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Abstract: In this paper, we review the linear and non-linear dynamics of an optomechanical system
made of a two-membrane etalon in a high-finesse Fabry–Pérot cavity. This two-membrane setup has
the capacity to modify on demand the single-photon optomechanical coupling, and in the linearized
interaction regime to cool simultaneously two mechanical oscillators. It is a promising platform for
realizing cavity optomechanics with multiple resonators. In the non-linear regime, an analytical
approach based on slowly varying amplitude equations allows us to derive a consistent and full
characterization of the non-linear displacement detection, enabling a truthful detection of membrane
displacements much above the usual linear sensing limited by the cavity linewidth. Such a high
quality system also shows a pre-synchronization regime.

Keywords: radiation pressure; optomechanical systems; optical cavity; linear dynamics; optical
cooling; non-linear dynamics

1. Introduction

Cooperative effects, enhanced interactions and nontrivial dynamics occur when multi-
ple mechanical resonators are placed within an optical cavity [1–10]; for example, one can
induce and control the coherent exchange of excitations [11–14], or study self-oscillations
and their synchronization in the case of two or more mechanical resonators [12,15–24]. In
this paper, we review the linear and non-linear dynamics of an optomechanical system
made of a two-membrane etalon in a high-finesse Fabry–Pérot cavity [8,10,23]. When
the optical cavity is driven on the red sideband, the linear dynamics of such a system
is explored: the optomechanical coupling can be controlled on demand [8,9,25] by a lo-
cal control of the membrane position along the cavity axis, and multiple oscillators can
be simultaneously cooled [8,26], or exploited for photon-mediated coherent interaction
and heat transfer between separate resonators [13,14]. However, the radiation pressure
interaction is proportional to the photon number and it may have non-linear effects on
both the mechanical and optical degrees of freedom which become evident when the
mechanical motion is excited [27] by means of laser driving on the blue sideband of the
optical cavity. Optical backaction in this case counteracts the internal mechanical friction,
and when the total effective damping becomes equal to zero, a Hopf bifurcation into a
regime of self-induced mechanical oscillations takes place [23,28–34]. A fixed amplitude
limit cycle is established, with a free running oscillation phase, which may lock to external
forces or to other optomechanical oscillators [35], leading to synchronization (see refer-
ences [12,15,16,22,36–42] for theoretical characterizations, and references [17–21,24,43–46]
for experimental demonstrations in optomechanical and electromechanical devices). In
the specific case of the two-membrane-in-the-middle setup of interest here, self-organized
synchronization, phase-locking, and the transition between in-phase and antiphase regimes
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have been qualitatively demonstrated [24], without calibration of the mechanical displace-
ments. An alternative way of describing the non-linear optomechanical dynamics in this
mechanical parametric oscillation regime is that the modulation of the radiation pressure
interaction induced by the mechanical motion causes a cavity frequency shift comparable
to or larger than the optical linewidth, yielding a nontrivial modification of the cavity
response.

In this review article we first focus on studying the dynamics of the linearized fluc-
tuations around the stable stationary state of the system, showing the tunability of the
single-photon optomechanical coupling rate, and also that both membranes of the etalon
can be simultaneously cooled by means of a red-detuned cavity driving. Later on we
explore a regime, which can be called pre-synchronization regime, obtained when the
blue-detuned driving is weak and slightly below the synchronization threshold. In this
regime only one of the two membrane resonators, “master”, is driven to a limit cycle
through the Hopf bifurcation, while the other oscillator is only partially synchronized with
the “master” resonator because the amplitude of the synchronized component does not
prevail over the thermal motion. We show that when multiple mechanical resonators are
detected by the same single probe field simultaneously interacting with all of them (such as,
for example, in references [17–19,43,45]), and at least one resonator enters a limit cycle, one
has a non-trivial, non-linear dynamics of the system, which has to be properly considered,
yielding a highly non-linear calibration of the displacement measurement obtained by
means of the output probe readout.

This review article is organized as follows: in Section 2 we briefly describe the multi-
mode optomechanical system under study, exploring both the linearized dynamics of the
fluctuation within the stability conditions, and the non-linear regime, which is obtained
when the Hopf bifurcation is crossed, and one has mechanical self-oscillations. In Section 3
we describe the experimental setup, and in Section 4 we present the linear dynamics for the
membrane resonators, in particular their controllable coupling and the possibility to cool
both of them. In Section 5 we analyze the non-linear dynamics of the mechanical modes
at the onset of synchronization, and we provide the analytical recipe able to describe in
a quantitative way both the full numerical solution of the Langevin equations, and the
experimental results for the optical probe spectrum. Section 6 is for concluding remarks.

2. Theoretical Description of the System Dynamics

The following Hamiltonian describes an optomechanical system where two optical
modes interact with two mechanical modes via radiation pressure:

H = Hpump + Hprobe + Hmech + Hint, (1)

decomposed as follows:

Hpump = h̄ωc1a†
1a1 + ih̄E1

(
a†

1e−iωL1t − a1eiωL1t
)

, (2)

Hprobe = h̄ωc2a†
2a2 + ih̄E2

(
a†

2e−iωL2t − a2eiωL2t
)

, (3)

Hmech = ∑
j=1,2

h̄ωjb†
j bj, (4)

Hint = − ∑
i,j=1,2

h̄gija†
i ai(bj + b†

j ). (5)

Two cavity modes with resonance frequencies, ωc1 and ωc2, described by two bosonic
annihilation operators a1, and a2, are driven at frequencies ωL1, and ωL2, respectively.
The mode a1, called PUMP, is used for engineering the optomechanical interaction, while
a2, denominated PROBE, performs a continuous detection of the mechanical motion. To
prevent any interference between the two drivings they usually have a different cavity
mode from each other (different polarization or frequency). Ei =

√
2κin,iPi/h̄ωLi includes
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the driving dissipation rates, with κin,i the decay rate of the i-th cavity mode through the
input mirror, and Pi the corresponding laser power.

