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We study the quantum capacity of continuous-variable dephasing channel, which is a notable
example of a non-Gaussian quantum channel. We prove that a single letter formula applies. The
optimal input state is found to be diagonal in the Fock basis and with a distribution that is a discrete
version of a Gaussian. Relations between its mean/variance and dephasing rate/input energy are
put forward. We then show that by increasing the input energy, the capacity saturates to a finite
value. We also show that it decays exponentially for large values of dephasing rates.

I. INTRODUCTION

Any physical process can be regarded as a quantum
channel, i.e. a stochastic map on the space of states that
causes a state change. As such it can be characterized by
its ability in conveying information. A notable example
is provided by the quantum capacity of a channel, that
shows its ability to transfer unaltered the entanglement
of the input system with a reference system [1].

Finding the quantum capacity of a channel is chal-
lenging because not only the optimization of an en-
tropic functional (coherent information) over input
states is required, but also its regularization [2–4].
This task becomes even harder when dealing with
infinite-dimensional (so-called continuous-variable) sys-
tems. That is why till now, in this framework, the
attention has been confined to Gaussian channels, i.e.
maps that transform Gaussian states into Gaussian states
[5, 6]. For instance, the coherent information of the lossy
channel (a special case of Gaussian channels) is known to
be additive and hence its quantum capacity is computed
[7] (see [8] for the general formalism of energy-constrained
quantum capacity). For more general Gaussian channels,
an upper bound of quantum capacity can be obtained by
evaluating one-shot coherent information of the channel
[9].

Nevertheless, there is an increasing pressure to go be-
yond the Gaussian channels paradigm [10, 11]. Heading
in this direction, we investigate here the quantum capac-
ity of one of the most physically relevant non-Gaussian
channels, namely the dephasing channel (see e.g. [12]).
It causes the reduction of the off-diagonal terms in the
Fock basis, thus washing out coherence properties of the
state. This happens for instance with uncertainty path
length in optical fibers [13].

Here we prove that for dephasing channel the single
letter formula applies for the quantum capacity. The op-
timal input state is found to be a non-Gaussian state,
which is diagonal in the Fock basis and with a distribu-
tion that is a discrete version of a continuous Gaussian
distribution. In fact we show that the optimal proba-
bility distribution is a symmetric unimodal probability
distribution. Then we take discrete Gaussian probability

distribution as an ansatz and show that by proper se-
lection of mean value and variance, it becomes a perfect
fit for optimal probability distribution. The relation be-
tween optimal mean/variance and dephasing rate/input
energy are put forward. Finally, we show that by in-
creasing input energy, the quantum capacity saturates to
a finite value which depends on the noise parameter of
the channel. We also show that, for a large value of de-
phasing rate, the quantum capacity decays exponentially
with dephasing rate.

The structure of the paper is as follows: In section
II we set our notation and explain the terms we need
for our next purposes. Section III is for short review on
the quantum dephasing channel and its different repre-
sentations that we are going to use in proceeding sec-
tions. Section IV is devoted to the quantum capacity of
the dephasing channel, containing analytical results for
proving that single letter formula applies and showing
the structure of the optimal input state. In section V we
introduce our approach for using the replica method to
numerically evaluate quantum capacity. Its asymptotic
behavior is then discussed in section VI. Finally, section
VII concludes with a summary and discussion of the re-
sults.

II. NOTATION AND PRELIMINARIES

In this section we set our notation and review rele-
vant concepts and terms used in the proceeding sections
for deriving the quantum capacity of bosonic dephasing
channel. Here, states of the initial system and environ-
ment respectively belong to Hilbert-spaces denoted by
HS and HE . Similarly, the Hilbert-space of the final sys-
tem and environment are respectively denoted by HS′
and HE′ . Density operators on Hilbert-space H, belong
to T (H), the set of linear positive operators on H with
trace one.

