat. In this way, number of bats represent
the number of hyperparameter’s set and the fitness of bat
represents the evaluation metric of the CNN model. Each
hyperparameter set is improved by updating the position of
bat using equations of bat algorithm. The process of updating
the position of bats in the population is to be repeated upto
maximum number of specified generations.

B. AFFECTIVE DRIVABLE ROAD AREA DETECTION
Riaz & Niazi [156] concluded through their research study
that more robust collision avoidance can be achieved in AVs
through combining human emotions with a cognitive agent.
Likewise, a potential research horizon can be to incorporate
emotion feature in road boundary detection. As in real world
driving, various kinds of risky road scenarios are encountered
including bridges and roads on the hills, etc. In developing
countries most of the hilly roads are unstructured, unmarked
and not properly built. Moreover, scenarios where the sys-
tem is uncertain about the drivable road area due to heavy
traffic occluding the lane markings or due to overexposure,
should be discerned as high risk scenarios. For these kinds of
scenarios, an element of fear can be incorporated into AVs
for safe autonomous lane keeping. To achieve this, fuzzy
rules can be applied based on the intensity of fear (e.g.,
very high fear, high fear, medium fear, low fear, very low
fear). The intensity of fear corresponds to the level of risk.
In high risk scenarios, speed of the vehicle should be reduced
and an emergency handling module should be activated. The
emergency handling module can be designed in such a way
that firstly it analyses the problem and then act upon solving
the problem accordingly. For example, in case of unstructured
road and occluded lane markings, the steering angle can be
based on position of the front vehicle in horizontal plane in
the frame, instead of determining the angle based on road.
Quick analysis of the problem can be done through a function
determining the average pixels of the image.

C. TESTING SCENARIOS
Literature regarding real world imitation-learning-based
steering angle prediction deprives a comprehensive study
covering various testing scenarios varying in road types,
weather and illumination conditions. The researchers in the
domain of ANN-based steering control of AVs heavily rely on
artificial datasets for the experimentation. However, the use
of artificial datasets has challenges in conducting experiment
with the aim of deploying the results in a real-world environ-
ment [4]. There is a need for a comprehensive research study
covering real world road scenarios with different weather
conditions (such as snow, rain, sunny and cloudy), illumina-
tion conditions and road types (including unpaved and broken
roads).

D. WEIGHTS INITIALIZATION IN ANN-BASED STEERING
ANGLE PREDICTION
The performance and convergence of majority ANN highly
depends on its weights initialization [157], [158]. Modern
deep learning frameworks such as Keras, Caffe and Torch
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etc provide a facility of high level synthesis of ANN mod-
els and controlling its training parameters. Researchers are
using automatic weight initialization using these deep learn-
ing frameworks for the purpose of steering angle prediction.
Pretrained weights of various outperforming ANN models
are available the classification task. Yet, employing these
pretrained weights for regression task of steering angle pre-
diction is not feasible. Hence there is a need for a detailed
research study on weight initialization for ANN architectures
designed for the purpose of steering angle prediction.

E. PRACTICAL COMPARISON OF
IMITATION-LEARNING-BASED APPROACH AND
COMPUTER-VISION-BASED APPROACH
To be best of our knowledge, a practical comparison of the
two approaches of steering angle prediction has yet to be
done. Hence a study has to be conducted presenting the
comparison of processing time, accuracy and other evalua-
tion factors. For this purpose, recent baseline researches of
both approaches can be implemented by practically and then
results can be evaluated and compared.

F. RESEARCH STUDY EVALUATING DIFFERENT
TECHNIQUES OF DRIVABLE ROAD AREA DETECTION
Various techniques have been proposed by researchers for
drivable road area detection. As the testing scenarios under-
taken in each research study varies, supremacy of an approach
over the other cannot be assured. Hence, there is a need
for a research study which evaluates different techniques
using a single dataset. The selected dataset should cover
various scenarios i.e., different weather conditions, traffic
conditions, curves, colors of lane markings, and types of lane
markings etc.

V. CONCLUSION
Advanced driver assistance technologies such as lane keeping
are being incorporated into the vehicles in order to reduce
chances of accidents. Lane keeping systems are determined to
counter unintentional road departures, for which an accurate
steering angle prediction is crucial. In this paper, the problem
of steering angle prediction and various techniques for solv-
ing it has been discussed. Vision-based steering angle predic-
tion involves analyzing road area using camera and steering
the vehicle autonomously within the road boundaries. Major
challenge in this regard is to make the system robust in
various scenarios, such as illumination changes, curved &
straight roads, urban roads & highways, traffic conditions in
surrounding of ego vehicle, and different artifacts on the roads
(e.g., shadows and cracked roads etc). In order to meet this
challenge, various solutions proposed by researchers have
been highlighted in this paper.

The first approach to steering angle prediction is through
computer vision escorted by image processing techniques.
The first step to this approach is capturing the vehicle envi-
ronment through the camera. The obtained image frames are
then preprocessed to enhance the required features or portions
of the image. These preprocessed image frames are then used

for road detectors and/or tracking algorithms. By analyzing
the drivable road region, steering angle and other parameters
are derived byAV for maneuvering the vehicle within the lane
boundaries of the road. This is done by the vehicle controller
continuously sending commands to the actuators according
to the road dynamics and vehicle state.

The second approach to steering angle prediction is
through ANNs. This involves estimation of steering angle by
inputting frames or sequences of frames without performing
extra road region extraction processes. The obtained steering
angle along with other parameters is leveraged by the con-
troller for keeping ego vehicle on the road. Any neural net-
work model requires a dataset to be trained on for achieving
a particular task. For the neural network designed for steer-
ing angle prediction, the dataset is obtained through human
demonstration through driving a car. After designing any
neural network model, optimization is crucial for obtaining
the required results. Traditionally, this is done through hit and
trial by the practitioner, but this is time consuming and ineffi-
cient method. A more efficient way is to use nature-inspired
optimizartion algorithms for this purpose, which are being in
the research focus these days.

In this paper, various techniques adopted by various
researchers under both the approaches for steering angle pre-
diction are discussed. At the end of the paper, open research
problem regarding steering angle prediction has been high-
lighted. For future work, we are planning to conduct a review
analysis of the latest researches on the various perception
devices for autonomous vehicles.
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