The Hamiltonian Hmech describes two membrane oscillators with bosonic annihilation
mechanical operator bj (j = 1, 2), each with mass mj and resonance frequency ωj, and
displacement qj = (b†

j + bj) xzpf,j, where xzpf,j = (h̄/2ωjmj)
1/2 is the zero point motion of

the j-th oscillator. The radiation pressure dispersive interaction couples the mechanical
modes with the probe and pump optical modes. The single-photon coupling rates gij =
−(dωci/dxj)xzpf,j quantify the optomechanical interaction (see Figure 1).

Figure 1. Sketch of the system dynamics. The annihilation operator ai describes the cavity modes.
The decay rates through the output and input mirror, κex,i and κin,i, respectively, quantify the optical
mode coupling to the environment. The radiation pressure couples the membranes mechanical
modes, characterised by operators bj and decay rates γj, to the optical modes.

We consider for both probe and pump modes, the frame rotating at the corresponding
laser driving frequency. Fluctuation–dissipation processes couple the cavity modes and
the resonators to their related thermal reservoir at temperature T, and they are included
in the Heisenberg picture adding noise and dissipative terms. The quantum Langevin
equations [27,47,48], for i, j = 1, 2, are:

ȧi = (−i∆(0)
i − κi)ai + Ei + i ∑

j=1,2
gij(bj + b†

j )ai +
√

2κin,i ain,i +
√

2κex,i aex,i , (6)

ḃj = (−γj − iωj)bj + i ∑
i=1,2

gija†
i ai +

√
2γj bin

j , (7)

where ∆(0)
i = ωci − ωLi, κi = κin,i + κex,i represents the amplitude decay rate of the

cavity for the pump and the probe modes, κex,i is the optical loss rate through all the ports
different from the input one, and γj represents the amplitude decay rate of the j-th oscillator.
ain,i(t), aex,i(t) and bin

j are the corresponding zero-mean noise reservoir operators. They
are all Gaussian, and white noises uncorrelated from each other with correlation functions
〈 f (t)† f (t′)〉 = n̄δ(t − t′) and 〈 f (t) f (t′)†〉 = (n̄ + 1)δ(t − t′) where f (t) is either ain,i(t),
aex,i(t) or bin

j , and n̄ = [exp(h̄ω f /kbT)− 1]−1 is the mean thermal occupation number for
the related mode.

We shall restrict, in this review, to study the dynamics at temperature T ' 300 K only,
when a classical treatment of the above quantum Langevin equations is reasonable. At
this temperature a different treatment of mechanical and optical noise terms should be
considered: the optical frequencies ωc,i/2π ' 1014 Hz, so that n̄c,i ' 0, are dominated by
photon shot noise, but for large enough driving powers fluctuations of the intracavity field
might occur, due either to vacuum fluctuations or technical laser noise. At mechanical
frequencies ω1/2π ' ω2/2π ' 106 Hz, implying n̄m,j ' kbT/h̄ωj � 1, the thermal noise
is dominant for the mechanical mode. For this reason, we consider classical complex
random noises, βin

j (t), j = 1, 2, which replace the mechanical quantum thermal noise

bin
j (t), and α

opt
i (t), which replace the sum of optical vacuum noises

√
κin,i/κi ain,i(t) +√

κex,i/κi aex,i(t), with correlation functions [39,42]



Photonics 2022, 9, 99 4 of 17

〈βin
j (t)βin

j′ (t
′)〉 = 〈αopt

i (t)αopt
i′ (t′)〉 = 0, (8)

〈βin
j′ (t
′)βin,∗

j (t)〉 = 〈βin,∗
j (t)βin

j′ (t
′)〉 = (n̄m + 1/2)δjj′δ(t− t′) , (9)

〈αopt
i (t′)αopt,∗

i′ (t)〉 = 〈αopt,∗
i (t)αopt

i′ (t′)〉 = (1/2)δii′δ(t− t′) . (10)

Therefore, the following coupled classical Langevin equations well approximates the set of
coupled quantum Langevin equations for the optical and mechanical complex amplitudes
αi(t) and β j(t) [38,39,42],

α̇i(t) =
(
−i∆(0)

i − κi

)
αi(t)+Ei+ ∑

j=1,2
2igijRe[β j(t)]αi(t)+

√
2κi α

opt
i (t) , (11)

β̇ j(t) = (−iωj − γj)β j(t) + i ∑
i=1,2

gij|αi(t)|2 +
√

2γj βin
j (t) . (12)

In our case, the quasi-resonant weak probe beam is used only for the detection of the
mechanical motion of the oscillators. We are far from the regime where the drivings relative
phase can be used to control nonreciprocal effects [49,50].