Due to the unavoidable interaction between system
and environment, described by an isometry U : HS ⊗
HE → HS′ ⊗HE′ , there are noise effects on the system.
The most general form of a system evolution is then given
by a completely positive trace preserving (CPTP) map
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or a quantum channel N : T (HS) → T (HS′) described
by tracing over environment degrees of freedom of the
final state, that is

N (ρ) = TrE′
(
U(ρ⊗ |0〉 〈0|)U†

)
. (1)

Here ρ ∈ T (HS) is any initial state of the system and
|0〉 ∈ HE a fixed initial state of the environment. For
each channel N , its complementary channel N c is a
CPTP map N c : T (HS)→ T (HE′) given by

N c(ρ) = TrS′
(
U(ρ⊗ |0〉 〈0|)U†

)
. (2)

Two important properties of quantum channels which we
use here are degradablity and entanglement breaking. A
channel N : T (HS) → T (HS′), is degradable if there
exists a channel M : T (HS′)→ T (HE′) such that

M◦N = N c, (3)

where ◦ denotes composition of maps [14]. To recall the
definition of entanglement breaking channel, first we de-
note the Hilbert space of a reference state by HR and the
identity operator on it by 1R. Then, a quantum channel
N : T (HS) → T (HS′) is entanglement breaking if the
map 1R⊗N : T (HR⊗HS)→ T (HR⊗HS′) maps every
density operator to a separable state [15, 16]. Actually
it is known that if 1R ⊗N maps a maximally entangled
state to a separable state, N is entanglement breaking
[15, 16].

The quantum capacity of a channel N , is the high-
est rate of reliable quantum information transmission
through the channel. It can be expressed in terms of
the coherent information of the channel’s output state.
The latter quantity is defined as

J(ρ,N ) ≡ S (N (ρ))− S (N c(ρ)) , (4)

with S(ρ) = −Tr (ρ log ρ) the von Neumann entropy of ρ
(throughout the paper we use logarithm to base 2). Then,
the quantum capacity of the N results as the regularized
maximum coherent information of the output of infinitely
many channel’s uses [1], that is

Q(N ) = lim
n→∞

1

n

[
max
ρ(n)

J
(
ρ(n),N⊗n

)]
, (5)

with maximization over all density operators ρ(n) ∈
T (H⊗nS ). For channels with additive coherent informa-
tion, maximizing the coherent information of single chan-
nel use over density operators on HS is sufficient for com-
puting the quantum capacity. Hence the formula (5) can
be simplified to single-letter expression [14]:

Q(N ) = max
ρ

J (ρ,N ) . (6)

For degradable channels, the coherent information is ad-
ditive [14]. Furthermore, a channel N is degradable if
an only if its complementary channel N c is entangle-
ment breaking [17]. Therefore, the quantum capacity
of degradable channels, or channels with entanglement
breaking complementary, is given by the single-letter for-
mula in Eq. (6).

III. QUANTUM DEPHASING CHANNEL

In this section we describe the quantum dephasing
channel by giving various representations for it. Fur-
thermore, we explain how such a channel is related to a
Markovian process and forms a semi-group.

The continuous-variable quantum dephasing effect (see
e.g. [12]) provides a notable example of a non-Gaussian
channel. The channel Nγ : T (HS) → T (HS) (note that
here HS and HS′ are isomorphic) can be dilated into a
single mode environment with the following unitary

U = e−i
√
γ(a†a)(b+b†)

= e−i
√
γ(a†a)b†e−i

√
γ(a†a)be−

1
2γ(a

†a)2 . (7)

Here a and a† are bosonic ladder operators acting on sys-
tem Hilbert space HS , b, b† are bosonic ladder operators
on the environment Hilbert spaceHE′ (isomorphic toHE
andHS), and γ ∈ [0,+∞) is a parameter that determines
the dephasing rate. The unitary evolution by Eq. (7),
can be represented as a controlled displacement gate in a
quantum circuit. The system acts as a controlled mode
prepared in the Fock basis and target – environment –
mode experiences a displacement proportional to

√
γ.

For the system evolution, by tracing over environment
degrees of freedom, we get

ρ 7→ Nγ(ρ) = TrE
[
U (ρ⊗ |0〉〈0|)U†

]
. (8)

with |0〉, the vacuum of the environment. If we expand
the input state in the Fock basis ρ =

∑∞
m,n=0 ρm,n|m〉〈n|

the effect of Nγ reads

ρ 7→ Nγ(ρ) =

∞∑
m,n

e−
1
2γ(m−n)

2

ρm,n|m〉〈n|, (9)

which clearly shows that the diagonal elements of the in-
put are preserved, while the off diagonal ones tend to be
washed out. The channel’s output as given in Eq. (9),
is also the solution of the following Markov master equa-
tion:

ρ̇(t) = L[ρ(t)], (10)

with

L[•] ≡ 2(a†a) • (a†a)−
(
(a†a)2•

)
−
(
•(a†a)2

)
, (11)

where • is any operator in T (HS) and t ≡ γ. Hence,
the set of dephasing channels {Nγ} forms a semi-group
under composition: Nγ ◦ Nγ′ = Nγ+γ′ .