2.1. Linear Dynamics

It is often useful to introduce the linearized approximate description of Equations (11) and (12).
In the following we remove the index 1 when referring to the cavity pump field, that is α1 → α,
κ1 → κ. We also ignore the Langevin equation of the weak probe beam, which is in resonance
with the optomechanical cavity, and therefore realizes a perfectly non-invasive detection of the
mechanical mode, without any backaction, as it occurs in a Michelson interferometer readout [34].
The cavity field and the mechanical mode are split into an average coherent amplitude and a
fluctuating term α(t) = α0 + δα(t) and βj(t) = βj,0 + δβj(t). In the steady state case, the average
amplitudes are:

α0 =
E

κ + i

[
∆(0) − ∑

j=1,2
gj

(
β0,j + β∗0,j

)] , (13)

β0,j =
igj|α0|2

γj + iωj
. (14)

Neglecting the second order terms, the fluctuation terms δα(t) and δβ j(t) give the
following linearized Langevin equations [27,51]:

δα̇(t) = −(i∆ + κ)δα(t)+i ∑
j=1,2

gj[δβ j(t) + δβ∗j (t)]α0+
√

2κ δαopt(t) , (15)

δβ̇ j(t) = −(iωj + γj)δβ j(t) + igj[α
∗
0δα(t) + α0δα∗(t)] +

√
2γj βin

j (t) , (16)

where ∆ = ∆(0)−∑j=1,2 gj(β0,j + β∗0,j) corresponds to a modification of the cavity detuning,
which is the parameter controlled in the experiments. For our purpose, it is easier to solve
the linearized Langevin equations in the frequency space:

−iωδα̃(ω) = −(i∆ + κ)δα̃(ω) + i ∑
j=1,2

gjα0

[
δβ̃ j(ω) + δβ̃∗j (ω)

]
+
√

2κ δα̃opt(ω) , (17)

−iωδβ̃ j(ω) = −(iωj + γj)δβ̃ j(ω) + igj[α
∗
0δα̃(ω) + α0δα̃∗(ω)]+

√
2γj δβ̃in

j (ω) , (18)

where δβ̃ j(ω) =
∫ +∞
−∞ dt eiωtδβ j(t) and δα̃(ω) =

∫ +∞
−∞ dt eiωtδα(t) are the Fourier transform

of δβ j(t) and δα(t). Performing the calculations, and defining the optical and mechanical
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susceptibility χ̃c(ω) = [κ + i(∆−ω)]−1 and χ̃m,j(ω) =
[
γj + i

(
ωj −ω

)]−1, respectively,
we obtain:

χ̃−1
c (ω)δα̃(ω) = i ∑

j=1,2
gjα0

[
δβ̃ j(ω) + δβ̃∗j (ω)

]
+
√

2κ δα̃opt(ω) , (19)

χ̃−1
m,j(ω)δβ̃ j(ω) = igj[α

∗
0δα̃(ω) + α0δα̃∗(ω)]+

√
2γj δβ̃in

j (ω) . (20)

To obtain the modified susceptibility for the mechanical oscillator we solve the previous sys-
tem of equations inserting Equation (19) into (20). Defining Σ(ω) = i|α|2[χ̃∗c (ω)− χ̃c(ω)],
and δũopt

j = gj

[
α∗0δα̃optχ̃c(ω) + α0δα̃opt ∗ χ̃∗c (ω)

]
, we get the linearized Langevin equations

for the two mechanical oscillators in the rotating wave approximation, that is neglecting the
counter-rotating terms δβ̃∗j [52], which is valid in the red-detuned and resolved-sideband
regime (even moderate):[

χ̃−1
m,1 + ig2

1Σ(ω)
]
δβ̃1(ω) = ig1g2Σ(ω)δβ̃2(ω)+i

√
2κδũopt

1 +
√

2γ1 δβ̃in
1 (ω) , (21)[

χ̃−1
m,2 + ig2

2Σ(ω)
]
δβ̃2(ω) = ig1g2Σ(ω)δβ̃1(ω)+i

√
2κδũopt

2 +
√

2γ2 δβ̃in
2 (ω) . (22)

Neglecting the optical noise terms (high temperature regime), we finally obtain:χ̃
e f f −1
m,1 +

Σ1(ω)Σ2(ω)

χ̃
e f f −1
m,2

δβ̃1(ω) ≈
√

2γ1 δβ̃in
1 (ω) , (23)

χ̃
e f f −1
m,2 +

Σ1(ω)Σ2(ω)

χ̃
e f f −1
m,1

δβ̃2(ω) ≈
√

2γ2 δβ̃in
2 (ω) , (24)

where χ̃
e f f −1
m,j = χ̃−1

m,j + iΣj(ω), and Σj(ω) = g2
j Σ(ω). From the previous equations, we can

derive the effective susceptibility of the two mechanical oscillators driven by a red detuned
pump beam [48]:

χ̃
e f f
m,j =

χ̃
e f f
m,j

1 + Σ1(ω)χ̃
e f f
m,1Σ2(ω)χ̃

e f f
m,2

. (25)

2.2. Non–Linear Dynamics

In the non-linear regime, the chaotic motion of the two oscillators is not considered, as
it occurs at extremely large driving powers which are not physically meaningful for the
optomechanical system discussed in this review. We might find the dynamics of the system
by considering the slowly varying amplitude equations approach of references [16,22].
After an initial transient regime, each mechanical oscillator sets itself into the following
dynamics:

β j(t) = β0,j + Aj(t)e−iωreft, (26)

where β0,j is the approximately constant, static shift of the j-th resonator, Aj(t) is the corre-
sponding slowly–varying complex amplitudes, and ωref � ∆ω is a reference mechanical
frequency, of the order of ωj. Equation (26) implies that we will study the long–time
dynamics of the two mechanical resonators in the frame rotating at the fast reference fre-
quency ωref. Inserting the Equation (26) into the Equation (11), and performing explicitly
the integrals one gets:



Photonics 2022, 9, 99 6 of 17

αi(t) = eiψi(t)
∫ t

0
dt′eWi(t−t′)[Ei +

√
2κiα

opt
i (t′)]e−iψi(t′) ≡

≡ αE
i (t) + δαi(t) , (27)

where the intracavity field αE
i (t) is proportional to the driving rate Ei, and δαi(t) is related to

the input noise α
opt
i (t). We defined the bright complex amplitudes Ab

i (t) = |Ab
i (t)|eiθi(t) =

∑ gij Aj(t)/gb
i with gb

i = (g2
i1 + g2

i2)
1/2, and Wi = i[∆(0)

i − ∑ gij(β0,j + β∗0,j)] − κi, and

ψi(t) = ξi sin(ωreft− θi) with ξi = 2gb
i |Ab

i |/ωref.
By performing the Jacobi–Anger expansion for the e−iψi(t′) factor within the inte-

gral [16,30], that is, e−iξ sin φ = ∑n Jn(−ξ)einφ, (φ = ωreft′ − θi, and Jn is the n-th Bessel
function of the first kind), and neglecting a transient decay term, the expression for the
intracavity field amplitude αE

i (t) is:

αE
i (t) = Eieiψi(t)

∞

∑
n=−∞

Jn(−ξi)ein(ωreft−θi)

inωref −Wi
. (28)

For the fluctuation term we have:

δαi(t) =
√

2κieiψi(t)
∫ t

0
dt′eWi(t−t′)α

opt
i (t′) . (29)

We might derive an equation for the unknown quantities Aj(t) and β0,j by insert-
ing these relations into the radiation pressure force term within the Equation (12) for
the mechanical motion. Since the intracavity optical fluctuations are negligible, one can
approximate at first order the radiation pressure term in δαi(t),

igij|αi(t)|2 ' igij|αE
i (t)|2 + igijη

opt
i (t) , (30)

where

|αE
i (t)|2 = E2

i

∞

∑
n,m=−∞

Jn(−ξi)Jm(−ξi)ei(n−m)(ωreft−θi)

(inωref −Wi)(−imωref −W∗i )
, (31)

and

η
opt
i (t) = αE

i (t)δα∗i (t) + αE,∗
i (t)δαi(t) . (32)

Assuming β0,j approximately constant, and neglecting all the terms that oscillate faster
than ωref, i.e., keeping only the resonant terms in Equation (31) [n− m = 0 for β0,j and
n−m = −1 for the amplitudes Aj(t)], we get

(γj + iωj)β0,j = i ∑
i=1,2

∞

∑
n=−∞

gijE2
i Jn(−ξi)

2

(inωref −Wi)(−inωref −W∗i )
, (33)

which is an implicit equation for β0,j becauseWi depends upon β0,j, and the value of β0,j
can be obtained numerically. For the slowly varying amplitudes Aj(t) we get instead:

Ȧj(t) =
[
−γj − i∆ωj

]
Aj(t) +

√
2γjβ

in
j (t) + i ∑

i=1,2
gijη

opt
i (t)+

+ i ∑
i=1,2

∞

∑
n=−∞

gijeiθi E2
i Jn(−ξi)Jn+1(−ξi)

[inωref −Wi][−i(n + 1)ωref −W∗i ]
, (34)

where ∆ωj = ωj −ωref, and
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∆(0)
i → ∆i = ∆(0)

i − ∑
j=1,2

gij(β0,j + β∗0,j) , (35)

correspond to a modification of the cavity detunings, as already explained in the previous
Section, so thatWi = −i∆i − κi can be regarded as a given parameter when we calculate
the amplitude.

Finally, the Equation (34) can be rewritten in a more transparent form by making ex-
plicit the equation for each amplitude, and by defining the following regular dimensionless
auxiliary functions Fi(|Ab

i |, κi, ∆i), i = 1, 2, as:

Fi =
E2

i

|Ab
i |

∞

∑
n=−∞

Jn(−ξi)Jn+1(−ξi)

[inωref −Wi][−i(n + 1)ωref −W∗i ]
, (36)

which can be easily shown to be a function of even powers of |Ab
i | only. One finally gets

the set of coupled slowly-varying complex amplitude equations:

Ȧ1(t) = [−γ1 − i(∆ω1 − d1)]A1(t) + id12 A2(t) + i ∑
i=1,2

gi1η
opt
i (t) +

√
2γ1βin

1 (t), (37)

Ȧ2(t) = [−γ2 − i(∆ω2 − d2)]A2(t) + id12 A1(t) + i ∑
i=1,2

gi2η
opt
i (t) +

√
2γ2βin

2 (t) , (38)

where

d1 =

(
g2

11F1

gb
1

+
g2

21F2

gb
2

)
, (39)

d2 =

(
g2

12F1

gb
1

+
g2

22F2

gb
2

)
, (40)

d12 =

(
g11g12F1

gb
1

+
g21g22F2

gb
2

)
, (41)

are non-linear coefficients because of their dependence upon the regular dimension-
less auxiliary functions Fi, which, in turn, depend upon the corresponding variable
|Ab

i |2 = |gi1 A1 + gi2 A2|2/(g2
i1 + g2

i2). As already shown in references [16,22], Equations (37)
and (38) give an accurate and general description of two mechanical resonators dynamics.

3. Experimental Setup

In this Section we describe the experimental setup used to study the linear and
non-linear dynamics of an optomechanical system constituted of a two-membrane etalon
inserted in a high-finesse Fabry–Pérot cavity. The membrane-etalon is realised with two
equal 1.5 mm× 1.5 mm membranes (Norcada), with a etalon length Lc = 53.571(9) µm.
The membranes have a thickness Lm = 106(1) nm, considering the index of refraction
of Si3N4 given in reference [53]. The membrane-sandwich is placed at the center of a
high-finesse Fabry–Pérot cavity. Inserting the membrane-etalon, the empty cavity finesse
F0 = 50,125 (25) decreases to F = 12,463 (13), corresponding to an intensity decay rate of the
cavity 2κ = τ−1 = FSR/F ' 2π × 134 kHz, with FSR ' 2π × 1.67 GHz. The mechanical
and optical properties of this system were explored in references [8].