Kraus representation of the channel is given by

ρ 7→ Nγ(ρ) =

∞∑
j=0

KjρK
†
j , (12)

where Kraus operators Kj = 〈j|U |0〉, with |j〉 ∈ HE
being the number state in environment and unitary evo-
lution U as given in Eq. (7), have the following explicit
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form:

Kj = e−
1
2γ(a

†a)2
(
−i√γa†a

)j
√
j!

. (13)

The channel’s action can also be written as

ρ 7→ Nγ(ρ) =

∫ +∞

−∞
e−ia

†aφρeia
†aφ p(φ)dφ, (14)

with

p(φ) =

√
γ

2π
e−

1
2γφ

2

. (15)

This means a randomization of the phase φ according
to the probability distribution (15). Note that φ as a
random variable must be defined on the sample space R,
not [0, 2π].

IV. QUANTUM CAPACITY

In this section we derive the explicit form of the com-
plementary channel of bosonic dephasing channel (8),(9).
We show that the quantum capacity of the latter is given
by the single-letter formula (6). Based on this we derive
the structure of the optimal input state.

For the channel Nγ in Eq. (8), the complementary
channel (2) N c

γ : T (HS)→ T (HE) is given by

ρ 7→ N c
γ (ρ) = TrS

[
U (ρ⊗ |0〉 〈0|)U†

]
= TrS

[∑
m,n

ρm,n |m〉 〈n| ⊗ |−i
√
γm〉 〈−i√γn|

]
=
∑
m

ρm,m |−i
√
γm〉 〈−i√γm|

= e−
iπ
2 a
†a

(∑
m

ρm,m|
√
γm〉〈√γm|

)
ei
π
2 a
†a,

(16)

where U is defined in Eq. (7) and |√γm〉 is a coherent
state of real amplitude

√
γm, i.e.

|√γm〉 = e−γm
2/2

∞∑
k=0

(
√
γ m)k
√
k!
|k〉. (17)

The complementary channel is a mixture of coherent
state. In fact the input state with m photon number
is projected into a coherent state with an amplitude pro-
portional to m. The ultimate output state of the com-
plementary channel is a mixture of these coherent states,
with the weight given by the probability of having m
photons in the input[16]. The complementary channel

N c
γ (16) is entanglement breaking. To show this we con-

sider a two-mode squeezed vacuum state

|Ψ〉RS =

∞∑
n=0

λn|n〉R|n〉S , 0 ≤ λ ≤ 1, (18)

being R a reference system isomorphic to S and λ the
squeezing parameter. Using Eq.(16), we immediately ar-
rive to

(
1R ⊗N c

γ

)
|Ψ〉RS〈Ψ|

=
∑
m

λ2m |m〉R 〈m| ⊗ |−i
√
γm〉E 〈−i

√
γm| , (19)

which is a mixture of product states and hence is a sep-
arable state for any value of λ . Being N c

γ entanglement
breaking, Nγ is degradable. Therefore, according to §II,
the quantum capacity of bosonic dephasing channel is
given by single-letter formula 6:

Q(Nγ) = max
ρ

J (ρ,Nγ) . (20)

Next we use the phase-covariance property of Nγ and
the concavity of the coherent information, to restrict the
set of density operators over which the maximization in
Eq. (20) should be performed. Similar argument is used
in the context of bosonic pure-loss channels [18].

Proposition 1. The optimal input state to Nγ for the
quantum capacity (20) is diagonal in the Fock basis.