Figure 2 shows the experimental setup. A laser beam at wavelength λ0 = 1064 nm
is split into a pump beam and a probe beam. An acousto-optic modulator (AOM) shifts
the frequency of the pump beam by ∆1 from the cavity resonance. The probe beam is in
resonance with the optical cavity and has an intensity Pprobe = 5.9 µW. The light reflected
by the optical cavity is homodyne detected and the thermal voltage spectral noise (VSN) is
measured. The pump beam is used to laser drive the mechanical modes. In the following
Sections, we focus on studying the linear and non-linear dynamics with the fundamental
modes of the two membranes.
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PBS

QWP
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Pump  
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1

Figure 2. Experimental setup to explore the linear and non-linear dynamics of an optomechanical
system made up of a two-membrane etalon inserted in the middle of a high finesse Fabry–Pérot
cavity. A probe beam, phase modulated by an electro-optical modulator (EOM), impinges on the
optical cavity. It is frequency locked to the cavity resonance frequency using the Pound–Drever–Hall
(PDH) technique. The reflected beam is analyzed by homodyne detection to measure the mechanical
motion of the resonators. An acousto-optic modulator (AOM) detunes the pump beam by ∆1 from the
resonance frequency of the cavity. When switched on, the optomechanical interaction is engineered.
BS denotes a beam-splitter, PBS a polarizing beam-splitter, QWP a quarter-waveplate, and HWP a
half-waveplate.

4. Experiments in the Linear Regime

In the linear regime, we first show that shifting the position of the membranes along
the cavity axis with the piezo controllers the optomechanical interaction can be tuned
and controlled. Figure 3a shows a simulation of the shift of the resonance frequencies of
the optomechanical cavity as a function of the position of the two oscillators, qj, along
the standing wave resonating in the cavity. The corresponding gradient field is repre-
sented as superimposed vector plot, and shows how the two optomechanical couplings
Gj = ∂ωcav/∂qj = gj/xzpf,j change by displacing the membranes [8]. Note that there are
positions qj for which only one of the membranes is coupled (red and magenta dots), or
both (green dot).

To prove tunability of the optomechanical coupling rate, the probe beam was frequency
locked to the optical cavity using the PDH technique, and the thermal VSN of the two
membranes is measured with homodyne detection of the light reflected by the optical cavity
(see Figure 2). Figure 3b shows the detected thermal VSN, which clearly demonstrates
the capacity to switch off and on the optomechanical interaction in a controlled way by
shifting the position of each membrane (see Figure 3b top and middle spectra, and also the
magenta and red dots in Figure 3a) where only one oscillator is in a position in which it
interacts with the cavity field. In the bottom spectrum of Figure 3b both membranes are
instead coupled to the optical cavity [see also the green dot in Figure 3a]. We measured
ωm1 = 2π× 235.810 kHz, γm1 = 2π× 1.64 Hz for the lower frequency fundamental mode
on the left (red–dashed line), while for the fundamental mode of the second resonator we
measured ωm2 = 2π × 236.580 kHz, γm2 = 2π × 9.37 Hz (orange–dashed line).

To avoid any optomechanical effect with the probe beam, such as cooling or optical
spring effect, we used a very low power probe field as resonant as possible (∆2 ' 0) with a
cavity mode. The corresponding measured single photon optomechanical coupling rates
gj = Gjxzpf,jΘj, and Θj, the dimensionless transverse overlap between the optical cavity
mode and the j-th mechanical mode, are g1 = 2π × 0.30 Hz and g2 = 2π × 0.28 Hz. These
couplings are comparable to the ones obtained in a similar setup with a single membrane-
in-the-middle [54,55]. With this setup, we can tune the optomechanical interaction of both
resonators with the optical mode, switching on the “cooling” pump beam with a variable
detuning ∆1 ≡ ∆ with respect the cavity resonance. In this Section we focus on the case of
a red-detuned drive which enhances the beam-splitter interaction between the mechanical
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modes and the cavity mode allowing the cooling of the former, and whose dynamics is
described by the treatment of Section 2.1. We observe the simultaneous cooling of the
fundamental modes of the two distinct membranes [26], demonstrated by the significant
suppression of the area below the measured displacement spectral noise (DSN) when the
driving laser is resonant with the red sideband and the pump power is not negligible
(see Figure 4). The behaviour of the DSN is determined by the effective susceptibility of
each resonator, modified by their common interaction with the driven pump mode, and
explicitly given by Equation (25), obtained in Section 2.1. In more detail, in Figure 4a,b
we report the measured DSN as a function of the detuning ∆ normalized to the mean
mechanical frequency ω̄m. In Figure 4a we use a lower power of the cooling beam with
respect to that used in Figure 4b. We note the lower optomechanical coupling of the left
mode for the results in Figure 4b, which corresponds to an ineffective optical cooling. In
Figure 4c instead the DSN is shown as a function of the pump beam power Ppump, at a fixed
detuning ∆ ∼ ω̄m.
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a) b)

Figure 3. (a) Contour plot of the cavity frequency shift (δω) normalized to the free spectral range
(FSR) of the cavity, as a function of the membrane positions q1 and q2 normalized to the wave-
length, due to the presence of the two-membrane etalon. Superimposed the vector plot of the
gradient field of the frequency shift, whose components give the two optomechanical couplings,
with the unit indicated on the top right of the panel. The green, red and blue dots represent
the points where the mechanical spectra of the fundamental modes of the two membranes were
measured [see panel (b)]. (b) Thermal voltage spectral noise (VSN) of the membrane sandwich
obtained by homodyne detection of the light reflected by the optical cavity. Bottom: the funda-
mental modes of both membranes are coupled to the optical cavity. The magenta–dashed line
indicates the beat note added for calibration. For the left mode (orange–dashed line) we determine:
ωm1 = 2π × 235.810 kHz, γm1 = 2π × 1.64 Hz, and g1 = 2π × 0.30 Hz; for the right mode (green–
dashed line): ωm2 = 2π × 236.580 kHz, γm2 = 2π × 9.37 Hz, and g2 = 2π × 0.28 Hz. Middle: only
the membrane with lower frequency fundamental mode is coupled to the optical field. Top: only the
membrane with higher frequency fundamental mode is coupled to the optical cavity.



Photonics 2022, 9, 99 10 of 17

Figure 4. Laser cooling of the two membranes. Measured displacement spectral noise (DSN) as a
function of the detuning ∆ normalized to the mean mechanical frequency ω̄m = (ωm1 + ωm2)/2 of
the fundamental modes of the two membranes, for a cooling input power: (a) Ppump = 130 µW, and
(b) Ppump = 380 µW. The cavity decay rate is κi = 2π × 83 kHz. Note the lower optomechanical
coupling of the left mode for the results in panel (b), which corresponds to an ineffective optical
cooling. The orange- and green-dashed lines indicate the mechanical frequencies in the absence of
the optical spring effect caused by the pump. (c) Laser cooling of the two membranes at constant
detuning ∆ ∼ ω̄m. The DSN is measured as a function of the cooling beam power Ppump. The orange-
and green-dashed lines indicate the mechanical frequencies with no cooling. At Ppump = 0 the cooling
beam is switched off, and we appreciate the thermal noise of the fundamental modes of the two
membranes.

5. Experiments in the Non-Linear Regime

In Figure 5 the VSN measured with homodyne signal is reported as a function of time.
The frequencies are normalized with respect to the frequency of the fundamental mode of
the first membrane, ω1, (underlined by an orange-dashed line, while the second membrane
mode is marked by a green-dashed line). The parameters were set to drive the mechanical
oscillators in a weak regime.

Figure 5. Measured VSN in V2 Hz−1 of the output probe beam normalized to the resonant frequency
of the fundamental mode of the first membrane, which takes 50 s to arrive to a limit cycle. The pump
beam is switched on after 10 s with a power of 4.25 µW. The pump power is further increased to
6.0 µW after 25 s. From the first thermal spectra we derive the following optomechanical param-
eters: ω1 ' 2π × 230.795 kHz, g1 ' 2π × 0.43 Hz, ω2 ' 2π × 233.759 kHz, g2 ' 2π × 0.70 Hz.
Orange-dashed and green-dashed lines indicate the first and second fundamental mode, respectively.
Magenta-dashed line indicates the calibration signal at ωb = 2π × 226.000 kHz.
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In the first 10 s, we switched off the pump beam, and measured the thermal noise
displacement of the fundamental modes of the two resonators. The magenta-dashed line
highlights the external signal injected to estimate the single-photon optomechanical cou-
pling g1 ' 2π× 0.43 Hz, and g2 ' 2π× 0.70 Hz, and to calibrate the VSN in displacement
spectral noise (DSN) [34,56]. After 10 s, the blue detuned (∆1/2π = 259.350 kHz) pump
beam is switched on with a power of 4.25 µW, to study the non-linear dynamics of the
optomechanical system. After 25 s the power is further increased to 6.0 µW. In the experi-
mental data, we observe the appearance of a sideband due to the second mechanical mode
at frequency 2ω1 −ω2.

The onset of synchronization is observed in the weak driving regime. Only one of
the two oscillators enters into a limit cycle through the Hopf bifurcation associated with
the parametric instability [30]. Instead, the other membrane stays in a mixed condition
where the radiation pressure force induced by the oscillations of the first membrane cannot
prevail over the thermal noise [16,22]. For convenience we take ωref = ω1 as a reference in
Equations (37) and (38), so that ∆ω1 = 0 and ∆ω2 = ∆ω. As one of the two membranes
remains in a thermal state, we make the assumption that |A1| � |A2|,

√
2n̄m,1, where

n̄j =
[
exp

(
h̄ωj/kBT

)
− 1
]−1 ' kBT/h̄ωj � 1 is the mean thermal occupation number.

Moreover, we will not consider the optical noise and the terms associated with η
opt
i (t), as

they are negligible in our experiment. With the above approximations, both A2 and thermal
noise contributions can be neglected, and Equation (37) becomes:

Ȧ1(t)=
[
− γ1 + id1(|A1|)

]
A1(t)=−

[
γ

e f f
1 (|A1|)− i∆ω

e f f
1 (|A1|)

]
A1(t) , (42)

where the dependence of d1 on |A1| has been made explicit, and we defined ∆ω
e f f
1 (|A1|) =

−Re[d1(|A1|)], and γ
e f f
1 (|A1|) = γ1 + Im[d1(|A1|)]. The mechanical effective damping can

be cast as:

γ
e f f
1 (|A1|) = γ1

[
1 +

g1

γ1|A1|
Im
[

E2
1 Σ1 + E2

2 Σ2

]]
, (43)

where assuming gi1 ' g1, in the considered regime |Ab
i | ' |A1|(gi1/gb

i ), ξ j ' ξ1 =
2g1|A1|/ω1, and

Σj ≡ Σ(ξ1, κi, ∆i) = ∑
n

Jn(−ξ1)Jn+1(−ξ1)

[inω1 −Wj][−i(n + 1)ω1 −W∗j ]
. (44)

With such approximation we imply we are in a pre-synchronization regime where, in
the second oscillator, the thermal noise prevails; if the second mode is able to arrive to
a limit cycle and synchronize with the first, the amplitude g2 A2 would not be negligible
anymore with respect to g1 A1, and the dynamics would be described by the general
Equations (37) and (38) [24,57]. We can solve Equation (42), rewriting it in terms of modulus
and phase, A1 = I1eiφ1 ,

İ1(t) = −γ
e f f
1 (I1) I1(t) , (45)

φ̇1(t) = ∆ω
e f f
1 (I1) . (46)

After a transient these equations give, for the first oscillator, a steady state solution with a
constant radius, Ist

1 , which in our case of weak driving, corresponds to the smallest positive

root of the equation γ
e f f
1 (Ist

1 ) = 0, which can be cast as:

a |ξst
1 | = −Im

[
E2

1 Σ(ξst
1 , κ1, ∆1) + E2

2 Σ(ξst
1 , κ2, ∆2)

]
, (47)
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with ξst
1 = 2g1 Ist

1 /ω1, and a = ω1γ1/2g2
1. As a consequence, at long times, φst

1 (t) ' t∆ωst
1

with ∆ωst
1 = ∆ω

e f f
1 (Ist

1 ) so that A1(t) ' Ast
1 (t) = Ist

1 exp[it∆ωst
1 ].

In Figure 6 we show the left and right side of Equation (47). We infer from the
intersection point of Figure 6b, which corresponds to find the smallest root of γ

e f f
1 (Ist

1 ) = 0,
a value ξst

1 = 1.054, a steady–state displacement amplitude qst
1 = 2|A1|xzpf = 263.0 pm,

and ∆ω
e f f
1 = −2π · 0.04 Hz. Such behaviour has been investigated for the determination of

g0 [34]. For ξ � 1, the sideband output field has a spectral amplitude linear with ξ, and it is
possible to perform a direct measurement of the position coordinate q1; for ξ ≥ 1 we should
consider a correction factor because linearity is no more valid. In our case, the theoretical
correction factor isN1 ' 0.70, which corresponds to an expected observable stationary limit
cycle amplitude of qob

1 ' 183 pm (see Figure 7) [23]. Because of the oscillating behaviour of
the Bessel functions, Equation (47) considering sufficiently large pump power, may have
more than one solution [oblique black–dashed line in Figure 6b], which corresponds to the
multistability phenomenon theoretically analysed, and then verified in references [30,32].

b)

a)

Figure 6. Steady-state solution for the mechanical displacement amplitude that (a) doesn’t reach a
limit cycle, and (b) gets into a limit cycle. (a) The crossing of the left and right side of Equation (47)
are reported as dashed–orange (for the first most coupled mode) and solid–blue curve, respectively.
The oblique orange line represents the left term in Equation (47). The equation is not satisfied because
the pump power is below the threshold for finding a root. (b) The intersection of left and right side
of Equation (47) for the parameters of reference [23], are reported dashed–orange and solid–blue
curves, respectively, determines the steady–state value of ξst

1 . We find ξst
1 = 1.054, and an effective

steady–state amplitude qst
1 = 2|A1|xzpf = 263.0 pm. The vertical dot-dashed black and dashed

lines represent the cavity response length λ0/2F ' 43 pm, which corresponds to ξcav ' 0.284,

and the thermal displacement qth =
√

kBT/m1ω2
1 ' 3.365 pm, which corresponds to ξth ' 0.0112,

respectively. The dashed light green line shows the left term in Equation (47) for the less coupled
mechanical mode, for which, using the parameters of reference [23], the equation is not satisfied. The
threshold power for the optical damping to exceed the intrinsic one, is ∼ 3 µW for the first oscillator,
and 6.75 µW for the second. For a power larger than 6.75 µW both oscillators might reach a limit
cycle [57]. The oblique black-dashed line shows the edge between the region with only one solution
and the multistability region, which is possible only for a larger pump power (Ppump ∼ 667 µW).
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We now focus on the dynamics of the second resonator inserting the steady–state
solution for A1(t) into Equation (38), which becomes:

Ȧ2(t) =
[
−γ2 − i∆ω + id2(Ist

1 )
]
A2(t) + id12(Ist

1 )Ast
1 (t) +

√
2γ2βin

2 (t) . (48)

The stationary solution is obtained performing the Fourier transform, and it is written as:

A2(t) =
id12(Ist

1 )

γ
e f f
2 + i∆ω̄

e f f
2

Ast
1 (t) +

√
2γ2

∫ t

0
ds e−

(
γ

e f f
2 +i∆ω

e f f
2

)
s
βin

2 (t− s) , (49)

where γ
e f f
2 = γ2 + Im[d2(Ist

1 )] is positive, that is, despite the pump driving, the second

resonator is still damped, and does not reach a limit cycle, ∆ω̄
e f f
2 = ∆ω + Re[d1(Ist

1 )−
d2(Ist

1 )], and ∆ω
e f f
2 = ∆ω− Re[d2(Ist

1 )]. Therefore on the right hand side of Equation (49)
the first term is the synchronized component which oscillates at the same frequency of the
first master oscillator, while the second term is the thermal noise component at its natural
frequency. This equation describes the synchronization of the second oscillator with the
first one. When |d12(Ist

1 )|2 Ist,2
1 � γ2γ′2n̄m,2 (where ∆ω̄

e f f
2 ' ∆ω

e f f
2 ' ∆ω), i.e., the thermal

noise is negligible, the two resonators achieve phase locking and full synchronization. The
case of synchronization is consistent with the theoretical analysis of references [16,22]. In
our case of small driving powers, an onset of synchronization with very different limit
cycle amplitudes is predicted, even in the presence of thermal noise. Considering the four
dimensional phase space of the mechanical resonators, this condition is described by a
Neimark–Sacker bifurcation, which corresponds to the birth of a stable torus around the
existing limit cycle [35].