Proof. From Eq. (14) it follows that the quantum dephas-

ing channel is phase-covariant, that is for Uθ = e−ia
†aθ

with θ ∈ [0, 2π) we have

Nγ(UθρU
†
θ ) = UθNγ(ρ)U†θ . (21)

Similarly, from Eq. (16), we conclude that also the com-
plementary channel N c

γ is phase-covariant:

N c
γ (UθρU

†
θ ) = UθN c

γ (ρ)U†θ . (22)

As the von-Neumann entropy is invariant under unitary
conjugate, from Eqs. (21) and (22) we conclude that

J(ρθ,Nγ) = J(ρ,Nγ), (23)

with ρθ ≡ UθρUθ
†. On the other hand, for degradable

channels, the coherent information is a concave function
of its input state, that is∫ 2π

0

J (ρθ,Nγ) p(θ)dθ ≤ J
(∫ 2π

0

ρθp(θ)dθ,Nγ
)
, (24)

for any probability distribution p(θ). Thus from Eq. (23)
and (24) it is straightforward to see that

J (ρ,Nγ) ≤ J
(∫ 2π

0

ρθp(θ)dθ,Nγ
)
. (25)
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Then, choosing p(θ) as flat distribution, we find∫ 2π

0

ρθp(θ)dθ =
1

2π

∞∑
m,n

∫ 2π

0

ρm,n|m〉〈n|eiθ(m−n)dθ

=

∞∑
n

ρn,n|n〉〈n|. (26)

Finally, inserting this into the r.h.s. of (25) gives

J (ρ,Nγ) ≤ J

( ∞∑
n=0

ρn,n|n〉〈n|,Nγ

)
, (27)

i.e. the desired result.

The fact that the optimal input state is diagonal in
the Fock basis, can be interpreted more intuitively by
noting that the steady-states, or the state that remains
invariant under the Markov process generated by L in
Eq. (11), is not unique. In fact all Fock states are in-
variant under the dynamics generated by L in Eq. (11).
Hence every mixture of invariant states, which is a state
diagonal in the Fock basis, is invariant under this evolu-
tion. Of course in the subset of steady-states of Marko-
vian dynamics generated by L in Eq. (11) we should find
the one that can carry the largest amount of quantum
information through the channel.

As a consequence of Proposition 1, the maximization
in Eq. (20) reduces to the maximization over classical
probability distribution:

Q(Nγ) = max
pm

[
S

( ∞∑
m=0

pm|m〉〈m|

)

− S

( ∞∑
m=0

pm|
√
γm〉〈√γm|

)]
, (28)

where we have used the last equality in Eq. (16) and the
invariance of entropy under unitary conjugation. A lower
bound to (28) can be found by considering an input state
to be diagonal in the Fock basis and containing only two
elements with equal weight, i.e.

Ωj =
1

2
(|n〉 〈n|+ |n+ j〉 〈n+ j|), (29)

where n, j are arbitrary non-negative integers. In such a
case it is easy to see that

∑
m pm|

√
γm〉〈√γm| is diago-

nalized in the following basis

1√
2 + 2e−γj2/2

(|√γn〉+ |√γ(n+ j)〉) , (30)

1√
2− 2e−γj2/2

(|√γn〉 − |√γ(n+ j)〉) , (31)

with eigenvalues

q±(j) ≡ 1

2

(
1± e−γj

2/2
)
. (32)

Thus we have

J(Ωj ,N ) = 1−H2(q+(j), q−(j)), (33)

with H2 the binary entropy.
We note that the eigenvalues of N c

γ (Ωj) in Eq. (32)
do not depend on n. Furthermore, by increasing j, the
distance between q+(j) and q−(j) decreases and as a
consequence H2(q+(j), q−(j)) decreases too. Therefore,
J(Ωj ,N ) in Eq. (33) is maximized for j = 1 and a a lower
bound for quantum capacity is given by J(Ω1,Nγ) which
is obtained for input state Ω1 with arbitrary n.

In order to obtain the quantum capacity, it is neces-
sary to go beyond the input state (29) by considering
more terms in the sum and non trivial probability distri-
butions. The task is complicated because computing the
second term of Eq. (28) requires the diagonalization of a
mixture of infinite number of coherent states. Hence, in
the next section we will use numerical tools.