This analysis is validated considering the experimental time traces shown in Figure 7,
where the displacement amplitudes of the two membranes q1 and q2 are determined by
means of the calibration signal [34,56]. For t < 4 s (the pump beam is off), a value of the
displacement amplitudes higher than the thermal ones is observed because of a slightly
blue-detuned probe beam. Such detuning is evaluated observing that, for the second
mode, [green curve in panel b)], the standard deviation of the calibrated measured position
∆q∆

2 ' 3.50 pm, while the estimated standard deviation of the thermal displacement is
∆qth

2 ' 3.32 pm, so that

∆q∆
2

∆qth
2

=
1√

1 + C(∆)
' 1.054 , (50)

where, considering a quasi-resonant field [27],

C(∆) ∼ −
2g2

j E2

γκ

4ωj

(κ2 + ω2
j )

2
∆ . (51)

We estimate a small blue detuning of the probe ∆2 ' 2π · 3.9 kHz.
Finally, after t > 4 s, the pump beam is switched on and the measured mechanical

amplitudes are observed: we notice that as the amplitude of the first oscillator increases,
the measured amplitude of the second membrane decreases below the thermal value.
The observed steady-state limit cycle displacement amplitude of the first resonator is
qob

1 ' 184 pm [orange curve in Figure 7d]. The effective steady-state displacement ampli-
tude of the first oscillator, qst

1 = 2|A1|xzpf ' 262 pm (blue curve of panel d), is obtained
by the 10 blue trajectories simulated with the parameters of reference [23]. Moreover, the
slope of the trajectories follows the measured one, suggesting that our approach of using
the slowly varying complex amplitudes of the two resonators is effective, and able to catch
all the properties of the non-linear dynamics.
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b)a)

c) d)

Figure 7. (a,c) Phase space distributions associated with the amplitude displacements of the two
oscillators. (b) Observed displacement amplitudes, q2, as a function of time for the fundamental mode
of the second resonator, and (d) for the first resonator, q1, which goes into a limit cycle. Green and
orange curves indicate experimental data, and darker curves are a convolution over 200 points. The
measured steady-state values are q1 ' 184 pm, and qst

2 ' 2.1 pm, to be compared with the expected
values 183.0 pm, and 2.0 pm, respectively. The dynamics described by the integral of Equation (37)
[and Equation (38)] is represented by the 10 blue trajectories in panel (c). The horizontal dashed lines
in panels (b,d), shows the expected values given by Equation (52), respectively.

We notice that our model is also able to describe the dynamics of the second mode
with very good agreement. When the pump beam is switched on, the measured q2 [the
green curve in Figure 7b] follows the dynamics of the effective mechanical displacement
[blue trajectories in Figure 7b]. After 7 s q1 goes into the limit cycle, and then the effective
displacement differs from the measured one. An estimation of the effective steady-state

amplitude of the second contribution in Equation (49) is provided by ∆qth
2

√
γ2/γ

e f f
2 , with

γ
e f f
2
γ2

= 1 +
Im[d2(Ist

1 )]

γ2
= 1 +

g2
2E2

1
γ2 I1g1

Im[Σ1 + η Σ2] = 1−
γ1g2

2
γ2g2

1
. (52)

In our case, we notice that the effective amplitude is larger than the thermal amplitude by a

factor
√

γ2/γ
e f f
2 ' 1.38, because there is a small effective driving, even if is not enough for

the appearance of a limit cycle. In conclusion, we notice that the non-linear dynamics of
the system affects also the small effective amplitude displacement of the second resonator,
which shows a fictitious cooling effect, that is instead only a manifestation of a non-linear
detection of the displacement amplitude in such a regime. When the amplitude of one
oscillator brings a modulation larger than the cavity linewidth, the motional amplitudes
detected by the probe beam are non-linearly modified and an appropriate correction factor
has to be considered. This happens also for the unexcited resonator whose motional
amplitude gives a much smaller cavity frequency modulation than the cavity linewidth.

6. Conclusions

The optomechanical performance of a Fabry–Pérot cavity containing a two-membrane
etalon and driven in the red- and blue-detuning has been reviewed. We studied the linear
regime of such a system, and experimentally demonstrated the ability to tune on demand
the optomechanical coupling of the two resonators with the optical field, and showed
the simultaneous optical cooling of the two distinct oscillators. Hereafter, we studied the
non-linear regime where a pump beam blue-detuned from the resonance frequency of
the optical cavity, brings one of the two oscillators into a self-sustaining limit cycle. We
find out that the system is in a pre-synchronized regime when driven by a weak pump
beam, where the unexcited oscillator has a synchronized, small component at the frequency
of the excited oscillator. We get a perfect agreement between the numerical simulations,
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the experimental results, and an analytical approach based on slowly varying amplitude
equations. Both large and small amplitude resonator motions are transduced in a nontrivial
way in this non-linear detection regime.
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