V. NUMERICAL ANALYSIS

In this section we resort to numerical techniques to
evaluate the quantum capacity. First we truncate the
space HS to dimension N + 1. According to Proposition
1, the optimal input state is diagonal in the Fock basis
and in a truncated Hilbert space it takes the form

ρ =

N∑
m=0

pm |m〉 〈m| . (34)

The mean energy of this state is given by
∑N
m=0mpm,

with maximum value N . Therefore the truncation of
Hilbert space can be regarded as constraining the input
average energy [28]. Then, we find the following maxi-
mum numerically

QN+1(Nγ) = max
pm

[
S

(
N∑
m=0

pm|m〉〈m|

)

− S

(
N∑
m=0

pm|
√
γm〉〈√γm|

)]
,

(35)

and by analyzing its behaviour by increasing N , we ob-
tain the quantum capacity in Eq. (28).

For N = 1, maximizing the right hand side of Eq. (35),
yields the optimal probability distribution to be uniform,
that is p0 = p1 = 1

2 , as shown in Fig. 1 together with Q2.
This implies that for N = 1 the probability distribution
in Eq. (29) is optimal. It is worth noting that even by
truncating the sum in equation Eq. (28), the numerical
analysis is lengthy. The root of that goes back to the fact
that by increasing N not only the number of involved
coherent states (17) increases, but also their amplitudes
increase. In fact, by increasing m, the number of required
terms at the r.h.s. of (17) to be considered increases,
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FIG. 1: Top: optimal probability distribution for N = 1
versus γ. Bottom: Q2(Nγ) versus γ.

which is equivalent to a longer time for the numerical
task. In the next section, we explain an algorithm which
mitigates this problem.

A. Replica method

We now explain our approach for numerical calculation
of QN+1 in Eq. (35). Obviously, computing the first term
is straightforward. For computing the second term, we
will make use of the replica method [19–21].

It is known that the von-Neumann entropy of a density
matrix Ω can be written as [19]

S(Ω) = −Tr(Ω log Ω) = −∂nTr(Ωn)|n=1, (36)

with ∂n denoting derivative with respect to n. There-
fore, instead of diagonalizing Ω, one can compute the
entropy through the trace of Ωn. For our purpose, we
denote the density matrix appearing in the second term
of QN+1(Nγ) in Eq. (35) which is a unitary conjugate of
the complemnetary channel’s output, by

Ω ≡
N∑
m=0

pm |m
√
γ〉 〈m√γ| , (37)

and for arbitrary n, express Ωn in terms of coherent states
as

Ωn =

N∑
i,j=1

C
(n)
ij |
√
γi〉 〈√γj| , (38)

with C
(1)
ij = piδi,j . It then follows that

Tr (Ωn) =

N∑
i,j=1

C
(n)
ij e−

γ
2 (i−j)

2

. (39)

By considering that Ωn = Ωn−1Ω and taking into account
Eqs. (37) and (38), the following recurrence relation can
be derived:

C(n) = C(n−1)A, (40)

with

Aij = e−
γ
2 (i−j)

2

pj , i, j = 1, . . . , N. (41)

Thus using Eq. (40) in Eq. (39) we conclude that

Tr (Ωn) = Tr (An) =

N∑
i=1

ani , (42)

with {ai}i the eigenvalues of the matrix A. Finally, from
Eqs. (36) and (42), we have

S(Ω) = −∂nTr(An)|n=1 = −
N∑
i=1

ai log ai, (43)

which implies that the numerical computation of S(Ω)
can be done through the N × N matrix A without any
need to involve coherent states.

By using Eq. (43) we compute the second term of
Eq. (35) numerically, and optimize the whole expression
over the probability distribution, pms. We find optimal
values of pm, as shown in Fig. 2 for N = 2, 3, 4, 5. Pro-
ceeding up to N = 8, we observed the following relation
between the optimal values of pms:

pm < pm+1, for 0 ≤ m ≤ bN
2
c, (44)

pm = pN−m, for bN
2
c < m ≤ N. (45)

For the obtained optimal probability distributions,
QN+1(Nγ) is shown in Fig. 3 versus γ for N = 1, . . . , 8.
As expected QN+1(Nγ) monotonically decreases versus
the noise parameter γ.

For probability distribution with the pattern given in
(44) and (45) it is straightforward to see that the mean
energy of the optimal input state is N

2 which is linearly
increasing by N .

In the next subsection we try to figure out the probabil-
ity distribution that fits well with properties in Eqs. (44)
and (45).
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FIG. 2: Optimal value of pm for m = 0, 1, · · · , N versus γ.
From top to bottom N = 2, 3, 4, 5.

FIG. 3: QN+1(Nγ), as defined in Eq. (35), versus γ for N =
1, . . . , 8.

B. Optimal probability distribution

We discuss here the actual form of the optimal prob-
ability distribution. From Eqs. (44) and (45), it is con-
cluded that the optimal probability distribution can not
have more that one peak, hence bimodal probability dis-
tributions are not optimal distributions. Furthermore,
Eq. (44) and (45) imply that the optimal probability
distribution is symmetric around its peak at m = bN2 c.
Therefore, a non-symmetric unimodal probability distri-
bution, such as the thermal distribution, is not an ac-
ceptable candidate for optimal probability distribution
in computing QN+1.

A candidate for discrete probability distributions satis-
fying these properties is the discrete Gaussian probability
distribution

pm(µ, σ(N, γ)) =
1

M(µ, σ)
e
− (m−µ)2

2σ2(N,γ) , (46)

with m ∈ {0, 1, · · · , N}. It is centered around µ = N
2

and has a width controlled by σ. Furthermore, M(µ, σ)
is the normalization factor

M(µ, σ(N, γ)) =

N∑
m=0

e
− (m−µ)2

2σ2(N,γ) . (47)

From Eqs. (44) and (45) we know that for all values of γ,
pm attains the maximum value for m = bN2 c. Therefore,

we set µ = N
2 and vary σ to find the best fit to the

optimal probability distribution obtained numerically in
Sec. V A. It is worth mentioning that for odd N , the
maximum value of probability distribution does not pass
any pm, but still pm with m = bN2 c and m = bN2 c + 1
are equal and have maximum values.

By varying σ we can fit discrete Gaussian distribu-
tion to the optimal probability distribution obtained in
Sec. V A for N = 1, . . . , 5. We observe that σ is linear in
N :

σ(γ,N) ≈ a(γ)N + b(γ), (48)
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FIG. 4: QN+1(Nγ) as defined in Eq. (35) versus N . From top
to bottom γ = 0.25, 0.5, 0.75, 1, 2.

and for γ > 0.2 the coefficients a(γ) and b(γ) are almost
constant, that is σ ≈ 0.2N + 0.6.

By taking pms in Eq. (35) from discrete Gaussian prob-
ability distribution as in Eq. (46) with µ = N/2 and nu-
merically maximizing it over σ, we calculate QN+1(Nγ).
The obtained quantities for N = 1, . . . , 5 exactly coincide
with the corresponding curves in Fig. 3. Additionally,
with the same procedure we obtained the behaviour of
QN+1(Nγ) for N = 6, 7 and 8 as depicted in Fig. (3).

As can be seen in Fig. 3, by increasing N , the curves
become closer and closer, especially at large values of γ.
This implies that for large values of N , Fig.3 shows a very
close approximation to the quantum capacity Q(Nγ) in
Eq. (28) versus noise parameter γ. This is also reminis-
cent of the fact that whenever the coherent information
of a one-mode Gaussian channel is non-zero, its supre-
mum is achieved for input power going to infinity [22].
Fig. 4 shows the behaviour of QN+1(Nγ) versus N for
some fixed values of noise parameter γ. Actually, it shows
that QN+1(Nγ) saturates after a finite value of N and the
larger the noise parameter is, the smaller is the value of
N at which the saturation happens.

VI. ASYMPTOTIC BEHAVIOUR OF
QUANTUM CAPACITY

In this section, we discuss the asymptotic behavior
of the quantum capacity of dephasing channel in terms
of the dephasing rate, or noise parameter. As seen in
Sec. IV, the dephasing channel is degradable, hence its
quantum capacity is equal to its private classical capac-
ity [23]. On the other hand, the private classical capacity
is always non-negative [24, 25]. Therefore, Q(Nγ) is al-
ways non-negative. However, the decreasing behavior of
QN+1(Nγ) suggests that QN+1(Nγ) and hence Q(Nγ)
asymptotically approaches zero from above for γ → ∞.

Actually in what follows we show that for large values of
γ, QN+1(Nγ) and hence the quantum capacity decrease
exponentially.

While so far we have used replica method to ease the
numerical analysis of the second term of QN+1(Nγ) in
Eq. (35), here we use this technique to derive the behav-
ior of QN+1(Nγ) and quantum capacity Q(Nγ) for large
values of γ. Elements of matrix A as defined in Eq. (41)

are all non-zero. Define ε ≡ e−
γ
2 which is small for large

values of γ. The matrix A up to order O(ε) is given by

Ai,j = pjδi,j + ε pj (δi,j+1 + δi+1,j) +O(ε2). (49)

Therefore, by straightforward calculation, we obtain

Tr(An) =

N∑
m=0

pnm +O(ε2), (50)

which by considering the first equality in Eq. (43) leads

to S(Ω) = −
∑N
m=0 pm log pm and therefore QN+1(Nγ)

as defined in Eq. (35) vanishes if we keep terms up to
order ε, because

QN+1(Nγ) ≈ O(ε2). (51)

Hence to see the asymptotic behaviour of QN+1(Nγ) for
large values of γ, we write the matrix A up to orderO(ε2):

Ai,j = pjδi,j + εpj (δi,j+1 + δi+1,j)

+ ε2pj(δi,j+2 + δi+2,j) +O(ε3). (52)

Straightforward calculations give

Tr(An) =

N∑
m=0

pnm + nε2
N−1∑
m=0

pnmpm+1 − pmpnm+1

pm − pm+1
, (53)

which, using Eq. (43) and replacing ε2 by e−γ , leads to

QN+1(Nγ) = e−γ
N−1∑
m=0

pmpm+1

pm − pm+1
log

(
pm
pm+1

)
+O(ε3).

(54)
As discussed in Sec.V B for large values of γ, the mean
value and variance of optimal probability distribution in
Eq. (46) do not depend on γ. Thus, the summation in
Eq. (54) does not depend on γ. Therefore Eq. (54) im-
plies that, for large values of γ, QN+1(Nγ) and hence
Q(Nγ) approach zero exponentially.

VII. CONCLUSION

Summarizing, we have studied the capability of
Bosonic dephasing channel for transmitting quantum in-
formation. We have analytically proved that for such a
channel, coherent information is additive and the opti-
mal input state is diagonal in the Fock basis, which is
invariant under the noise action. Then, by using the
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replica method which makes numerical analysis techni-
cally feasible, we showed that the optimal probability
distribution for the mixture of Fock states is unimodal
and symmetric around its maximum. Among possible
choices satisfying these two constraints, we took discrete
Gaussian distribution as an ansatz and by varying its
average and variance we showed that it fits the optimal
probability distribution Interestingly, this distribution is
almost independent on the noise parameter γ, but the
quantum capacity varies with γ, as the output of the
complementary channel depends on the noise parameter.
We found it useful to truncate the dimension of Hilbert
space, which is equivalent to restrict the input energy,
and define QN+1(Nγ) as the maximum of coherent infor-
mation in truncated space. Then, we numerically eval-
uated the quantum capacity by finding the asymptotic
behavior of QN+1(Nγ) when enlarging the dimension of
truncated Hilbert space, as it saturates to a finite value
(see Figs. 3 and 4). Our results show that the optimal in-
put state for transmitting quantum information through
a continuous-variable quantum dephasing channel, is a
mixture of number states with discrete Gaussian distri-
bution, which is clearly not a Gaussian state. We also
discussed that quantum capacity approaches zero from
above when the noise parameter increases. For large val-
ues of dephasing rate, this decay is exponential.

It is worth observing that bosonic dephasing channel
results an Hadamard channel as a consequence of having
proved that its complementary channel is entanglement
breaking. This property implies that the triple trade-off
capacity regions are single-letter, as shown in [26]. It

could be the subject of a future investigation to deter-
mine the whole triple-trade-off region, and the replica
method might be useful there as well (the only other
known example of a bosonic channel of physical inter-
est that is Hadamard and for which it is known the full
triple-trade-off region, is the quantum-limited amplifier
channel [27]

Not only we are confident that this work can pave
the way for studying quantum communication with
continuous-variable quantum channels beyond the usual
restriction of Gaussianity, but it can already be useful in
the context of optical communications where dephasing
effects are relevant [13]. In particular, the achieved result
sets an upper bound to the private communication rate,
which is a key aspect for technological developments.
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